Monitor [Hoare 74]

 Costrutto sintattico che associa un insieme di
procedure/funzioni (entry) ad una struttura dati comune a
pitl processi.

« Il compilatore puo verificare che esse siano le sole
operazioni permesse su quella struttura .

« Le procedure sono mutuamente esclusive:un solo
processo per volta pud essere attivo nel monitor.

noni tor  <none_noni t or >
{ <dichiarazione delle variabili |ocali>;
<inizializzazione delle variabili locali>;

/* definizione delle funzioni e procedure entry:
*/

public void opl() /* procedura "entry" */
{ <corpo della funzione opl > }

public void opN() { /* procedura "entry" */
<corpo della funzione opn > }
/* funzi oni &rocedure interne al nonitor:

void Pri(..){...}
void Pr2(..){...}

Procedure/funzioni entry: sono le sole operazioni
che possono essere utilizzate dai processi per
accedere alle variabili locali al monitor.

Variabili locali: mantengono il loro valore tra
successive esecuzioni delle procedure del monitor
(variabili permanenti); sono accessibili solo entro il
monitor (mediante funzioni/procedure entry e non
entry).

Procedure interne (non entry): non sono invocabili
dall’'esterno. Sono usabili solo dalle
procedure/funzioni del monitor (entry, o interne).

Inizializzazione delle variabili locali: il codice per
I'inizializzazione delle variabili locali viene eseguito
una sola volta prima dell’esecuzione di qualunque
procedura.

Uso del monitor

Il monitor puo’ essere utilizzato per controllare gli

accessi a una risorsa condivisa da parte di piu®

processi:

— lo stato della risorsa viene tipicamente
rappresentato dai valori di variabili locali

— i processi possono aggiornare lo stato della
risorsa mediante le procedure entry

noni tor Tipo_Risorsa

{ <dichiarazione delle variabili |ocali>;
<inizializzazione delle variabili |ocali>;
<defi ni zi one funzioni/procedure entry*/
<def. funzioni &rocedure interne */




Uso del monitor

Tipo_risorsa ris; /* ris e un oggetto
di tipo nonitor*/

crea un particolare oggetto monitor, cioé una struttura dati
organizzata secondo quanto indicato nella dichiarazione dei
dati locali.

La chiamata di una generica operazione opi dell’'oggetto
ri s ha quindi la forma:

ris.opi();

Uso del monitor

* Scopo del monitor & controllare 'assegnazione di una
risorsa tra processi concorrenti in accordo a
determinate politiche di gestione.

* L'assegnazione avviene secondo due livelli di
controllo:

1. Il primo garantisce che un solo processo alla volta
possa aver accesso alle variabili comuni del monitor. Cio
€ ottenuto automaticamente, poiche" le procedure entry
sono eseguite in modo mutuamente esclusivo.
(eventuale sospensione dei processi).

2. Il secondo controlla I'ordine con il quale i processi
hanno accesso alla risorsa. La procedura chiamata
verifica il soddisfacimento di una condizione logica che
assicura I'ordinamento degli accessi (eventuale
sospensione del processo e liberazione del monitor).

* Lacondizione di sincronizzazione € espressa
mediante variabili locali al monitor e variabili proprie
del processo passate come parametri.

» La sospensione del processo, nel caso in cui la
condizione non sia verificata, avviene utilizzando
variabili di un nuovo tipo, detto condition
(condizione).

Variabili Condizione
» Una variabile di tipo condizione rappresenta una coda di
processi sospesi.

« Esistono tante variabili condizione quante sono le
condizioni per cui un processo puo essere ritardato.

» Le procedure del monitor agiscono su tali variabili
mediante le 2 operazioni:

cond. wai t
cond. si gnal




Variabili condizione

e cond. wai t : Tlinvocazione dell'operazione cond.wait
da parte di un processo P sospende P e lo introduce nella
coda individuata dalla variabile cond; prima di sospendersi,
P libera il monitor.

e cond. si gnal : resecuzione dell'operazione
cond.signal:

« se lacodaassociata a cond contiene almeno un processo,
rende attivo uno dei processi in attesa nella coda individuata
dalla variabile cond; alla ripresa dell'esecuzione il processo
risvegliato rioccupera” automaticamente il monitor.

« se la coda associata a cond e vuota, non provoca alcun
effetto.

Signal

G signal 0

Come conseguenza della signal entrambi i processi,
guello segnalante P e quello segnalato Q, possono
concettualmente proseguire la loro esecuzione.

* Realizzazione: Esistono due possibilita di

realizzazione della signal su variabili condizione :

Signal and wait: P attende che Q abbandoni il
monitor, o che si sospenda per un’altra condizione
[Hoare].

Signal and continue: Q attende che P abbandoni
il monitor, o che si sospenda per un‘altra
condizione.

Realizzazione signal

» Signal and continue presenta I'inconveniente che
quando Q riprende I'esecuzione la condizione logica per
la quale stava attendendo potrebbe non essere piu vera
(se viene modificata da P).

» Signal and wait assicura che P riprendera la sua
esecuzione quando Q avra completato la sua
esecuzione, 0 Si sara nuovamente sospeso.

« |l monitor verra liberato solo quando non vi saranno al
suo interno processi in grado di completare I'esecuzione.

* Compromesso: signal eseguita come ultima istruzione
della procedura -> dopo aver eseguito la signal, P
abbandona immediatamente il monitor.

Esempio: monitor come gestore di risorse
(mailbox)

Utilizziamo il monitor per risolvere il problema dei
“produttori e consumatori”:

— il monitor rappresenta il buffer dei messaggi
(gestito in modo circolare)

— i processi Produttori (0 Consumatori) inseriranno
(o preleveranno) i messaggi mediante le funzioni
entry Send (o Receive) definite nel monitor.

— la struttura dati che rappresenta il buffer fa parte
delle variabili locali al monitor e quindi le
operazioni Send e Receive possono accedere
solo in modo mutuamente esclusivo a tale
struttura.




noni tor buffer_circolare{
nessaggi o buffer[N;
int contatore=0; int testa=0; int coda=0;
condi ti on non_pi eno;
condi ti on non_vuot o;
/* procedure e funzioni entry: */
public void send(nmessaggi o nj {
if (contatore==N) non_pieno.wait;
buf f er [ coda] =m
coda=(coda + 1)%\;
++cont at or e;
non_vuot o. si gnal ;

}

public messaggi o receive(){

nmessaggi o m
if (contatore == 0) non_vuoto.wait;
nebuffer[testa];
testa=(testa + 1) %\
--contatore;
non_pi eno. si gnal ;
return m}

}/* fine nmonitor */

Esempio: monitor come allocatore di risorse

« Utilizziamo il monitor per garantire I'accesso esclusivo
ad una risorsa comune da parte dei processi.

— La struttura dati gestita dal monitor rappresenta lo
stato (libero,occupato) della risorsa.

— Le operazioni Richiesta e Rilascio del monitor sono
utilizzate solo per garantire I'accesso esclusivo alla
risorsa da parte dei processi.

— La mutua esclusione tra le operazioni Richiesta e
Rilascio garantisce che lo stato della risorsa venga
esaminato in modo mutuamente esclusivo dai
processi.

— Una volta guadagnato I'accesso alla risorsa i singoli
processi potranno accedere direttamente ad essa
all’esterno del monitor.

monitor allocatore
{ bool ean occupato = fal se;
condition |ibero;

public void Richiesta()

{ if (occupato) libero.wait;
occupato = true;

}

public void Rilascio()

{ occupato = fal se;
l'i bero. signal;

}

}

al l ocatore A; /* istanza del tipo nonitor*/

voi d processo() /*codice di un generico processo */
A Richiesta;

<uso della risorsa>;
A Rilasci o;

Implementazione del monitor tramite
semafori (signal&wait)

« |l compilatore assegna ad ogni istanza di monitor:

— un semaforo nut ex inizializzato a 1 per la mutua
esclusione delle procedure entry del monitor;

— un semaforo ur gent inizializzato a 0 per effettuare la
preemption dei processi segnalanti (signal and
wait);

— un contatore ur gent count inizializzato a 0 per
conteggiare in ogni istante i precedenti processi;

— per ogni variabile cond di tipo condition:

» un semaforo condseminizializzato a 0
* un contatore condcount inizializzato a 0

per implementare cond.wait e cond.signal




Realizzazione del monitor

Mutua esclusione delle procedure entry: il
compilatore inserisce un prologo ed un epilogo
all'inizio ed all'uscita da ogni procedure entry:

epilogo:

i f (urgentcount>0)
signal (&urgent);
el se signal (&mutex);

Il compilatore traduce le operazioni cond.wait e
cond.signal nel seguente modo:

cond.signal:
ur gent count ++;
i f (condcount>0)

cond.wait:
condcount ++;
if (urgentcount > 0)

si gnal (&urgent); { si gnal (&condsen) ;
el se signal (&t ex) wai t (&urgent);
wai t (&ondsen) ; }

condcount - -; urgent count - —;

condsem semaforo associato alla variabile condizione

(v.i. =0)
condcount : contatore associato alla variabile condizione
(v.i. =0)

NB: questa soluzione implementa la politica signal
and wait

Implementazione signal&continue

» Nel caso di una politica signal and continue il
semaforo ur gent ed il contatore ur gent count non

sSono piu’ necessari.

cond.wait:
condcount ++;

si gnal (&t ex) ;
wai t (&ondsen) ;

condcount - - ;

cond.signal:
i f (condcount>0)

si gnal (&condsen) ;
el se signal (&mutex);

La cond.signal viene usata come epilogo della

procedura entry.

Estensioni al monitor

In alcuni casi puo’ essere utile poter risvegliare i processi
sospesi su variabili condizione secondo una priorita” stabilita®
arbitrariamente: wait con priorita”

Al momento della sospensione va specificato un indice di
priorita’: cond. wai t (p)

=> 1l processi sono inseriti nella coda secondo I'ordine crescente

di p: quindi il primo processo risvegliato & quello con il valore
di p piu” basso.

Altre funzioni primitive su variabili di tipo condizione:

cond. queue: operazione che verifica la presenza nella coda
cond di almeno un processo sospeso

Esempio: if (cond.queue)




Esempio: allocazione di risorse in uso esclusivo

Si vuole che la risorsa venga assegnata a quello tra tutti i processi
sospesi che la usera per il periodo di tempo inferiore :

noni tor allocatore
{ bool ean occupato = fal se;
condition |ibero;

public void Richiesta(int tenpo)

{ if (occupato) |ibero.wait(tenpo);
occupato = true;

}

public void Rilascio()

{ occupato = fal se;
l'i bero. signal;

}

Esempio: lettori e scrittori

Si supponga di voler realizzare la seguente politica di
allocazione dellarisorsa:

1. un nuovo lettore non puo acquisire la risorsa se c'e’
uno scrittore in attesa

2. tutti i lettori sospesi al termine di una scrittura hanno
priorita sul successivo scrittore

Soluzione: uso del monitor con le seguenti variabili locali:

e numlettori:il numero di processi lettori attivi sulla
risorsa

« occupat o: una variabile logica che indica se la risorsa &
occupata da uno scrittore (occupato=true)

+ ok-lettura,ok-scrittura:due variabili condizione

} sulle quali si sospendono rispettivamente i processi lettori
; . - . ) - e scrittori
| processi sono inseriti nella coda secondo I'ordine crescente di p e quindi
il primo processo risvegliato € quello che richiede meno tempo.
nonitor lettori_scrittori
{ int numlettori=0, occupat 0=0; /* ...continua */

condi tion ok_lettura, ok_scrittura;

public void inizio_lettura()
{ if (occupato || ok_scrittura.queue)
ok_lettura. wait;
num | ettori++;
ok_l ettura. signal;

public void fine_lettura()
{ numlettori-- ;
if (numlettori==0)
ok_scrittura.signal;

public void inizio_scrittura()
{ if ((numlettori!=0)|| occupato)
ok_scrittura.wait;
occupat 0=1;

/* continua...*/

public void fine_scrittura()
{ occupat 0=0;
if (ok-lettura.queue)
ok-lettura.signal;
el se ok-scrittura.signal;
}

}/* fine nonitor */
lettori_scrittori LS; /* istanza del nonitor*/

void lettore() /*codice di un generico lettore */

{ LS.inizio_lettura();
<l ettura>;
LS. fine_lettura()
}
void scrittore() /*codice di un generico scrittore */
{ LS.inizio_scrittura();

<scrittura>;
LS. fine_scrittura()




Chiamate innestate a procedure di monitor

Durante I'esecuzione della procedura A1 del monitor A
viene chiamata la procedura B1 del monitor B e durante
I'esecuzione di tale procedura il processo viene sospeso
sulla variabile condizione X.

Viene rilasciata la mutua esclusione per il monitor B,
mentre il monitor A rimane occupato.

Se la procedura B2 di B, a cui € demandato il compito di
riattivare il processo, viene richiamata solo attraverso la
procedura A2 di A, si ha una situazione di blocco
critico.

Questa soluzione é imposta da un problema di
congruenza dei dati; non essendo terminata Al, se il
monitor A viene liberato, un nuovo processo puo trovare
la struttura dei dati del monitor non consistente.

CHIAMATE INNESTATE A MONITOR

Monitor A

publ i ¢ void Al()

{

{
}

B. BL: /

public void A2()

B. B2;

Monitor B

/publ ic void B1()

{

X wai t;

public void B2()
{
X.signal;

-}

Soluzioni

. proibire I'innestamento

. in caso di sospensione, vengono liberati tutti i
monitor interessati dalla catena di chiamate. ->
difficile implementazione:

* necessita’ di garantire la consistenza delle variabili del
monitor prima di chiamate innestate;
« alrisveglio, il processo deve riacquisire tutti i monitor.

. permettere procedure del monitor non mutuamente
esclusive




