
1

1

SEMAFORI

2

Una variabile di tipo semaforico viene definita come una
variabile intera non negativa, cui è possibile accedere
solo tramite le due operazioni wait e signal definite nel
seguente modo:

wait(s): while (!s);

s--;

signal(s): s++;

• L’operazione wait ritarda il processo fino a che il valore del semaforo
diventa maggiore di 0 e quindi decrementa tale valore di 1.

• L’operazione signal incrementa di 1 il valore del semaforo.

• Le due operazioni sono atomiche.Il valore del semaforo viene
modificato da un solo processo alla volta.

Semaforo

3

Il valore di un semaforo s è legato al numero delle
operazioni wait e signal eseguite su di esso dalla
relazione:

val(s)= s0 + ns(s)-nw(s)

dove:

– val(s) valore del semaforo s
– s0 valore iniziale di s;
– ns(s) numero di volte che è stata eseguita la

signal(s);
– nw(s) numero di volte che è stata completata la

wait(s).
• Essendo, per definizione, val(s) >= 0, si ha:

nw(s) ≤ ns(s)+ s0

4

• La relazione nw(s) ≤ ns(s)+ s0 è invariante rispetto
all’esecuzione di wait e signal (sempre vera
qualunque sia il numero di primitive eseguite).

• La proprietà può essere utilizzata per verificare che
un’interazione tra processi, programmata mediante il
meccanismo semaforico, avvenga correttamente.

2

5

Realizzazione dei semafori

• Il meccanismo di implementazione del costrutto
semaforo deve consentire:

– eliminazione di ogni forma di attesa attiva dei
processi (v. definizione della wait): sospensione del
processo che non può proseguire l’esecuzione in
una coda associata al semaforo.

– eliminazione di forme di starvation (attesa
indefinita di un processo): scelta FIFO del processo
da risvegliare.

6

Esempio di mutua esclusione

mutex

mutex = 0

= 0 Il processo in esecuzione
viene bloccato e la CPU
assegnata ad un altro
processo

wait(mutex) valore iniziale: mutex=1

= 1

7

Esiste un
processo in

attesa?

mutex ++

sì

Uno dei processi in
attesa viene riattivato;
può di nuovo
riacquisire la CPU

signal (mutex)

no

8

Realizzazione dei semafori
Al semaforo sono associati:

– un valore intero non negativo con valore iniziale
>= 0

– una coda Qs nella quale sono posti i descrittori dei
processi che attendono l’autorizzazione a
procedere.

typedef struct{int value;

queue Qs;} semaphore;

3

9

Realizzazione di wait e signal
Wait e signal possono essere realizzate come segue:
void wait(semaphore *s) {
if (s->value==0)

<il processo viene sospeso ed
il suo descrittore
inserito in s->Qs>

s->value--;
}
void signal (semaphore *s) {
if (<s->Qs non e` vuota>)
<il descrittore del primo processo
viene rimosso dalla coda ed il suo
stato modificato in pronto>

s->value++;
}
– L’esecuzione della signal non comporta concettualmente

nessuna modifica nello stato del processo che l’ha eseguita.
– Scelta del processo da risvegliare tramite politica FIFO

10

• wait e signal : sezioni criticheè devono essere
azioni indivisibili (azioni atomiche).

• Analisi e modifica del valore del semaforo ed
eventuale sospensione o riattivazione di un processo
devono avvenire in modo indivisibile.

• Durante un’operazione sul semaforo nessun altro
processo può accedere al semaforo fino a che
l’operazione è completata o bloccata.

11

Soluzione al problema della mutua
esclusione

.

.
wait(&mutex);

<Sezione critica>;
signal(&mutex);

.

.

P1
.
.

wait(&mutex);
<Sezione critica>;
signal(&mutex);

.

.

P2

• mutex semaforo (binario) di mutua esclusione (0,1), con
valore iniziale uguale a 1.

è Qualunque sia la sequenza di esecuzione dei
processi, la soluzione è sempre corretta.

semaphore mutex;
mutex.value=1;

12

Dimostrazione

Th: Il numero n dei processi presenti contemporaneamente
nella sezione critica S deve essere 0 o 1.

• Si ha:

n= nw(mutex)-ns(mutex)

• La relazione nw(s) ≤ ns(s)+ s0 diventa in questo caso:

nw(mutex) ≤ ns(mutex)+ 1

• Dalle due relazioni si ha:

n= nw(mutex)-ns(mutex) ≤ 1

4

13

Poiché wait(s) precede sempre signal(s) si ha:

nw(mutex)-ns(mutex)≥0

Quindi si ha:

0 ≤ n ≤ 1 cvd

14

Dimostrazione

Th: Un processo viene bloccato in ingresso solo se la
sezione critica è occupata da un altro processo.

Un processo è ritardato solo se il valore di mutex è zero.

HP: mutex.value=0

La relazione nw(mutex) ≤ ns(mutex)+ 1 diventa :

nw(mutex) = ns(mutex)+ 1

Il numero delle operazioni wait eseguite con successo su
mutex eccede il numero delle operazioni signal su mutex
di 1.

Quindi:

un processo si trova entro la sezione critica. cvd

15

Mutua esclusione: alcuni problemi
1. E’ sempre necessario usare wait e signal per

assicurare la mutua esclusione (overhead)?

2. Come si ottiene la non interrompibilità nel caso di
sistemi multiprocessori?

R

M1 I/O M2 I/O Mn I/O

CPU1 CPU2 CPUn

bus

memoria comune

16

Soluzione al primo problema

Ipotesi: sezioni critiche “sufficientemente brevi”.

a) Sistema monoprocessore:

P1
.

<disabilita interruzioni>;
<S1>;

<riabilita interruzioni>;
.
.
.

P2
.

<disabilita interruzioni>;
<S2>;

<riabilita interruzioni>;
.
.
.

5

17

Soluzione al primo problema
b) Sistema multiprocessore: uso di lock e unlock

P1
.

lock(x);
<S1>;

unlock(x);
.
.
.

P2
.

lock(x);
<S2>;

unlock(x);
.
.
.

void lock(int *x)
{ while (!*x);

*x=0;
}
void unlock(int *x)
{ *x=1;
}

/* x=0 risorsa
occupata;
x=1 risorsa libera

*/

int x=1;

18

• Problema dell’attesa attiva (busy waiting)

• Nell’ipotesi che l’hardware garantisca la mutua
esclusione solo a livello di lettura o scrittura di una
cella di memoria solo unlock è indivisibile

èIstruzione di test and set lock (tsl)

– Copia il valore di x in un registro ed inserisce in x il
valore 0, in modo indivisibile

– La CPU che esegue tsl tiene occupato il bus di
memoria per impedire ad altre CPU di accedere
alla memoria

19

lock(x):

tsl register, x (copia x nel registro e pone x=o)
cmp register, 1 (x vale 1?)
jne lock (se x=0 ricomincia il ciclo)
ret (ritorna al chiamante;

accesso alla sezione critica)

unlock(x):
move x,1 (inserisce 1 in x)
ret (ritorna al chiamante)

20

Soluzione al secondo problema
Nel caso generale in cui wait e signal siano eseguite
su processori diversi si ha:

void wait(..mutex)
{ lock(x);

/*codice della
wait */

unlock(x);

}

void signal(..mutex)
{ lock(x);

/*codice della
signal */

unlock(x);

}

x

mutex

R

6

21

Cooperazione tra processi concorrenti

• Scambio di messaggi generati da un processo e
consumati da un altro

• Scambio di segnali temporali che indicano il
verificarsi di dati eventi

La cooperazione tra processi prevede che
l’esecuzione di alcuni di essi risulti condizionata
dall’informazione prodotta da altri (vincoli
sull’ordinamento nel tempo delle operazioni dei
processi).

22

ESEMPIO:

• n processi P1, P2, …. Pn attivati ad intervalli prefissati di
tempo da P0.

• l’esecuzione di Pi non può iniziare prima che sia giunto il
segnale da P0

• ad ogni segnale inviato da P0 deve corrispondere una
attivazione di Pi

n1= numero di richieste di attivazione di Pi

n2= numero di segnali di attivazione inviati da P0

n3= numero di volte in cui Pi è stato attivato

Deve essere ad ogni istante:
se n2 ≥ n1 n3 = n1

se n2 < n1 n3 = n2

23

processo Pi :
main()
{ ...
while(...)
{ ...

wait (&si);
...

}

...
}

semaphore si;
si.value=0 /* valore iniziale si = 0*/

processo P0 :
main()
{ ...
while(...)
{ ...

signal (&si);
...

}

...
}

24

Dimostrazione:

La relazione nw(s) ≤ ns(s)+ s0 diventa in questo caso:

nw(si) ≤ ns(si)

è Il numero di volte che il processo Pi è stato attivato è
minore o uguale al numero dei segnali inviati da P0

cvd

7

25

Comunicazione

Sequenza corretta: inserimento-prelievo-inserimento-
prelievo….

Sequenze errate:

– Inserimento-inserimento-prelievo….
– Prelievo-prelievo-inserimento

P1 P2

produttore consumatore

buffer

prepara messaggio

inserisce messaggio

preleva messaggio dal
buffer

consuma messaggio

P1 P2

26

Esempio: Produttore Consumatore (buffer di capacita` n)

1
2

n

P C

1. Il produttore non può inserire un messaggio nel buffer se questo è
pieno.

2. Il consumatore non può prelevare un messaggio dal buffer se questo
è vuoto

• Siano:
d = numero dei messaggi depositati
e = numero dei messaggi estratti
n = numero dei messaggi che può contenere il buffer

• Deve valere la condizione: 0 ≤ d - e ≤ n

27

/* Processo produttore:*/

main()

{
for (;;){
<produzione messaggio>;
<deposito messaggio>;
signal(&msg_disponibile);}

}

semaphore msg_disponibile;

msg_disponibile.value=0;

/* Processo consumatore:*/

main()

{
for (;;){
wait(&msg_disponibile);
<prelievo messaggio>;
<consumo messaggio>;}

}

• questa soluzione soddisfa soltanto la condizione 2: il produttore
potrebbe depositare un messaggio nel buffer pieno!

28

/* Processo produttore:*/

main()

{
for (;;){
wait(&spazio_disp);
<produzione messaggio>;
<deposito messaggio>;
signal(&msg_disp);}

}

semaphore spazio_disp, msg_disp;

spazio_disp.value=n;

msg_disp.value=0;

/* Processo consumatore:*/

main()

{
for (;;){
wait(&msg_disp);
<prelievo messaggio>;
signal(&spazio_disp);
<consumo messaggio>;}

}

• Per sincronizzare correttamente gli accessi al buffer di produttore e
consumatore, introduciamo due semafori:

• spazio_disp (valore iniziale=n, capienza del buffer)

• msg_disp (valore iniziale=0)

8

29

Dimostrazione
Th: la soluzione proposta soddisfa la condizione

• La relazione nw(s) ≤ ns(s)+ s0 scritta per i due semafori
diventa:

1) nw(spazio_disp) ≤ ns(spazio_disp) +n
2) nw(msg_disp) ≤ ns(msg_disp)

• L’ordine con cui vengono eseguite le primitive comporta:

3) ns(msg_disp) ≤ d ≤ nw(spazio_disp)
4) ns(spazio_disp) ≤ e ≤ nw(msg_disp)

0 ≤ d - e ≤ n

30

Dalle 3),1),4) si ha:
d ≤ nw(spazio_disp) ≤ ns(spazio_disp) + n ≤ e+n [i]

Dalle 4),2),3) si ha:

e ≤ nw(msg_disp) ≤ ns(msg_disp) ≤ d [ii]

• Combinando i due risultati [i] e [ii] si ottiene:

e ≤ d ≤ e+n

da cui:

0 ≤ d-e ≤ n cvd

31

Affinchè la soluzione sia corretta, bisogna che produttore e
consumatore non accedano mai contemporaneamente alla
stessa posizione del buffer.

Inizialmente si ha:

coda= testa

coda

testa

32

Operazioni di inserimento e prelievo:
typedef messaggio buffer[N];

buffer B;

int testa=0, coda=0;

messaggio M;

Inserimento: B[coda] = M;
coda = (coda + 1)%N;

Prelievo: M = B[testa];
testa = (testa + 1)%N;

Siano p1 e p2 rispettivamente il numero di volte in cui coda e
testa sono stati incrementati (inizialmente p1 = p2).
Le operazioni di deposito e prelievo agiscono sulla stessa
porzione di buffer se:

p1 = p2 mod n [5]

9

33

Dimostrazione
Th: produttore e consumatore non accedono

contemporaneamente alla stessa porzione di buffer

• Siano p1 e p2 rispettivamente il numero di volte in cui coda e testa sono
stati incrementati (inizialmente p1 = p2).

• Le operazioni di deposito e prelievo agiscono sulla stessa porzione di buffer
se:

p1 = p2 mod n

• Durante l’operazione di deposito si ha:

p1= ns (msg_disp)
ns (msg_disp)=nw(spazio_disp) -1 ≤ n+ ns(spazio_disp) -1 (dalla (1))

• Durante la operazione di prelievo si ha:

p2= nw (msg_disp)-1
nw (msg_disp)=ns(spazio_disp)+1 ≤ ns(msg_disp) (dalla (2)) 34

Si ha:
nw (msg_disp) ≤ ns(msg_disp) ≤ n+ nw (msg_disp) -2

da cui:
0 ≤ ns (msg_disp) - nw(msg_disp) ≤ n-2

e quindi:
0 ≤ p1 -p2-1 ≤ n-2

da cui:
1 ≤ p1 -p2 ≤ n-1 [6]

La [6], che vale quando due processi stanno
contemporaneamente lavorando sul buffer, è in
contraddizione con la [5]. Quindi la condizione che produttore
e consumatore non accedano contemporaneamente alla
stessa porzione di buffer è soddisfatta.

cvd

35

Nel caso di più produttori e più consumatori:

aggiungiamo i due semafori mutex1 e mutex2
...
semaphore mutex1, mutex2;
mutex1.value=1;
mutex2.value=1;

Processo produttore:

main()

{ for(; ;)

{ <produz. messaggio>;
wait (&spazio_disp);
wait (&mutex1);
<inserimento mess.>;
signal(&mutex1)

signal(&msg_disp);
}

}

Processo consumatore:

main()
{ for(; ;)
{ wait (&msg_disp);
wait (&mutex2)
<prelievo mess.>;
signal(&mutex2)
signal(&spazio_disp);
<consumo messaggio>;

}
}

36

Esempi di uso dei semafori:
gestione di risorse

• R1, R2,…Rn n unità di uno stesso tipo di risorsa (tutte
equivalenti fra loro).

• P1, P2, … Pm m processi che devono operare su una
qualunque risorsa in modo esclusivo tramite le
operazioni A, B, …

I Soluzione

• Si assegna un semaforo di mutua esclusione Mi (v. i.=1)
ad ogni risorsa Ri

10

37

processo Ps:
..
wait(Mi);
Ri.A;
signal(Mi);
..

Inconvenienti della soluzione:

• Come decide il generico processo su quali risorse operare
(come viene scelto i)?

• Può capitare che, una volta scelta Ri , se su di essa sta
operando in quel momento un secondo processo Pk, il
processo Ps si blocchi su wait(Mi), pur essendo disponibili
altre risorse Rh (h≠j).

Ri.A rappresenta l' esecuzione
dell'operazione A su Ri

38

II Soluzione: viene introdotta una nuova risorsa G, gestore di
R1, R2, … Rn. Essa può essere concepita come una
struttura dati destinata a mantenere lo stato delle risorse
gestite. Sul gestore si opera tramite due procedure:

Richiesta e Rilascio.

unsigned int Richiesta();

void Rilascio(unsigned int x);

(dove il parametro x rappresenta l’indice della risorsa
assegnata o rilasciata)

semaforo RIS con valore iniziale = n

E’ necessario un vettore di variabili booleane Libero[i] per registrare
quale risorsa è in un certo istante libera (Libero[i] = 1) e quale occupata
(Libero[i] = 0).

39

Strutture dati del gestore:

• le procedure Richiesta e Rilascio dovranno essere
eseguite in mutua esclusione

è semaforo mutex di mutua esclusione con v.i. = 1

• Un processo che esegue Richiesta verifica la
disponibilita` di una qualunque risorsa Rj.

• Un processo che esegue Rilascio rende nuovamente
disponibile una risorsa

è semaforo ris con valore iniziale = n

• E’ necessario un vettore di variabili booleane Libero[i]
per registrare quale risorsa è in un certo istante libera
(Libero[i] = 1) e quale occupata (Libero[i] = 0).

40

II Soluzione - segue

semaphore mutex, ris;

int Libero[n];

void inizializza()

{/*inizializzazione del gestore:*/

mutex.value= 1;

ris.value= n;

for(i = 0; i<n; i++)

Libero[i] = 1; /*true*/

}

11

41

II Soluzione - segue
int Richiesta ()
{ unsigned int x, i;

wait(&ris);
wait(&mutex);
i=0;
do

i++;
while (! Libero[i]);

x = i;
Libero[i] = 0;
signal(&mutex);
return x;

}

void Rilascio (unsigned int x)
{ unsigned int i;

wait(&mutex);
i=x;
Libero[i]= 1;
signal(&mutex);
signal(&ris);

} 42

Schema del processo:

main()

{ unsigned int risorsa;

...

risorsa=Richiesta();

<uso della risorsa>

Rilascio(risorsa);

...

}

43

Realizzazione di politiche di gestione delle
risorse

• Nei problemi di sincronizzazione visti precedentemente si
ha che:

– La decisione se un processo possa proseguire l’esecuzione
dipende dal valore di un solo semaforo (es.,“mutex”, “spazio
disponibile”, “messaggio disponibile”)

– La scelta del processo da riattivare avviene tramite l’algoritmo
implementato nella signal (FIFO).

• In problemi di sincronizzazione più complessi si ha che:

– La decisione se un processo può proseguire l’esecuzione dipende
in generale dal verificarsi di una condizione di sincronizzazione

– La scelta del processo da riattivare può avvenire sulla base di
priorità tra processi

44

Problema dei “readers and writers”

R1 R2 Rn W1 W2 Wn

risorsa

Condizioni di sincronizzazione:

• I processi lettori possono usare la risorsa
contemporaneamente.

• I processi scrittori hanno accesso esclusivo alla risorsa.

• I processi lettori e scrittori si escludono mutuamente
nell’uso della risorsa.

12

45

Soluzione 1

Un processo lettore aspetta solo se la risorsa è già stata
assegnata ad un processo scrittore: cioè nessun lettore
aspetta se uno scrittore è già in attesa (possibilità di attesa
infinita da parte dei processi scrittori).

Soluzione 2

Un processo lettore aspetta se un processo scrittore è in
attesa (possibilità di attesa infinita da parte dei processi
lettori).

46

Soluzione 1:

int readcount=0;

semaphore mutex, w;

mutex.value=1; w.value=1;

READER

main()
{ wait(&mutex);

readcount ++;
if (readcount == 1)

wait(&w);
signal(&mutex);
. .
<lettura>
..
wait(&mutex);
readcount --;
if (readcount==0)

signal(&w);
signal(&mutex);

}

main()
{ wait(&w);
. .
<scrittura>
. .
signal(&w);

}

WRITER

47

READER

main{
wait(mutex3);
wait(r);
wait(mutex1);
readcount++;
if (readcount==1)

wait(w);
signal(mutex1);
signal(r);
signal(mutex3);
..
<lettura>
..
wait(mutex1)
readcount --;
if (readcount == 0)

signal(w);
signal(mutex1);}

main(){
wait(mutex2);
writecount ++;
if (writecount==1)

wait(r);
signal(mutex2);
wait(w);
..
<scrittura>

..
signal(w)
wait(mutex2)
writecount--;
if (writecount==0)

signal(r);
signal(mutex2);}

WRITER

Soluzione 2:
int readcount, writecount=0;

semaphore mutex1, mutex2, mutex3, w, r;

mutex1.value=1; mutex2.value=1; mutex3.value=1;w.value=1; r.value=1;

