MonItor [Hoare 74]

« Costrutto sintattico che associa un insieme di
procedure/funzioni (entry) ad una struttura dati comune a
pil processi.

|l compilatore puo verificare che esse siano le sole
operazioni permesse su quella struttura .

e Le procedure sono mutuamente esclusive:un solo
pProcesso per volta puo essere attivo nel monitor.

noni tor <nonme_nonitor>
{ <dichiarazione delle variabili |ocali>;
<inizializzazione delle variabili |ocali >;

/* definizione delle funzioni e procedure entry:
*/

public void opl() /* procedura "entry" */
{ <corpo della funzione opl > }

public void opN() { /* procedura "entry" */
<corpo della funzione opn >, }
[* funzioni &rocedure interne al nonitor:

void Pri(..){...}
void Pr2(. .){...}

Procedure/funzioni entry: sono le sole operazioni
che possono essere utilizzate dai processi per
accedere alle variabili locali al monitor.

Variabili locali: mantengono il loro valore tra
successive esecuzioni delle procedure del monitor
(variabili permanenti); sono accessibili solo entro Il

monitor (mediante funzioni/procedure entry e non
entry).

Procedure interne (non entry): non sono invocabili
dall’esterno. Sono usabili solo dalle

procedure/funzioni del monitor (entry, o interne).

Inizializzazione delle variabili locali: il codice per
I'inizializzazione delle variabili locali viene eseguito

una sola volta prima dell’esecuzione di qualunque
procedura.

Uso del monitor

Il monitor puo essere utilizzato per controllare gli

accessi a una risorsa condivisa da parte di piu

processi:

— lo stato della risorsa viene tipicamente
rappresentato dai valori di variabili locali

— | processi possono aggiornare |o stato della
risorsa mediante le procedure entry

nonitor Tipo Risorsa

{ <dichiarazione delle variabili |ocali>;
<inizializzazione delle variabili |ocali>;
<defi ni zi one funzioni/procedure entry*/
<def. funzi oni &rocedure interne */

Uso del monitor

Tipo risorsa ris; /* ris e un oggetto
di tipo nonitor*/

crea un particolare oggetto monitor, cioe una struttura dati
organizzata secondo guanto indicato nella dichiarazione dei
dati local.

La chiamata di una generica operazione opi dell’oggetto
ri s ha quindi la forma:

ris.opi();

Uso del monitor

Scopo del monitor e controllare I'assegnazione di una
risorsa tra processi concorrenti in accordo a
determinate politiche di gestione.

L'assegnazione avviene secondo due livelli di
controllo:

1. Il primo garantisce che un solo processo alla volta
possa aver accesso alle variabili comuni del monitor. Cio
e ottenuto automaticamente, poiche" le procedure entry
sono eseguite in modo mutuamente esclusivo.
(eventuale sospensione dei processi).

2. |l secondo controlla I'ordine con il quale | processi
hanno accesso allarisorsa. La procedura chiamata
verifica il soddisfacimento di una condizione logica che
assicura l'ordinamento degli accessi (eventuale
sospensione del processo e liberazione del monitor).

 Lacondizione di sincronizzazione e espressa
mediante variabili locali al monitor e variabili proprie
del processo passate come parametri.

* La sospensione del processo, nel caso in cui la
condizione non sia verificata, avviene utilizzando

variabili di un nuovo tipo, detto condition
(condizione).

Variabili Condizione

e Una variabile di tipo condizione rappresenta una coda di
processi sospesi.

o Esistono tante variabili condizione gquante sono le
condizioni per cui un processo puo essere ritardato.

* Le procedure del monitor agiscono su tali variabili
mediante le 2 operazioni:

cond. wai t
cond. si gnal

Variabili condizione

e cond. wal t: Tlinvocazione dell’operazione cond.wait

da parte di un processo P sospende P e lo introduce nella

coda individuata dalla variabile cond; prima di sospendersi,
P libera il monitor.

e cond. si gnal : resecuzione dell’operazione
cond.signal:

 se lacoda associata a cond contiene almeno un processo,
rende attivo uno dei processi in attesa nella coda individuata
dalla variabile cond; alla ripresa dell'esecuzione il processo
risvegliato rioccupera automaticamente il monitor.

» se la coda associata a cond e vuota, non provoca alcun
effetto.

Signal

ignal

Come conseguenza della signal entrambi i processi,
guello segnalante P e quello segnalato Q, possono
concettualmente proseguire la loro esecuzione.

Realizzazione: Esistono due possibilita di
realizzazione della signal su variabili condizione :

Signal and wait: P attende che Q abbandoni il
monitor, o che si sospenda per un’altra condizione
[Hoare].

Signal and continue: Q attende che P abbandoni
Il monitor, o che si sospenda per un’altra
condizione.

Realizzazione signal

Signal and continue presenta I'inconveniente che
guando Q riprende I'esecuzione la condizione logica per
la quale stava attendendo potrebbe non essere piu vera
(se viene modificata da P).

Signal and wait assicura che P riprendera la sua
esecuzione quando Q avra completato la sua
esecuzione, 0 Si sara nuovamente sospeso.

Il monitor verra liberato solo quando non vi saranno al
suo interno processi in grado di completare I'esecuzione.

Compromesso: signal eseguita come ultima istruzione
della procedura -> dopo aver eseguito la signal, P
abbandona immediatamente il monitor.

Esempio: monitor come gestore di risorse
(mailbox)

Utilizziamo il monitor per risolvere il problema dei
“produttori e consumatori™

— 1l monitor rappresenta il buffer dei messaggi
(gestito in modo circolare)

— 1 processi Produttori (o0 Consumatori) inseriranno
(o preleveranno) i messaggi mediante le funzioni
entry Send (o Recelive) definite nel monitor.

— la struttura dati che rappresenta il buffer fa parte
delle variabili locali al monitor e quindi le
operazioni Send e Receive possono accedere
solo in modo mutuamente esclusivo a tale
struttura.

noni tor buffer circol are{
nmessaggi o buffer[N ;
I nt contatore=0; int testa=0; int coda=0;
condi ti on non_pi eno;
condi ti on non_vuot o;
/* procedure e funzioni entry: */
public void send(nessaggi o m{
I f (contatore==N) non_pieno.wait;
buf f er[coda] =m
coda=(coda + 1) W\,
++cont at or e;
non_vuot o. si gnal ;

}

publ i c nmessaggi o receive(){

nessaggi o m
i f (contatore == 0) non_vuoto.wait;
mebuf fer[testal;
testa=(testa + 1) W\,
--cont at or e;
non_pi eno. si gnal ;
return n}

}/* fine nmonitor */

Esempio: monitor come allocatore di risorse

o Utilizziamo il monitor per garantire I’accesso esclusivo
ad una risorsa comune da parte dei processi.

— La struttura dati gestita dal monitor rappresenta lo
stato (libero,occupato) della risorsa.

— Le operazioni Richiesta e Rilascio del monitor sono
utilizzate solo per garantire I'accesso esclusivo alla
risorsa da parte dei processi.

— La mutua esclusione tra le operazioni Richiesta e
Rilascio garantisce che |o stato della risorsa venga
esaminato in modo mutuamente esclusivo dal
processi.

— Una volta guadagnato I'accesso alla risorsa i singol
processi potranno accedere direttamente ad essa
all’esterno del monitor.

nonitor all ocatore
{ bool ean occupato = fal se;
condition |1 bero;

public void Richiesta()

{ | f (occupato) |ibero.wait;
occupato = true;

}

public void Rilascio()

{ occupato = fal se;
| I ber o. si gnal;

}
}

al l ocatore A; /* i1stanza del tipo nonitor*/

voi d processo() /*codice di un generico processo */
{ A. R chi est a;

<uso della risorsa>;

A. Ri | asci o;

Implementazione del monitor tramite
semafori (signal&wait)

e |l compilatore assegna ad ogni istanza di monitor:

— un semaforo nut ex inizializzato a 1 per la mutua
esclusione delle procedure entry del monitor;

— un semaforo ur gent inizializzato a O per effettuare la
preemption dei processi segnalanti (signal and
wait);

— un contatore ur gent count inizializzato a O per
conteggiare in ogni istante | precedenti processi;

— per ogni variabile cond di tipo condition:

e un semaforo condseminizializzato a 0
e un contatore condcount inizializzato a 0

per implementare cond.wait e cond.signal

Realizzazione del monitor

Mutua esclusione delle procedure entry: il
compilatore inserisce un prologo ed un epilogo
all’inizio ed all’uscita da ogni procedure entry:

e prologo: wal t (&t ex) ;

. epilogo: | f (urgent count >0)
si gnal (&urgent);
el se signal (&t ex);

Il compilatore traduce le operazioni cond.wait e
cond.signal nel seguente modo:

cond.wait: cond.signal:
condcount ++; ur gent count ++;
| f (urgentcount > 0) | f (condcount >0)

si gnal (&urgent); { si gnal (&condsen) ;
el se si gnal (&rut ex) wai t (&ur gent) ;
wai t (&condsem ; }
condcount - - ; ur gent count - —;

condsem semaforo associato alla variabile condizione

(v.I. =0)
condcount : contatore associato alla variabile condizione
(v.I. =0)

NB: questa soluzione implementa la politica signal
and wait

Implementazione signal&continue

 Nel caso di una politica signal and continue |l
semaforo ur gent ed il contatore ur gent count non

SONo piu necessari.

cond.wait:
condcount ++;

si gnal (&rut ex) ;
wai t (&condsem ;
condcount - -;

cond.signal:
| f (condcount >0)

si gnal (&condsem ;
el se signal (&t ex);

La cond.signal viene usata come epilogo della

procedura entry.

Estensioni al monitor

* In alcuni casi puo essere utile poter risvegliare i processi
sospesi su variabili condizione secondo una priorita” stabilita’

arbitrariamente: wait con priorita’

Al momento della sospensione va specificato un indice di
priorita: cond. wai t (p)

=> |l processi sono inseriti nella coda secondo I'ordine crescente
di p: quindi il primo processo risvegliato e quello con il valore

di p piu basso.
o Altre funzioni primitive su variabili di tipo condizione:

cond. queue: operazione che verifica la presenza nella coda
cond di almeno un processo sosSpeso

Esempio: | f (cond. queue)

Esempio: allocazione di risorse in uso esclusivo

Si vuole che la risorsa venga assegnata a guello tra tutti | processi
sospesi che la usera per il periodo di tempo inferiore

nonitor all ocatore
{ bool ean occupato = fal se;
condition |1 bero;

public void Richiesta(int tenpo)

{ | f (occupato) |libero.wait(tenpo);
occupato = true;

}

public void Rilascio()

{ occupato = fal se;
| I ber o. si gnal;

}

}

| processi sono inseriti nella coda secondo l'ordine crescente di p e quindi
il primo processo risvegliato e quello che richiede meno tempo.

Esempio: lettori e scrittori

Si supponga di voler realizzare la seguente politica di
allocazione della risorsa:

1. un nuovo lettore non puo acquisire la risorsa se c’e’
uno scrittore in attesa

2. tutti I lettori sospesi al termine di una scrittura hanno
priorita sul successivo scrittore

Soluzione: uso del monitor con le seguenti variabili locali:

e numlettori:il numero di processi lettori attivi sulla
risorsa

e occupat o: una variabile logica che indica se la risorsa e
occupata da uno scrittore (occupato=true)

e oOk-lettura, ok-scrittura :due variabili condizione
sulle quali si sospendono rispettivamente | processi lettori
e scrittori

monitor lettori _scrittori

{

I nt num | ettori =0, occupat 0=0;
condition ok |ettura, ok scrittura,

public void inizio |lettura()
{ | f (occupato || ok _scrittura. queue)
ok lettura.wailt;
num | ettori ++;
ok | ettura.signal;
}
public void fine |lettura()
{ num | ettori-- ;
| f (num.| ettori==0)
ok _scrittura.signal;

}
public void inizio_ scrittura()
{ If ((numlettori!=0)|| occupato)
ok _scrittura.wait;
occupat o=1;
}

[* contlnua...?*/

[* ...continua */
public void fine scrittura()
{ occupat 0=0;
| f (ok-lettura. queue)
ok-1l ettura. signal;
el se ok-scrittura. signal;

}

}* fine nmonitor */
|l ettori _scrittori LS, /* istanza del nonitor*/

void lettore() /*codice di un generico lettore */

{ LS.inizio lettura();
<| ettura>;
LS. fine |lettura()
}
void scrittore() /*codice di un generico scrittore */
{ LS. inizio_scrittura();

<scrittura>;
LS. fine _scrittura()

Chiamate innestate a procedure di monitor

Durante I'esecuzione della procedura Al del monitor A
viene chiamata la procedura B1 del monitor B e durante
I'esecuzione di tale procedura il processo viene sospeso
sulla variabile condizione X.

Viene rilasciata la mutua esclusione per il monitor B,
mentre il monitor A rimane occupato.

Se la procedura B2 di B, a cui e demandato il compito di
riattivare il processo, viene richiamata solo attraverso la
procedura A2 di A, si ha una situazione di blocco
critico.

Questa soluzione e imposta da un problema di
congruenza dei dati; non essendo terminata Al, se |l
monitor A viene liberato, un NUOVO Processo puo trovare
la struttura dei dati del monitor non consistente.

CHIAMATE INNESTATE A MONITOR

Monitor A Monitor B
publ i ¢ void AL() oubl i ¢ void BL()
B. B1; X. wai t:
} }
?ublic voi d A2() public void B2()
. { .
B. BZ; X. si gnal :
})

Soluzioni

proibire l'innestamento

In caso di sospensione, vengono liberati tutti |
monitor interessati dalla catena di chiamate. ->
difficile implementazione:

* necessita di garantire la consistenza delle variabili del
monitor prima di chiamate innestate;

e al risveglio, il processo deve riacquisire tutti I monitor.

permettere procedure del monitor non mutuamente
esclusive

