
Monitor [Hoare 74]

• Costrutto sintattico che associa un insieme di
procedure/funzioni (entry) ad una struttura dati comune a
più processi.

• Il compilatore può verificare che esse siano le sole
operazioni permesse su quella struttura .

• Le procedure sono mutuamente esclusive:un solo
processo per volta può essere attivo nel monitor.

monitor <nome_monitor>
{ <dichiarazione delle variabili locali>;

<inizializzazione delle variabili locali>;

/* definizione delle funzioni e procedure entry:
*/
public void op1() /* procedura "entry" */
{ <corpo della funzione op1 >; }
...

public void opN() { /* procedura "entry" */

<corpo della funzione opn >; }

/* funzioni&procedure interne al monitor:
void Pr1(..){...}
void Pr2(..){...}
...

}

Procedure/funzioni entry: sono le sole operazioni
che possono essere utilizzate dai processi per
accedere alle variabili locali al monitor.

Variabili locali: mantengono il loro valore tra
successive esecuzioni delle procedure del monitor
(variabili permanenti); sono accessibili solo entro il
monitor (mediante funzioni/procedure entry e non
entry).

Procedure interne (non entry): non sono invocabili
dall’esterno. Sono usabili solo dalle
procedure/funzioni del monitor (entry, o interne).

Inizializzazione delle variabili locali: il codice per
l’inizializzazione delle variabili locali viene eseguito
una sola volta prima dell’esecuzione di qualunque
procedura.

Uso del monitor

Il monitor puo` essere utilizzato per controllare gli
accessi a una risorsa condivisa da parte di piu`
processi:
– lo stato della risorsa viene tipicamente

rappresentato dai valori di variabili locali
– i processi possono aggiornare lo stato della

risorsa mediante le procedure entry

monitor Tipo_Risorsa
{ <dichiarazione delle variabili locali>;

<inizializzazione delle variabili locali>;
<definizione funzioni/procedure entry*/
<def. funzioni&procedure interne */

}

Uso del monitor

Tipo_risorsa ris; /* ris e` un oggetto
di tipo monitor*/

• crea un particolare oggetto monitor, cioè una struttura dati
organizzata secondo quanto indicato nella dichiarazione dei
dati locali.

• La chiamata di una generica operazione opi dell’oggetto
ris ha quindi la forma:

ris.opi();

Uso del monitor
• Scopo del monitor è controllare l’assegnazione di una

risorsa tra processi concorrenti in accordo a
determinate politiche di gestione.

• L’assegnazione avviene secondo due livelli di
controllo:

1. Il primo garantisce che un solo processo alla volta
possa aver accesso alle variabili comuni del monitor. Ciò
è ottenuto automaticamente, poiche` le procedure entry
sono eseguite in modo mutuamente esclusivo.
(eventuale sospensione dei processi).

2. Il secondo controlla l’ordine con il quale i processi
hanno accesso alla risorsa. La procedura chiamata
verifica il soddisfacimento di una condizione logica che
assicura l’ordinamento degli accessi (eventuale
sospensione del processo e liberazione del monitor).

• La condizione di sincronizzazione è espressa
mediante variabili locali al monitor e variabili proprie
del processo passate come parametri.

• La sospensione del processo, nel caso in cui la
condizione non sia verificata, avviene utilizzando
variabili di un nuovo tipo, detto condition
(condizione).

Variabili Condizione

• Una variabile di tipo condizione rappresenta una coda di
processi sospesi.

• Esistono tante variabili condizione quante sono le
condizioni per cui un processo può essere ritardato.

• Le procedure del monitor agiscono su tali variabili
mediante le 2 operazioni:

cond.wait
cond.signal

Variabili condizione

• cond.wait: l’invocazione dell’operazione cond.wait
da parte di un processo P sospende P e lo introduce nella
coda individuata dalla variabile cond; prima di sospendersi,
P libera il monitor.

• cond.signal: l’esecuzione dell’operazione
cond.signal:

• se la coda associata a cond contiene almeno un processo,
rende attivo uno dei processi in attesa nella coda individuata
dalla variabile cond; alla ripresa dell'esecuzione il processo
risvegliato rioccupera` automaticamente il monitor.

• se la coda associata a cond e` vuota, non provoca alcun
effetto.

Come conseguenza della signal entrambi i processi,
quello segnalante P e quello segnalato Q, possono
concettualmente proseguire la loro esecuzione.

• Realizzazione: Esistono due possibilità di
realizzazione della signal su variabili condizione :

Signal and wait: P attende che Q abbandoni il
monitor, o che si sospenda per un’altra condizione
[Hoare].
Signal and continue: Q attende che P abbandoni
il monitor, o che si sospenda per un’altra
condizione.

Signal

PP QQ
signal

Realizzazione signal

• Signal and continue presenta l’inconveniente che
quando Q riprende l’esecuzione la condizione logica per
la quale stava attendendo potrebbe non essere più vera
(se viene modificata da P).

• Signal and wait assicura che P riprenderà la sua
esecuzione quando Q avrà completato la sua
esecuzione, o si sarà nuovamente sospeso.

• Il monitor verrà liberato solo quando non vi saranno al
suo interno processi in grado di completare l’esecuzione.

• Compromesso: signal eseguita come ultima istruzione
della procedura -> dopo aver eseguito la signal, P
abbandona immediatamente il monitor.

Esempio: monitor come gestore di risorse
(mailbox)

Utilizziamo il monitor per risolvere il problema dei
“produttori e consumatori”:

– il monitor rappresenta il buffer dei messaggi
(gestito in modo circolare)

– i processi Produttori (o Consumatori) inseriranno
(o preleveranno) i messaggi mediante le funzioni
entry Send (o Receive) definite nel monitor.

– la struttura dati che rappresenta il buffer fa parte
delle variabili locali al monitor e quindi le
operazioni Send e Receive possono accedere
solo in modo mutuamente esclusivo a tale
struttura.

monitor buffer_circolare{
messaggio buffer[N];
int contatore=0; int testa=0; int coda=0;
condition non_pieno;
condition non_vuoto;

/* procedure e funzioni entry: */
public void send(messaggio m){
if (contatore==N) non_pieno.wait;
buffer[coda]=m;
coda=(coda + 1)%N;
++contatore;
non_vuoto.signal;
}

public messaggio receive(){
messaggio m;
if (contatore == 0) non_vuoto.wait;
m=buffer[testa];
testa=(testa + 1)%N;
--contatore;
non_pieno.signal;
return m;}

}/* fine monitor */

Esempio: monitor come allocatore di risorse

• Utilizziamo il monitor per garantire l’accesso esclusivo
ad una risorsa comune da parte dei processi.

– La struttura dati gestita dal monitor rappresenta lo
stato (libero,occupato) della risorsa.

– Le operazioni Richiesta e Rilascio del monitor sono
utilizzate solo per garantire l’accesso esclusivo alla
risorsa da parte dei processi.

– La mutua esclusione tra le operazioni Richiesta e
Rilascio garantisce che lo stato della risorsa venga
esaminato in modo mutuamente esclusivo dai
processi.

– Una volta guadagnato l’accesso alla risorsa i singoli
processi potranno accedere direttamente ad essa
all’esterno del monitor.

monitor allocatore
{ boolean occupato = false;
condition libero;

public void Richiesta()
{ if (occupato) libero.wait;

occupato = true;
}
public void Rilascio()
{ occupato = false;

libero.signal;
}

}

allocatore A; /* istanza del tipo monitor*/

void processo() /*codice di un generico processo */
{ A.Richiesta;

<uso della risorsa>;
A.Rilascio;

}

Implementazione del monitor tramite
semafori (signal&wait)

• Il compilatore assegna ad ogni istanza di monitor:

– un semaforo mutex inizializzato a 1 per la mutua
esclusione delle procedure entry del monitor;

– un semaforo urgent inizializzato a 0 per effettuare la
preemption dei processi segnalanti (signal and
wait);

– un contatore urgentcount inizializzato a 0 per
conteggiare in ogni istante i precedenti processi;

– per ogni variabile cond di tipo condition:
• un semaforo condsem inizializzato a 0
• un contatore condcount inizializzato a 0

per implementare cond.wait e cond.signal

Realizzazione del monitor

Mutua esclusione delle procedure entry: il
compilatore inserisce un prologo ed un epilogo
all’inizio ed all’uscita da ogni procedure entry:

• prologo: wait(&mutex);

• epilogo: if (urgentcount>0)
signal(&urgent);

else signal(&mutex);

Il compilatore traduce le operazioni cond.wait e
cond.signal nel seguente modo:

cond.wait:
condcount++;
if (urgentcount > 0)

signal(&urgent);
else signal(&mutex)
wait(&condsem);
condcount--;

cond.signal:
urgentcount++;
if (condcount>0)
{ signal(&condsem);

wait(&urgent);
}
urgentcount-–;

condsem: semaforo associato alla variabile condizione
(v.i. = 0)

condcount: contatore associato alla variabile condizione
(v.i. = 0)

NB: questa soluzione implementa la politica signal
and wait

Implementazione signal&continue

• Nel caso di una politica signal and continue il
semaforo urgent ed il contatore urgentcount non
sono piu` necessari.

cond.wait:
condcount++;
signal(&mutex);
wait(&condsem);
condcount--;

cond.signal:
if (condcount>0)

signal(&condsem);
else signal(&mutex);

La cond.signal viene usata come epilogo della
procedura entry.

Estensioni al monitor

• In alcuni casi puo` essere utile poter risvegliare i processi
sospesi su variabili condizione secondo una priorita` stabilita`
arbitrariamente: wait con priorita`

• Al momento della sospensione va specificato un indice di
priorita`: cond.wait(p)

èII processi sono inseriti nella coda secondo l’ordine crescente
di p: quindi il primo processo risvegliato è quello con il valore
di p piu` basso.

• Altre funzioni primitive su variabili di tipo condizione:

cond.queue:operazione che verifica la presenza nella coda
cond di almeno un processo sospeso

Esempio: if (cond.queue) ...

Esempio: allocazione di risorse in uso esclusivo

Si vuole che la risorsa venga assegnata a quello tra tutti i processi
sospesi che la userà per il periodo di tempo inferiore :

monitor allocatore
{ boolean occupato = false;
condition libero;

public void Richiesta(int tempo)
{ if (occupato) libero.wait(tempo);

occupato = true;
}
public void Rilascio()
{ occupato = false;

libero.signal;
}

}

I processi sono inseriti nella coda secondo l’ordine crescente di p e quindi
il primo processo risvegliato è quello che richiede meno tempo.

Esempio: lettori e scrittori
Si supponga di voler realizzare la seguente politica di
allocazione della risorsa:

1. un nuovo lettore non può acquisire la risorsa se c’e’
uno scrittore in attesa

2. tutti i lettori sospesi al termine di una scrittura hanno
priorità sul successivo scrittore

Soluzione: uso del monitor con le seguenti variabili locali:

• num-lettori: il numero di processi lettori attivi sulla
risorsa

• occupato: una variabile logica che indica se la risorsa è
occupata da uno scrittore (occupato=true)

• ok-lettura , ok-scrittura : due variabili condizione
sulle quali si sospendono rispettivamente i processi lettori
e scrittori

monitor lettori_scrittori
{ int num-lettori=0,occupato=0;

condition ok_lettura,ok_scrittura;

public void inizio_lettura()
{ if (occupato || ok_scrittura.queue)

ok_lettura.wait;
num_lettori++;
ok_lettura.signal;

}
public void fine_lettura()
{ num_lettori-- ;

if (num_lettori==0)
ok_scrittura.signal;

}
public void inizio_scrittura()
{ if ((num_lettori!=0)|| occupato)

ok_scrittura.wait;
occupato=1;

}
/* continua...*/

/* ...continua */
public void fine_scrittura()
{ occupato=0;

if (ok-lettura.queue)
ok-lettura.signal;

else ok-scrittura.signal;
}

}/* fine monitor */

lettori_scrittori LS; /* istanza del monitor*/

void lettore() /*codice di un generico lettore */
{ LS.inizio_lettura();

<lettura>;
LS.fine_lettura()

}
void scrittore() /*codice di un generico scrittore */
{ LS.inizio_scrittura();

<scrittura>;
LS.fine_scrittura()

}

Chiamate innestate a procedure di monitor

• Durante l’esecuzione della procedura A1 del monitor A
viene chiamata la procedura B1 del monitor B e durante
l’esecuzione di tale procedura il processo viene sospeso
sulla variabile condizione X.

• Viene rilasciata la mutua esclusione per il monitor B,
mentre il monitor A rimane occupato.

• Se la procedura B2 di B, a cui è demandato il compito di
riattivare il processo, viene richiamata solo attraverso la
procedura A2 di A, si ha una situazione di blocco
critico.

• Questa soluzione è imposta da un problema di
congruenza dei dati; non essendo terminata A1, se il
monitor A viene liberato, un nuovo processo può trovare
la struttura dei dati del monitor non consistente.

CHIAMATE INNESTATE A MONITOR

Monitor A Monitor B

...
public void A1()
{ ...

B.B1;
...

}

public void A2()
{ ...

B.B2;
}

...
public void B1()
{ ...

X.wait;
...

}

public void B2()
{ ...

X.signal;
...}

Soluzioni

1. proibire l'innestamento

2. in caso di sospensione, vengono liberati tutti i
monitor interessati dalla catena di chiamate. ->
difficile implementazione:

• necessita` di garantire la consistenza delle variabili del
monitor prima di chiamate innestate;

• al risveglio, il processo deve riacquisire tutti i monitor.

3. permettere procedure del monitor non mutuamente
esclusive

