Realizzazione di Politiche di Gestione delle
Risorse: i Semafori Privati

Condizione di sincronizzazione

« Qualora si voglia realizzare una determinata politica
di gestione delle risorse,la decisione se ad un dato
processo sia consentito proseguire la esecuzione
dipende dal verificarsi di una condizione detta
condizione di sincronizzazione.

« La condizione € espressa in termini di variabili che
rappresentano lo stato della risorsa e di variabili locali
ai singoli processi.

« Piu processi possono essere bloccati durante
I'accesso ad una risorsa condivisa, ciascuno in attesa
che la propria condizione di sincronizzazione sia
verificata.

« In seguito alla modifica dello stato della risorsa da parte di
un processo, le condizioni di sincronizzazione di alcuni
processi bloccati possono essere contemporaneamente
verificate.

Problema: quale processo mettere in esecuzione (accesso
alla risorsa mutuamente esclusivo)?

=> Definizione di una politica per il risveglio dei processi
bloccati.

« Nei casi precedenti la condizione di sincronizzazione era
particolarmente semplificata (vedi mutua esclusione) e la
scelta di quale processo riattivare veniva effettuata tramite
I'algoritmo implementato nella signal.

« Normalmente questo algoritmo, dovendo essere
sufficientemente generale ed il piu possibile efficiente,
coincide con quello FIFO.

Condizione di sincronizzazione

Esempio 1: Su un buffer da N celle di memoria pit produttori
possono depositare messaggi di dimensione diversa.

Politica di gestione: tra piu produttori ha priorita di accesso
quello che fornisce il messaggio di dimensione maggiore.

=> La politica di gestione comporta che finché un produttore, il
cui messaggio ha dimensioni maggiori dello spazio
disponibile nel buffer, rimane sospeso nessun altro produttore
puo depositare un messaggio anche se la sua dimensione
potrebbe essere contenuta nello spazio libero del buffer.

Condizione di sincronizzazione : il deposito pud avvenire se
c’é sufficiente spazio per memorizzare il messaggio e non ci
sono produttori in attesa.

« |l prelievo di un messaggio da parte di un consumatore
prevede la riattivazione tra i produttori sospesi, di quello
il cui messaggio ha la dimensione maggiore,
sempreche esista sufficiente spazio nel buffer.

« Se lo spazio disponibile non & sufficiente nessun
produttore viene riattivato.

Esempio 2: Un insieme di processi utilizza un insieme di
risorse comuni R1,R2,..Rn.

« Ogni processo puo utilizzare una qualunque delle risorse.

La condizione di sincronizzazione si riduce quindi a
valutare se esiste una risorsa libera.

« A ciascun processo € assegnata una priorita.

« In fase di riattivazione dei processi sospesi viene scelto
quello cui corrisponde la massima priorita

Esempio 3: Con riferimento al problema dei lettori
scrittori, si intende realizzare una politica di gestione
che eviti condizioni di attesa indefinita per entrambe
le classi di processi.

Semaforo Privato

Def: Un semaforo si dice privato per un processo
quando solo tale processo puo eseguire sul semaforo
la primitiva wait.

» La primitiva signal sul semaforo puo essere invece
eseguita anche da altri processi.

» Il semaforo privato viene inizializzato con il valore
zero

Acquisizione e Rilascio di unarisorsa

» E possibile implementare particolari politiche di
gestione di risorse facendo uso di semafori privati:

— il processo che acquisisce la risorsa puo™ (se la
condizione di sincronizzazione non e" soddisfatta)
eventualmente sospendersi sul suo semaforo
privato

— chirilascia la risorsa, risvegliera™ uno tra i processi
sospesi (in base alla politica scelta) mediante una
signal sul semaforo privato del processo
prescelto.

Procedure di acquisizione e di rilascio
semaphor e nut ex;
semaphore priv[Nproc]=...; /* array di semafori
inizializzati a 0;*/
mut ex. val ue=1;

voi d acqui sizione (int i)
{ wait(&mutex);
if (< condizione di sincronizzazione>)
{ <al | ocazi one della risorsa>
signal (&priv[i]);
}
el se
<i ndi cazi one di sospensione del processo>
si gnal (&t ex) ;
wait(&oriv[i]);

void rilascio ()
{ int i;
wai t (&t ex) ;
<rilascio della risorsa>;
if (<esiste alneno un processo sospeso per il
qual e la cond. di sincronizzazione e’
soddi sfatta>)
{ <scelta del processo Pi da risvegliare>;
<al | ocazione della risorsa a Pi>;
<i ndi cazi one che Pi non e" piu" sospeso>;
signal (&riv[i]);
}
si gnal (&nmutex);
}

Proprieta della soluzione

a) La sospensione del processo, nel caso in cui la
condizione di sincronizzazione non sia soddisfatta, non
puo avvenire entro la sezione critica in quanto cio
impedirebbe ad un processo che rilascia la risorsa di
accedere a sua volta alla sezione critica e di riattivare
il processo sospeso. La sospensione avviene al di
fuori della sezione critica.

b

-

La specifica del particolare algoritmo di assegnazione
della risorsa non & opportuno che sia realizzata nella
primitiva signal.

= Nella soluzione proposta € possibile programmare
esplicitamente tale algoritmo scegliendo in base ad
esso il processo da attivare ed eseguendo la signal sul
suo semaforo privato.

Lo schema presentato puo, in certi casi, presentare degli
inconvenienti.

a) l'operazione wait sul semaforo privato viene sempre
eseguita anche quando il processo richiedente non
deve essere bloccato.

b) Il codice relativo al'assegnazione della risorsa viene
duplicato nelle procedure acquisizione e rilascio

Si pud definire uno schema che non ha questi inconvenienti.

semaphor e mut ex;

semaphore priv[Nproc]=...; /* array di
semafori privati
inizializzati a O

nmut ex. val ue=1;

for(int i=0;i<Nproc; i++) priv[i].value=0;

voi d acquisizione (int i)
{ wait(&mutex);
if (! < condizione di sincronizzazione>)
{ <i ndi cazi one di sospensione del processo>
si gnal (&mtex);
wait (&riv[i]);
<i ndi cazi one processo non pi U sospeso>;
}
<al | ocazi one della risorsa>
si gnal (&mutex);

void rilascio ()
{ int i;
wai t (&t ex) ;
<rilascio della risorsa>;
if (<esiste alneno un processo sospeso per il

qual e la cond. di sincronizzazione e’
soddi sfatta>)

{ <scelta del processo Pi da risvegliare>;
signal (&priv[i]);
}
el se signal (&wutex);
}

Commenti:

« A differenza della soluzione precedente, in questo
caso risulta piu complesso realizzare la riattivazione
di pit processi per i quali risulti vera
contemporaneamente la condizione di
sincronizzazione.

* Lo schema prevede infatti che il processo che
rilascia la risorsa attivi al piu un processo sospeso, il
quale dovra a sua volta provvedere alla riattivazione
di eventuali altri processi.

Soluzione Esempio 1

Su un buffer da N celle di memoria piu produttori
possono depositare messaggi di dimensione diversa.

Politica di gestione: tra piu produttori ha priorita di
accesso quello che fornisce il messaggio di
dimensione maggiore

Soluzione:

int richiesta[Nproc]={0,0,...0};

int sospesi=0; int vuote=N

semaphore mutex, priv[Nproc];

nessage Buffer[N;

mut ex. val ue=1;

for(int i=0;i<Nproc; i++) priv[i].value=0;

voi d acqui sizione(int i, int m
{ wait (&mutex);
if ((sospesi==0)&&(vuote>=n))
{ vuot e= vuote-m
<assegnazi one al processo di mcelle di buffer>;

signal (&oriv[i]);

el se
{ sospesi ++;
richiestalil]=m

}
si gnal (&nut ex) ;
wait (&riv[i]);

void rilascio (int m) /* m num celle rilasciate */

{

}

int k;

wai t (&t ex) ;

vuot e= vuot e+m

whi | e (sospesi! =0}

{ <individuazione del processo Pk
con |la massinma richiesta>;

if (richiesta[k]<=vuote)

{ vuot e=vuot e-ri chi esta[k] ;
<assegnazione a Pk delle celle richieste>;
ri chi est a[k] =0;
sospesi--;
signal (&priv[k]);

}

el se break; /* uscita dal ciclo */

}

si gnal (&nut ex) ;

Soluzione Esempio 2

Un insieme di processi utilizza un insieme di risorse comuni
R1,R2,..Rn; a ciascun processo & assegnata una priorita.

Politica di gestione: In fase di riattivazione dei processi sospesi
viene scelto quello cui corrisponde la massima priorita

Soluzione: introduzione delle seguenti variabili:

« PSJi]: variabile logica che assume il valore vero se il processo
Pi & sospeso; il valore falso diversamente.

« risorse[j]: variabile logica che assume il valore falso se la
risorsa j-esima € occupata; il valore vero diversamente.

« disponibile: il numero delle risorse non occupate
« sospesi: il numero dei processi sospesi
* mutex: un semaforo di mutua esclusione

« priv(i): il semaforo privato del processo Pi

int risorse[Nris]={1,1,1..1};

int PS[Nproc]={0,0,..0};

int sospesi=0;

int disponibile=Nris;

semaphor e mut ex;

semaphore priv[Nproc]=...; /* array di
semafori privati
inizializzati a 0;

nmut ex. val ue=1;

for(int i=0;i<Nproc; i++) priv[i].value=0;

int Richiesta (int i)

/* ritorna il numero di risorsa allocata al
processo richiedente Pi */
{ int k=0;

wai t (&t ex) ;
if (!disponibile)

{ sospesi ++;
PS[i]=1;
si gnal (&nut ex) ;
wait(&priv[i]);
PS[i]=0;
sospesi --;

}

while(!risorse[k]) k++;

di sponi bile--;

ri sorse[k] =0;
si gnal (&mutex);
return k;

void Rilascio (int x) /*x: numero risorsa */
{int j;

wai t (&t ex);

di sponi bi | e++;

risorse[x]=1; /*la risorsa viene |iberata*/

if (sospesi>0)

{ <seleziona il processo Pj a massinma priorita tra
quel i sospesi utilizzando il vettore PS>
signal (&riv([j]);

}

el se signal (&mutex);

Considerazioni sulle soluzioni presentate
Ogni processo che nella fase di acquisizione della risorsa
trova la condizione di sincronizzazione non soddisfatta,
deve lasciare traccia in modo esplicito della sua
sospensione entro la sezione critica.

Il processo che libera la risorsa deve infatti eseguire la
primitiva signal(priv[i]) solo se esistono processi sospesi.
In tutte le soluzioni e’ stata introdotta un’apposita variabile
per indicare il numero dei processi sospesi.

La fase di assegnazione di una risorsa ad un processo e
separata dalla fase di uso della risorsa stessa.

Occorre quindi lasciare traccia in modo esplicito entro la
sezione critica della assegnazione e quindi della non
disponibilita della risorsa,decrementando la variabile
disponibili e assegnando a risorse[k] il valore falso.

