| Thread In Java

| threads In Java

e Ogni programma Java contiene almeno un singolo
thread, corrispondente all’esecuzione del metodo
main() sulla JVM.

 FE’possibile creare dinamicamente nuovi thread
attivando concorrentemente le loro esecuzioni
all’interno del programma.

Due possibilita” di creazione:

1. Thread come oggetti di sottoclassi della classe Thr ead

2. Thread come oggetti di classi che implementano I'interfaccia
runnabl e

Thread come oggetti di sottoclassi della classe
Thr ead

| threads sono oggetti che derivano dalla classe
Thread (fornita dal package java.lang).

Il metodo run della classe di libreria Thread definisce
I'insieme di statement Java che ogni thread (oggetto
della classe) eseqguira concorrentemente con gli altri
thread.

Nella classe Thread I'implementazione del suo
metodo run e vuota.

In ogni sottoclasse derivata da Thread deve essere
ridefinito (override) il metodo run in modo da fargli
eseguire cio che e richiesto dal programma

Possibile schema

class Altri Threads extends Thread {
public void run() {
<cor po del programm eseguito>
<da ogni thread di questa cl asse>

}

}
publ i c class Esenpi oConDueThr eads
{ public static void main (string[] args)

{ AltriThreads tl=new Altri Thread();
tl.start();
<resto del progranma eseguito
dal thread nai n>

La classe AltriThread (estensione di Thread)
Implenta i nuovi thread ridefinendo il metodo run.

La classe EsempioConDueThreads fornisce il main
nel quale viene creato Il thread t1 come oggetto
derivato dalla classe Thread.

Per attivare il thread deve essere esequito il metodo
start() che invoca il metodo run() (il metodo run()
non puo essere chiamato direttamente, ma solo
attraverso start()).

JVM gestisce due thread concorrenti: il thread
principale associato al main ed il thread t1.

E se occorre definire thread che non siano
necessariamente sottoclassi di Thread?

Thread come classe che implementa lI'interfaccia
runnabl e

Interfaccia Runnable: maggiore flessibilita - thread come
sottoclasse di qualsiasi altra classe

 implementare il metodo r un() nella classe che implementa
I'interfaccia Runnabl e

e creare un’istanza della classe tramite new

e creare un’istanza della classe Thr ead con un’altra new, passando
come parametro l'istanza della classe che si e creata

* invocare il metodo st art () sul thread creato, producendo la
chiamata al suo metodo r un()

Esempio di classe Esenpi oRunnabl e che implementa I'interfaccia Runnable ed
e sottoclasse di M aCl asse:

cl ass Esenpi oRunnabl e extends M aC asse i npl enents Runnabl e

{

// non e sottoclasse di Thread
public void run()

{
for (int i=1; i<=10; i++)
} Systemout.println(i + “ 7 + i*i);
}
?ublic cl ass Esenpi o
?ublic static void main(String args[])
Esenpi oRunnabl e e = new Esenpi oRunnabl e() ;
Thread t = new Thread(e);
} t.start();

Grafo di stato di un thread

terminazione

start () del metodor un()

riattivazione
blocked

sospensione

Priorita e scheduling

Preemptive priority scheduling con priorita fisse
(crescenti verso l'alto).

MIN-PRIORITY, MAX-PRIORITY: costanti definite
nella classe thread.

Ogni thread eredita, all’atto della sua creazione, la
priorita del processo padre.

Metodo set - pri ority per modificare il valore della
priorita

JVM esegue l'algoritmo di scheduling:

« quando il thread correntemente in esecuzione esce
dallo stato runnable (sospensione o terminazione);

« guando diventa runnable un thread a priorita piu alta
(preemption).

= JVM non supporta I'assegnazione della CPU per
guanti di tempo (round robin).

e SE:

— S.0. adotta round-robin: i thread di uguale priorita
vengono gestiti round robin (anziché FIFO).

— S.0 non adotta round-robin: e possibile simulare

a programma tale comportamento. Metodo yield()
(cooperative multithreading).

 Trasparenza della JVM rispetto alla gestione del
guanti di tempo: potenziale problema per quanto

riguarda la portabilita di applicazioni Java che
adottano diversi criteri di scheduling

Metodi per il controllo di thread

start () fapartire 'esecuzione di un thread. La macchina
virtuale Java invoca il metodo r un() del thread appena
creato

st op() forzalaterminazione dell’'esecuzione di un thread.
Tutte le risorse utilizzate dal thread vengono

Immediatamente liberate (lock inclusi), come effetto della
propagazione dell’eccezione Thr eadDeat h

suspend() blocca l'esecuzione di un thread in attesa di
una successiva operazione di r esune() . Non libera le

risorse impegnate dal thread (lock inclusi)

resune() riprende l'esecuzione di un thread

precedentemente sospeso. Se il thread riattivato ha una
priorita maggiore di quello correntemente in esecuzione,
avra subito accesso alla CPU, altrimenti andra in coda
d'attesa

« s|leep(long t) blocca per untempo specificato
(t 1 me) I'esecuzione di un thread. Nessun lock in

possesso del thread viene rilasciato.

 Join() bloccalil thread chiamante in attesa della

terminazione del thread di cui si invoca il metodo.
Anche con timeout

 yield() sospende l'esecuzione del thread invocante,

lasciando il controllo della CPU agli altri thread in coda
d'attesa

| metodi precedenti interagiscono con il gestore della
sicurezza della macchina virtuale Java

Il problema di st op() e suspend()

stop() esuspend() rappresentano azioni “brutali” sul ciclo di
vita di un thread - rischio di determinare situazioni
Inconsistenti o di blocco critico (deadlock)

e se il thread sospeso aveva acquisito una risorsa in maniera
esclusiva, tale risorsa rimane bloccata e non e utilizzabile
da altri, perché il thread sospeso non ha avuto modo di
rilasciare il lock su di essa

 se il thread interrotto stava compiendo un insieme di
operazioni su risorse comuni, da eseguirsi idealmente in
maniera atomica, l'interruzione puo condurre ad uno stato
Inconsistente del sistema

= JDK 1.4, pur supportandoli ancora per ragioni di back-compatibility,
sconsiglia l'utilizzo dei metodi st op(), suspend() e resune()

(metodi deprecated)

Si consiglia invece di realizzare tutte le azioni di controllo e
sincronizzazione fra thread tramite gli stumenti specifici per la
sincronizzazione (object locks,wait (), notify(),notifyAll ()
e variabili condizione)

Sincronizzazione in Java

Modello a memoria comune:
| threads di una applicazione condividono lo spazio di
Indirizzamento.

=>» Ogni tipo di interazione tra thread avviene tramite
oggetti comuni:

— Interazione di tipo competitivo (mutua esclusione):
meccanismo degli objects locks.

— Interazione di tipo cooperativo:
e meccanismo wait-notify.
e variabili condizione

Mutua esclusione

* Ad ogni oggetto viene associato dalla JVM un lock
(analogo ad un semaforo binario).

 E’possibile denotare alcune sezioni di codice che

operano su un oggetto come sezioni critiche tramite
la parola chiave synchr oni zed.

=> || compilatore inserisce :

— un prologo in testa alla sezione critica per
I’acquisizione del lock associato all’oggetto.

— un epilogo alla fine della sezione critica per
rilasciare il lock.

Blocchi synchronized

Con riferimento ad un oggetto x si puo definire un
blocco di statement come una sezione critica nel

seguente modo (synchronized blocks):

synchroni zed (oggetto x) {<sequenza di statenent>;}

Esempio:

hbj ect nut exLock= new bj ect ;

public void M) {
<sezione di codice non critica>;
synchroni zed (nutexl ock){
< sezione di codice critica>;

}

<sezione di codice non critica>;

« all'oggetto nmut exLock viene implicitamente
associato un lock, il cui valore puo essere:

— libero: il thread puo eseguire la sezione critica

— occupato: il thread viene sospeso dalla JVM in
una coda associata a mut exLock (entry set).

Al termine della sezione critica:

— se non ci sono thread in attesa: Il lock viene reso
libero .

— se ci sono thread in attesa: il lock rimane occupato
e viene scelto uno di questi .

synchronized block

e esecuzione del blocco mutuamente esclusiva
rispetto:

— ad altre esecuzioni dello stesso blocco

— all’esecuzione di altri blocchi sincronizzati sullo
stesso oggetto

Entry set di un oggetto

lock

:

(bj ect ob

synchroni zed (ob){

B
a) lock libero
(bj ect ob

synchroni zed (ob){
| oc% :

a) lock occupato: t2
e t3 vengono inseriti
nell'entry set di ob

Metodi synchronized

e Mutua esclusione tra | metodi di una classe

public class intVar {
private int i=0;
public synchroni zed void increnmenta()

{1 ++ }

public synchroni zed voi d decrenenta()
{i--; 1}

}

e Quando un metodo viene invocato per operare su un
oggetto della classe, I'esecuzione del metodo
avviene in mutua esclusione utilizzando il lock

dell’oggetto.

Sincronizzazione diretta: wait enotify

wait set: coda di thread associata ad ogni oggetto,
Inizialmente vuota.

e | thread entrano ed escono dal wait set utilizzando i
metodiwai t () enotify().

e walit enotify possono essere invocati da un
thread solo all’'interno di un blocco sincronizzato
o0 di un metodo sincronizzato (possesso del lock
dell’oggetto).

wait, notify, notifyall

wai t comporta il rilascio del lock, la sospensione del
thread ed il suo inserimento in wait set.

noti fy comporta I'’estrazione di un thread da wait set
ed il suo inserimento in entry set.

noti fyal | comporta I'estrazione di tutti | thread da
wait set ed il loro inserimento in entry set.

NB: notify e notifyall non provocano il rilascio del lock:
=» i thread risvegliati devono attendere.

=» Politica signal&continue: il rilascio del lock avviene
al completamento del blocco o del metodo
sincronizzato da parte del thread che ha esequito la

notify

/I Esenpi o: mail box con capacita =1
public class Mail box{

private i nt contenuto;

private bool ean pi eno=fal se;

public synchronized int preleva()
{ while (pieno==false)
walit ();
pi eno=f al se;
notify();
return cont enut o;

}

public synchroni zed voi d deposita(int val ore)
{ whi Il e (pl eno==true)
wal t () ;
cont enut o=val or e;
pl eno=t r ue;
notify();

/I Mai | box di capacita N
public class Mil box {
private int[]contenuto;
private int contatore, testa, coda;

public mail box(){
contenuto = new int[N;

cont at ore 0;
testa = O;
coda = 0;

}

public synchroni zed int preleva (){
I nt el enent o;
while (contatore == 0)
wait();
el emento = contenutof[testa];
testa = (testa + 1) W\
--cont atore;
noti fyAl I ();
return el enmento;
}
publ i c synchroni zed void deposita (int val ore){
while (contatore ==
wait();
cont enut o[coda] = val ore;
coda = (coda + 1) %N
++cont at or e;
noti fyAll ();

Semafori in Java

e Java non prevede | semafori; tuttavia essi possono
essere facilmente costruiti mediante | meccanismi di
sincronizzazione standard.

e Le primitive P e V (walt e signal sui semafori) si
possono ottenere dichiarandole come | syncronized
methods all’interno della classe semaforo.

public class Semaphore {
private int val ue;
public Semaphore (int initial){

value = initial;
}
synchroni zed public void V()//signal sul semaforo
{ ++val ue;
notify();
}
synchroni zed public void P() //wait sul senmaforo
{ t hrows | nterruptedException
{ while (value == 0) wait();
- -val ue;
}

wait¬ify

Principale limitazione :

e unico wait-set per un oggetto sincronizzato

= non e possibile sospendere thread su differenti
code!

Variabili condizione

* Nelle versioni piu recenti di Java (versione 5.0)
esiste la possibilita utilizzare le variabili condizione.
Cio e ottenibile tramite 'uso un'apposita interfaccia
(definitain java. util.concurrent.| ocks):

public interface Condition{

[/ Public instance nethods
void await ()throws | nterruptedException;

voi d signal ();
voi d signal All ();

}

e dove I metodi awai t, si gnal , € si gnal All sono del
tutto equivalenti ai metodi walit, notify e notify_all,
(ovviamente riferiti alla coda di processi associata
alla condition sulla quale vengono invocati)

Mutua esclusione: lock

Oltre a metodi/blocchi synchronized, la versione 5.0

di java prevede la possibilita’ di utilizzare il concetto
di lock, mediante l'interfaccia (definita in

java. util.concurrent.| ocks):

public interface Lock{

[/ Public 1 nstance nethods
voi d | ock();

voi d unl ock();

Condi ti on newCondition();

}

Uso di Variabili Condizione

 Ad ogni variabile condizione deve essere associato un lock,
che:

— al momento della sospensione del thread mediante
awai t verra liberato;

— al risveglio di un thread, verra automaticamente
rioccupato.

=» La creazione di una condition deve essere effettuata
mediante iIn metodo newCondition del lock associato ad
essa.

In pratica, per creare un oggetto Condition

Lock L=new Reentrantlock(); //Reentrantlock e una
cl asse che | npl enent a
| "interfaccia Lock

Condi ti on C=l ockvar. newCondition();

Monitor

Possiamo definire classi che rappresentano monitor:
e dati:

— le variabili condizione

— 1 lock per la mutua esclusione dei metodi "entry",
da associare a turre le variabili condizione

— variabili interne: stato delle risorse gestite
 metodi:

— metodi "entry"
— metodi privati
— costruttore

Esempio: gestione di buffer circolare

public class Mail box

{ //dati:

private int[] contenuto;

private int contatore,testa, coda;

private Lock | ock= new Reentrant Lock();

private Condition non_pieno= | ock. newCondition();
private Condition non_vuoto= | ock. newCondition();

[[Costruttore:

public Mailbox() {
contenut o=new i nt[N ;
cont at or e=0;

t est a=0;

coda=0;

}

[/ metodi "entry":

public int preleva()throws |InterruptedException
{ int elenento;

| ock. | ock();
try
{ while (contatore= = 0)
non_vuoto. awai t () ;
el enent o= contenuto[testa];
testa=(testa+l) W\
--cont at or e;
non_pi eno.signal ();
} finally{ Iock.unlock();}
return el enent;

public void deposita (int valore)throws |nterruptedException
{ lock.lock();
try
{ whi |l e (cont at or e==N)
non_pi eno. wai t () ;
cont enut o[coda] = val ore;
coda=(coda+1) %\,
++cont at or e;
non_vuot o. signal ();
} finally { | ock.unlock();}
}
}

Programma di test:

public class Produttore extends Thread
{ 1nt nmessaggi o;
Mai | box m
public Produttore(Milbox M{this.m=M}
public void run()
{ whi | e(1)
{ <produci nessaggi 0>
m deposi t a(nessaggi o) ;

}

}

public class Consunatore extends Thread
{ int nmessaggi o;
Mai | box m
public Consumatore(Mil box M{this.m=M}
public void run()
{ whi | e(1)
{ nmessaggi o=m prel eva() ;
<consuma nessaggi o>

}

public class BufferTest{

public static void main(String args|[])
{ Mai | box Menew Mai | box() ;
Consumat ore C=new Consumatore(M ;
Produttore P=new Produttore(M;
C.start();
P.start();

