SEMAFORI

Semaforo

Una variabile di tipo semaforico viene definita come una
variabile intera non negativa, cui & possibile accedere
solo tramite le due operazioni wait e signal definite nel
seguente modo:

wai t (s): while (!s);

S,

signal (s):

L'operazione wait ritarda il processo fino a che il valore del semaforo
diventa maggiore di 0 e quindi decrementa tale valore di 1.

L’operazione signal incrementa di 1 il valore del semaforo.

Le due operazioni sono atomiche.ll valore del semaforo viene
modificato da un solo processo alla volta.

dove:

Il valore di un semaforo s € legato al numero delle
operazioni wait e signal eseguite su di esso dalla

relazione:

val(s)= s, + ns(s)-nw(s)

—val(s)
= SU
—ns(s)

- nw(s)

Essendo,

valore del semaforo s

valore iniziale di s;

numero di volte che é stata eseguita la
signal(s);

numero di volte che é stata completata la
wait(s).

per definizione, val(s) >= 0, si ha:

nw(s) £ ns(s)+ s,

* Larelazione nw(s) £ ns(s)+ sO € invariante rispetto
all'esecuzione di wait e signal (sempre vera
qualungue sia il numero di primitive eseguite).

» La proprieta puo essere utilizzata per verificare che
un'interazione tra processi, programmata mediante il
meccanismo semaforico, avvenga correttamente.

Realizzazione dei semafori

|l meccanismo di implementazione del costrutto
semaforo deve consentire:

— eliminazione di ogni forma di attesa attiva dei
processi (v. definizione della wait): sospensione del
processo che non puo proseguire I'esecuzione in
una coda associata al semaforo.

— eliminazione di forme di starvation (attesa
indefinita di un processo): scelta FIFO del processo
da risvegliare.

Esempio di mutua esclusione

wait(mutex) valore iniziale: mutex=1
-0 Il processo in esecuzione
T viene bloccato e la CPU
assegnata ad un altro
-1 processo
mutex = 0

signal (mutex)

Uno dei processi in

Esiste un si attesa viene riattivato;
processo in puo di nuovo
attesa? riacquisire la CPU

no

mutex ++

Realizzazione dei semafori
Al semaforo sono associati:

— un valore intero non negativo con valore iniziale
>=0

— una coda Qs nella quale sono posti i descrittori dei
processi che attendono 'autorizzazione a
procedere.

typedef struct{int val ue;

queue (s;} senmaphore;

Realizzazione di wait e signal
Wait e signal possono essere realizzate come segue:
voi d wait (senaphore *s) {
if (s->val ue==0)
<i| processo viene sospeso ed
il suo descrittore
inserito in s->Qs>
s->val ue--;
}
voi d signal (semaphore *s) {
if (<s->@ non e’ vuota>)
<il descrittore del prino processo
viene rinosso dalla coda ed il suo
stato nodificato in pronto>
s->val ue++;
}
— L’esecuzione della signal non comporta concettualmente
nessuna modifica nello stato del processo che I'ha eseguita.
— Scelta del processo da risvegliare tramite politica FIFO

» wait e signal : sezioni critiche = devono essere
azioni indivisibili (azioni atomiche).

 Analisi e modifica del valore del semaforo ed
eventuale sospensione o riattivazione di un processo
devono avvenire in modo indivisibile.

» Durante un’operazione sul semaforo nessun altro
processo puo accedere al semaforo fino a che
I'operazione & completata o bloccata.

Soluzione al problema della mutua
esclusione

semaphore mut ex;
mut ex. val ue=1,

P1 P2

wai t (&mut ex) ;
<Sezione critica>;
si gnal (&mut ex);

wai t (&mut ex) ;
<Sezione critica>;
si gnal (&mut ex);

» mutex semaforo (binario) di mutua esclusione (0,1), con
valore iniziale uguale a 1.

= Qualunque sia la sequenza di esecuzione dei
processi, la soluzione & sempre corretta. 1

Dimostrazione

Th: Il numero n dei processi presenti contemporaneamente
nella sezione critica S deve essere 0 0 1.

e Siha:
n= nw(mutex)-ns(mutex)
* Larelazione nw(s) £ ns(s)+ sO diventa in questo caso:
nw(mutex) £ ns(mutex)+ 1
« Dalle due relazioni si ha:

n=nw(mutex)-ns(mutex) £ 1

Poiché wait(s) precede sempre signal(s) si ha:
nw(mutex)-ns(mutex)3 0
Quindi si ha:

OEnfEl cvd

Dimostrazione

Th: Un processo viene bloccato in ingresso solo se la
sezione critica € occupata da un altro processo.

Un processo é ritardato solo se il valore di mutex é zero.

HP: mutex.value=0

La relazione nw(mutex) £ ns(mutex)+ 1 diventa :
nw(mutex) = ns(mutex)+ 1

I numero delle operazioni wait eseguite con successo su
mutex eccede il numero delle operazioni signal su mutex
di 1.

Quindi:
un processo si trova entro la sezione critica.

Mutua esclusione: alcuni problemi

1. E’sempre necessario usare wait e signal per
assicurare la mutua esclusione (overhead)?

2. Come si ottiene la non interrompibilita nel caso di
sistemi multiprocessori?

El memoria comune

bus

CPU1 CPU2

M1 [l{e] M2 [[[e] Mn [[[e]

Soluzione al primo problema
Ipotesi: sezioni critiche “sufficientemente brevi”.

a) Sistema monoprocessore:

P1 P2

<disabilita interruzioni>;
<S2>;
<riabilita interruzioni>;

<disabilita interruzioni>;
<S1>;
<riabilita interruzioni>;

Soluzione al primo problema
b) Sistema multiprocessore: uso di lock e unlock

void | ock(int *x)
{ while (!*x);
*x=0;

}
voi d unl ock(int *x)

* Problema dell'attesa attiva (busy waiting)

* Nell'ipotesi che I'hardware garantisca la mutua
esclusione solo a livello di lettura o scrittura di una
cella di memoria solo unlock & indivisibile

=>Istruzione di test and set lock (tsl)

*x=1;
} int x=1; — Copia il valore di x in un registro ed inserisce in x il
/* x=0 risorsa valore 0, in modo indivisibile
occupata;) P1 P2 — La CPU che esegue tsl tiene occupato il bus di
x=1 risorsa |ibera X K . .
) . . memoria per impedire ad altre CPU di accedere
lock(x); lock(x); alla memoria
<S1>; <S2>;
unlock(x); unlock(x);
17 18
Soluzione al secondo problema
Nel caso generale in cui wait e signal siano eseguite
 ock(x) : §u progessorl diversi si ha: . .
void wait(..mnmtex) voi d signal (.. nutex)
tsl register, x |(copiax nelregistro e pone x=0) { | ock(x); { | ock(x);
cnp register, 1 (x vale 1?) . ' . '
jne lock ('se x=0 ricomincia il ciclo) /*codice della /*codice della
ret (ritorna al chiamante; wait */ signal */
accesso alla sezione critica) unl ock(Xx) ; unl ock(x);
unl ock(x): } }
nove x, 1 (inserisce 1 in x)
ret (ritorna al chiamante) X
mutex

Cooperazione tra processi concorrenti

» Scambio di messaggi generati da un processo e
consumati da un altro

» Scambio di segnali temporali che indicano il
verificarsi di dati eventi

La cooperazione tra processi prevede che
I'esecuzione di alcuni di essi risulti condizionata
dall'informazione prodotta da altri (vincoli
sull’ordinamento nel tempo delle operazioni dei
processi).

ESEMPIO:

* n processi Py, P,, ..
tempo da Py,

.. P, attivati ad intervalli prefissati di

* I'esecuzione di P, non puo iniziare prima che sia giunto il
segnale da P,

» ad ogni segnale inviato da P, deve corrispondere una
attivazione di Pi

n,= numero di richieste di attivazione di P,
n,= numero di segnali di attivazione inviati da P,
n;= numero di volte in cui P; é stato attivato

Deve essere ad ogni istante:

se n,3n, ng=n,

se ny<n ny=n,

semaphore si;

si.value=0 /* valore iniziale s; = 0*/

processo P; : processo Py :

mai n() mai n()

{ ... { ...
while(...) while(...)
... ..

wait (&si); signal (&si);

} }

} .

Dimostrazione:
La relazione nw(s) £ ns(s)+ s, diventa in questo caso:
nw(s;) £ ns(s;)

> Il numero di volte che il processo P, & stato attivato &
minore o uguale al numero dei segnali inviati da P,

cvd

Comunicazione
buffer

produttore consumatore

P1 P2
prepara messaggio preleva messaggio dal

buffer
inserisce messaggio consuma messaggio

Sequenza corretta: inserimento-prelievo-inserimento-
prelievo....

Sequenze errate:

— Inserimento-inserimento-prelievo....
— Prelievo-prelievo-inserimento

Esempio: Produttore Consumatore (buffer di capacita n)

©)

1. Il produttore non pud inserire un messaggio nel buffer se questo &

® :

n

pieno.

2. Il consumatore non puo prelevare un messaggio dal buffer se questo
€ vuoto

* Siano:

d = numero dei messaggi depositati
e = numero dei messaggi estratti
n = numero dei messaggi che puo contenere il buffer

« Deve valere la condizione:

Of£d-e£n

25 26
semaphor e msg_di sponi bi | e; « Per sincronizzare correttamente gli accessi al buffer di produttore e
) S A consumatore, introduciamo due semafori:
msg_di sponi bi | e. val ue=0;
/* Processo produttore:*/ /* Processo consumatore: */ + spazio_disp (valore iniziale=n, capienza del buffer)
mai n() mai n() * msg_disp (valore iniziale=0)
{ { semaphor e spazi o_di sp, nsg_di sp;
for (5:){) for Gi){ o spazi o_di sp. val ue=n;
<produzi one messaggi 0>; wai t (&sg_di sponi bile); .
<deposi to messaggi 0>; <prelievo nmessaggi 0>; meg_di sp. val ue=0;
si gnal (&nrsg_di sponi bile); <consuno nessaggi 0>;
) 9 (9_cisp)i}) 99 } /* Processo produttore:*/ /* Processo consumatore: */
mai n() mai n()
« guesta soluzione soddisfa soltanto la condizione 2: il produttore { {
potrebbe depositare un messaggio nel buffer pieno! for (;i){ for (ii){
vai t (&spazi o_di sp) ; wai t (&rsg_disp);
<produzi one nessaggi 0>; <prel i evo messaggi 0>;
<deposi to messaggi 0>; si gnal (&spazi o_di sp);
si gnal (&rsg_disp);} <consunp nessaggi 0>; }
27 } } 28

Dimostrazione
Th: la soluzione proposta soddisfa la condizione

Of£d-e£n

» Larelazione nw(s) £ ns(s)+ s0O scritta per i due semafori
diventa:

1) nw(spazio_disp) £ ns(spazio_disp) +n
2) nw(msg_disp) £ ns(msg_disp)

« L’ordine con cui vengono eseguite le primitive comporta:

3) ns(msg_disp) £ d £ nw(spazio_disp)
4) ns(spazio_disp) £ e £ nw(msg_disp)

Dalle 3),1),4) si ha:
d £ nw(spazio_disp) £ ns(spazio_disp) + n £ e+n [i]

Dalle 4),2),3) si ha:
e £ nw(msg_disp) £ ns(msg_disp) £d [ii]
« Combinando i due risultati [i] e [ii] si ottiene:
ef£d£e+n
da cui:

O0£d-e£n cvd

30

Affinche la soluzione sia corretta, bisogna che produttore e
consumatore non accedano mai contemporaneamente alla
stessa posizione del buffer.

coda

— testa

Inizialmente si ha:
coda= testa

31

Operazioni di inserimento e prelievo:
typedef nessaggio buffer[N;
buffer B;
int testa=0, coda=0;

nessaggi o M

Inserimento: B[coda] = M

coda = (coda + 1) %N,

Prelievo: M= B[testa];

testa = (testa + 1) %\

Siano pl e p2 rispettivamente il numero di volte in cui coda e
testa sono stati incrementati (inizialmente p1 = p2).

Le operazioni di deposito e prelievo agiscono sulla stessa
porzione di buffer se:

pl= p2modn [5]

32

Dimostrazione

Th: produttore e consumatore non accedono
contemporaneamente alla stessa porzione di buffer

« Siano pl e p2 rispettivamente il numero di volte in cui coda e testa sono
stati incrementati (inizialmente pl = p2).

« Le operazioni di deposito e prelievo agiscono sulla stessa porzione di buffer
se:

pl= p2modn
» Durante I'operazione di deposito si ha:

pl=ns (msg_disp)
ns (msg_disp)=nw(spazio_disp) -1 £ n+ ns(spazio_disp) -1 (dalla (1))

» Durante la operazione di prelievo si ha:

p2=nw (msg_disp)-1
nw (msg_disp)=ns(spazio_disp)+1 £ ns(msg_disp) (dalla(2)) 4

Si ha:
nw (msg_disp) £ ns(msg_disp) £ n+ nw (msg_disp) -2
da cui:
0 £ ns (msg_disp) - nw(msg_disp) £ n-2
e quindi:
0£p,-p,rlEN-2
da cui:

1£p;-p,£n-1 [6]

La [6], che vale quando due processi stanno
contemporaneamente lavorando sul buffer, & in
contraddizione con la [5]. Quindi la condizione che produttore
e consumatore non accedano contemporaneamente alla

stessa porzione di buffer & soddisfatta. "
cv

Nel caso di piu produttori e piu consumatori:
aggiungiamo i due semafori mutex1 e mutex2
semaphore mutex1, nutex2;

mut ex1. val ue=1;
nmut ex2. val ue=1;

Processo produttore: Processo consumatore:
mai n()

{ for(; 1)

{ for(; 1) { wait (&msg_disp);
wai t (&mutex2)
<prelievo mess.>;

mai n()

{ <produz. nessaggi 0>;
wai t (&spazio_disp);

wait (&mutexl);
<i nserinmento ness. >;
si gnal (&mut ex1)
si gnal (&rsg_di sp);
}

}

si gnal (&nut ex2)
si gnal (&spazi o_di sp);
<consunp nessaggi 0>;
}
}

35

Esempi di uso dei semafori:
gestione di risorse

* R1, R2,...Rn n unita di uno stesso tipo di risorsa (tutte
equivalenti fra loro).

e P1,P2,... Pm m processi che devono operare su una
qualungue risorsa in modo esclusivo tramite le
operazioni A, B, ...

| Soluzione

» Siassegna un semaforo di mutua esclusione M; (v. i.=1)
ad ogni risorsa R,

36

processo Pg:

.) R.A rappresenta I esecuzione
wai t (M) ’ dell'operazione A su R
R.A

si gnal (M)

Inconvenienti della soluzione:

« Come decide il generico processo su quali risorse operare
(come viene scelto i)?

« Puo capitare che, una volta scelta R;, se su di essa sta
operando in quel momento un secondo processo Py, il
processo Pg si blocchi su wait(M;), pur essendo disponibili

altre risorse Ry, (ht}).
37

Il Soluzione: viene introdotta una nuova risorsa G, gestore di
R1, R2, ... Rn. Essa pu0 essere concepita come una
struttura dati destinata a mantenere lo stato delle risorse
gestite. Sul gestore si opera tramite due procedure:

Richiesta e Rilascio.

unsigned int Richiesta();
void Rilascio(unsigned int x);

(dove il parametro x rappresenta I'indice della risorsa
assegnata o rilasciata)

|::> semaforo RIS con valore iniziale = n

E’ necessario un vettore di variabili booleane Libero[i] per registrare
quale risorsa € in un certo istante libera (Liberoli] = 1) e quale occupata
(Libero[i] = 0).

38

Strutture dati del gestore:

« le procedure Richiesta e Rilascio dovranno essere
eseguite in mutua esclusione

=>» semaforo mut ex di mutua esclusione conv.i. = 1
« Un processo che esegue Richiesta verifica la
disponibilita® di una qualunque risorsa Rj.

« Un processo che esegue Rilascio rende nuovamente
disponibile una risorsa

= semaforo ri s con valore iniziale = n

« E’ necessario un vettore di variabili booleane Li ber o[i]
per registrare quale risorsa € in un certo istante libera
(Li bero[i] = 1)e quale occupata (Li bero[i] = 0).

39

Il Soluzione - segue

semaphor e mutex, ris;

int Libero[n];

void inizializza()
{/*inizializzazione del gestore:*/
mut ex. val ue= 1,

ris.value= n;

for(i = 0; i<n; i++)

Li bero[i] = 1; /*true*/

40

10

Il Soluzione - segue

int R chiesta ()
{ unsigned int x, i;
wait(&is);
wai t (&nmut ex) ;
i =0;
do
i ++;
while (! Libero[i]);
X =i;
Libero[i] = 0;
si gnal (&mtex) ;
return x;

}

void Rilascio (unsigned int x)
{ unsigned int i;

wai t (&nut ex) ;

i=x;

Li bero[i]= 1;

si gnal (&mt ex) ;

signal (&is);

41

Schema del processo:

mai n()

{ unsigned int risorsa;

ri sorsa=Ri chiesta();
<uso della risorsa>

Ri | ascio(risorsa);

2

Realizzazione di politiche di gestione delle
risorse

« Nei problemi di sincronizzazione visti precedentemente si
ha che:

— La decisione se un processo possa proseguire I'esecuzione
dipende dal valore di un solo semaforo (es.,“mutex”, “spazio
disponibile”, “messaggio disponibile”)

— La scelta del processo da riattivare avviene tramite I'algoritmo

implementato nella signal (FIFO).

« In problemi di sincronizzazione pit complessi si ha che:

— La decisione se un processo puo proseguire I'esecuzione dipende
in generale dal verificarsi di una condizione di sincronizzazione

— La scelta del processo da riattivare puo avvenire sulla base di
priorita tra processi

43

Problema dei “readers and writers”

risorsa

Condizioni di sincronizzazione:

« | processi lettori possono usare la risorsa
contemporaneamente.

« | processi scrittori hanno accesso esclusivo alla risorsa.

« | processi lettori e scrittori si escludono mutuamente
nell'uso della risorsa.

11

Soluzione 1

Un processo lettore aspetta solo se la risorsa € gia stata
assegnata ad un processo scrittore: cioe nessun lettore
aspetta se uno scrittore € gia in attesa (possibilita di attesa
infinita da parte dei processi scrittori).

Soluzione 1:

int r eadcount =0;

semaphor e nut ex,

w,

mut ex. val ue=1; w. val ue=1;

I READER

WRITER

mai n()
{ wait(&mnutex);
readcount ++;

mai n()
{ wait(&w;

if (readcount == 1) <scrittura>
Soluzione 2 C wait(&w); e
si gnal (&nut ex) ; si gnal (&w);
Un processo lettore aspetta se un processo scrittore € in -
P inels p s g e . . <l ettura>
attesa (possibilita di attesa infinita da parte dei processi -
lettori). wai t (&t ex) ;
readcount --;
if (readcount==0)
signal (&) ;
si gnal (&ut ex) ;
45 } 46
Soluzione 2:
int readcount, writecount=0;
semaphore nmutexl, nutex2, nutex3, w, r;
mutex1. val ue=1; nutex2.val ue=1; nutex3.val ue=1;w. val ue=1; r.val ue=1;
\ READER | ‘ WRITER
mai n{ mai n() {
ma!t(rmtexii); wai t (nut ex2) ;
V\a!t(r): writecount +4+;
wai t (mut ex1); if (witecount==1)
readcount ++; wai t (r);
if (readcount==1) si gnal (nut ex2) ;
wai t(w; wai t (W) ;
si gnal (nmutex1);
signal (r); "
si gnal (nut ex3); <scrittura>
dettura> S, gnal (W)
wai t (mut ex2)
wai t (nut ex1) writecount--;
readcount --; if (witecount==0)
if (readcount == 0) signal (r);
signal (w); si gnal (mutex2);}
signal (nutex1);} 47

12

