SEMAFORI

Semaforo

Una variabile di tipo semaforico viene definita come una
variabile intera non negativa, cui e possibile accedere
solo tramite le due operazioni wait e signal definite nel
seguente modo:

wait(s): while (!s);
S--3
signal (s): S++,;

L’operazione wait ritarda il processo fino a che il valore del semaforo
diventa maggiore di O e quindi decrementa tale valore di 1.

L’operazione signal incrementa di 1 il valore del semaforo.

Le due operazioni sono atomiche.ll valore del semaforo viene
modificato da un solo processo alla volta.

Il valore di un semaforo s e legato al numero delle
operazioni wait e signal eseguite su di esso dalla
relazione:

val(s)= sy + ns(s)-nw(s)

dove:

— val(s) valore del semaforo s

— Sg valore iniziale di s;

— ns(s) numero di volte che e stata eseguita la
signal(s);

— nw(s) numero di volte che e stata completata la
wait(s).

 Essendo, per definizione, val(s) >= 0, si ha:

nw(s) £ ns(s)+ s,

« Larelazione nw(s) £ ns(s)+ s0 e invariante rispetto
all’esecuzione di wait e signal (sempre vera
gualungue sia il numero di primitive eseqguite).

« La proprieta puo essere utilizzata per verificare che
un’interazione tra processi, programmata mediante |l
meccanismo semaforico, avvenga correttamente.

Realizzazione del semafori

* Il meccanismo di implementazione del costrutto
semaforo deve consentire:

— eliminazione di ogni forma di attesa attiva dei
processi (v. definizione della wait): sospensione del
processo che non puo proseguire I'esecuzione in
una coda associata al semaforo.

— eliminazione di forme di starvation (attesa
Indefinita di un processo): scelta FIFO del processo
da risvegliare.

Esempio di mutua esclusione

wait(mutex) valore iniziale: mutex=1

' Il processo in esecuzione

=0
mutex\ J viene bloccato e la CPU
J assegnata ad un altro

pProcesso

|

sighal (mutex)

Uno dei processi in

\ 4

Esiste un] attesa viene riattivato;
Processo in » | puo di nuovo
attesa? riacquisire la CPU

no

| &

mutex ++

Realizzazione del semafori
Al semaforo sono associati:

— un valore intero non negativo con valore iniziale
>= (0
— una coda Qs nella quale sono posti | descrittori dei

processi che attendono l'autorizzazione a
procedere.

t ypedef struct{int val ue;

gqueue (s;} senmaphore;

Realizzazione di wait e signal
Wait e signal possono essere realizzate come segue:
void wait(semaphore *s) {
| f (s->val ue==0)
<I| processo viene sospeso ed
Il suo descrittore
lnserito in s->Q>
s->val ue- -;
}
voi d signal (semaphore *s) {

I f (<s->@Q non e vuota>)
<i| descrittore del prino processo
viene rinosso dalla coda ed il suo
stato nodificato in pronto>

s->val ue++;

}

— L’esecuzione della signal non comporta concettualmente
nessuna modifica nello stato del processo che I'ha esequita.

— Scelta del processo da risvegliare tramite politica FIFO

e wait e signal : sezioni critiche =» devono essere
azioni indivisibili (azioni atomiche).

« Analisi e modifica del valore del semaforo ed
eventuale sospensione o riattivazione di un processo
devono avvenire in modo indivisibile.

e Durante un’operazione sul semaforo nessun altro
processo puo accedere al semaforo fino a che
I'operazione e completata o bloccata.

10

Soluzione al problema della mutua
esclusione

semaphor e mut ex;
mut ex. val ue=1;

P1 P2
wal t (&mut ex) ; wal t (&mut ex) ;
<Sezione critica>; <Sezione critica>;
si gnal (&rut ex) ; si gnal (&rut ex) ;

* mutex semaforo (binario) di mutua esclusione (0,1), con
valore iniziale uguale a 1.

=» Qualungue sia la sequenza di esecuzione del
processi, la soluzione e sempre corretta. 11

Dimostrazione

Th: Il numero n dei processi presenti contemporaneamente
nella sezione critica S deve essere 0 0 1.

e Siha:
n=nw(mutex)-ns(mutex)
« Larelazione nw(s) £ ns(s)+ sO diventa in questo caso:
nw(mutex) £ ns(mutex)+ 1
e Dalle due relazioni si ha:

n=nw(mutex)-ns(mutex) £ 1

12

Poiché wait(s) precede sempre signal(s) si ha:

Quindi si ha:

nw(mutex)-ns(mutex)30

OENEl

cvd

13

Dimostrazione

Th: Un processo viene bloccato in ingresso solo se la
sezione critica e occupata da un altro processo.

Un processo e ritardato solo se il valore di mutex e zero.

HP: mutex.value=0

La relazione nw(mutex) £ ns(mutex)+ 1 diventa :
nw(mutex) = ns(mutex)+ 1

Il numero delle operazioni wait eseguite con successo su
mutex eccede il numero delle operazioni signal su mutex
di 1.

Quindi:

un processo si trova entro la sezione critica. |cvd

14

Mutua esclusione: alcuni problemi]

1. E’sempre necessario usare wait e signal per
assicurare la mutua esclusione (overhead)?

2. Come si ottiene la non interrompibilita nel caso di
sistemi multiprocessori?

R memoria comune

bus

CPU1 CPU2

M1 /O M2 /O Mn /O

15

Soluzione al primo problema
Ipotesi: sezioni critiche “sufficientemente brevi”.

a) Sistema monoprocessore:

P1 P2
<disabilita interruzioni>; <disabilita interruzioni>;
<S1>; <S2>:
<riabilita interruzioni>; <riabilita interruzioni>;

16

Soluzione al primo problema
b) Sistema multiprocessore: uso di lock e unlock

void lock(int *Xx)

{ while (!*x);
*x=0;

}

voi d unl ock(int *x)

{ *x=1;

}

[* x=0 risorsa
occupat a;

x=1 risorsa |libera
* [

Int x=1,

P1 P2
lock(X); lock(x);
<S1>: <S2>:

unlock(x); unlock(x);

17

* Problema dell’attesa attiva (busy waiting)

* Nell'ipotesi che I'hardware garantisca la mutua
esclusione solo a livello di lettura o scrittura di una
cella di memoria solo unlock e indivisibile

=> Istruzione di test and set lock (tsl)

— Copia il valore di x in un registro ed inserisce in x il
valore O, in modo indivisibile

— La CPU che esegue tsl tiene occupato il bus di
memoria per impedire ad altre CPU di accedere

alla memoria

18

ock(x):

tsl register,
cnp register,
j ne | ock

ret

X
1

unl ock(x):

nove X, 1
I et

(copia x nel registro e pone x=0)
(x vale 1?)

(se x=0 ricomincia il ciclo)
(ritorna al chiamante;

accesso alla sezione critica)

(inserisce 1 in X)
(ritorna al chiamante)

19

Soluzione al secondo problema

Nel caso generale in cul wait e signal siano eseguite
Su processori diversi si ha:

void wait(..nutex) voi d signal (.. nutex)
{ | ock(X) ; { | ock(X) ;
[*codi ce della [*codi ce della
wait */ si gnal */
unl ock(x) ; unl ock(x) ;
} }
X
mutex

20

Cooperazione tra processi concorrenti

Scambio di messaggi generati da un processo e
consumati da un altro

Scambio di segnali temporali che indicano Il
verificarsi di dati eventi

La cooperazione tra processi prevede che
I'esecuzione di alcuni di essi risulti condizionata
dall'informazione prodotta da altri (vincoli
sull’ordinamento nel tempo delle operazioni del
processi).

21

ESEMPIQO:

* n processi P, P,, P, attivati ad intervalli prefissati di
tempo da P,.

* 'esecuzione di P, non puo iniziare prima che sia giunto il
segnale da P,

 ad ogni segnale inviato da P, deve corrispondere una
attivazione di Pi

n,= numero di richieste di attivazione di P,
n,= numero di segnali di attivazione inviati da P,

n,= numero di volte in cui P, e stato attivato

Deve essere ad ogni istante:
se n,3 N N; =Ny

se n,<ng Ny =n,
22

senmaphore si;

si . val ue=0

processo P;:
mai n()
{ ...
while(...)
{
wal t (&sl);
}
}

/* valore iniziale s,

= 0*/

processo Py :
mai n()

{ ...
while(...)
{

si gnal (&si)

23

Dimostrazione:

La relazione nw(s) £ ns(s)+ s, diventa in questo caso:

>

nw(s;) £ ns(s;)

Il numero di volte che il processo P, e stato attivato e
minore o uguale al numero dei segnali inviati da P,

cvd

24

Comunicazione

produttore consumatore
P1 P2
prepara messaggio preleva messaggio dal
l buffer
~]
inserisce messaggio consuma messaggio

Sequenza corretta: inserimento-prelievo-inserimento-
prelievo....

Sequenze errate:

— Inserimento-inserimento-prelievo....
— Prelievo-prelievo-inserimento

25

Esempio: Produttore Consumatore (buffer di capacita™ n)

® — @

n

1. |l produttore non puo inserire un messaggio nel buffer se questo e

pieno.

2. |l consumatore non puo prelevare un messaggio dal buffer se questo
e vuoto

e Siano:

d = numero dei messaggi depositati
e = numero dei messaggi estratti
n = numero dei messaggi che puo contenere il buffer

e Deve valere la condizione: Of£d-e£n

26

semaphore nsg_di sponi bi | e;

nsg_di sponi bi | e. val ue=0;

/* Processo produttore:*/
mai n()

{
for (;;){
<pr oduzi one nessaggi 0>;
<deposito nessaggi 0>;
si gnal (&rsg_di sponi bile);}

/* Processo consunmatore: */
mai n()

{
for (5;){
wali t (&rsg_di sponi bil e);
<prelievo nmessaggi 0>,
<consuno nessaggi 0>;}

» questa soluzione soddisfa soltanto la condizione 2: il produttore
potrebbe depositare un messaggio nel buffer pieno!

27

e Per sincronizzare correttamente gli accessi al buffer di produttore e

consumatore, introduciamo due semafori:

 Spazio_disp (valore iniziale=n, capienza del buffer)

e msg_disp (valore iniziale=0)

semaphore spazi o _di sp, nsg_di sp;

spazi o_di sp. val ue=n;

nsg_di sp. val ue=0;

/* Processo produttore:*/
mai n()

{
for (5;){
wai t (&spazi o_di sp);
<pr oduzi one nmessaggi 0>;
<deposi to nessaggi 0>;
si gnal (&vsg_di sp);}

/* Processo consunmatore: */
mai n()

{
for (;;){
wai t (&rsg_di sp) ;
<prel i evo nessaggi 0>;
si gnal (&spazi o_di sp);
<consuno nessaggi 0>; }

28

Dimostrazione
Th: la soluzione proposta soddisfa la condizione

O£d-e£n

o Larelazione nw(s) £ ns(s)+ s0O scritta per i due semafori
diventa:

1) nw(spazio_disp) £ ns(spazio_disp) +n
2) nw(msg_disp) £ ns(msg_disp)

e L’ordine con cui vengono eseguite le primitive comporta:

3) ns(msg_disp) £ d £ nw(spazio_disp)
4) ns(spazio_disp) £ e £ nw(msg_disp)

29

Dalle 3),1),4) si ha:
d £ nw(spazio_disp) £ ns(spazio_disp) + n £ e+n [i]

Dalle 4),2),3) si ha:
e £ nw(msg_disp) £ ns(msg_disp) £d [11]
« Combinando i due risultati [i] e [ii] si ottiene:
ef£dE£et+n

da cui:

O£d-e£n cvd

Affinche la soluzione sia corretta, bisogna che produttore e
consumatore non accedano mai contemporaneamente alla
stessa posizione del buffer.

coda —

~— lesta

Inizialmente si ha:

coda= testa

31

Operazioni di inserimento e prelievo:
t ypedef nessaggi o buffer[N ;
buf fer B;
I nt testa=0, coda=0;

nessaggi o M

Inserimento: B[coda] = M
coda = (coda + 1) %\,

Prelievo: M= B[testa];
testa = (testa + 1) W\,

Siano pl e p2 rispettivamente il numero di volte in cui coda e
testa sono stati incrementati (inizialmente pl = p2).

Le operazioni di deposito e prelievo agiscono sulla stessa
porzione di buffer se:

pl= p2modn [5]

32

Dimostrazione

Th: produttore e consumatore non accedono
contemporaneamente alla stessa porzione di buffer

e Siano pl e p2 rispettivamente il numero di volte in cui coda e testa sono
stati incrementati (inizialmente pl = p2).

 Le operazioni di deposito e prelievo agiscono sulla stessa porzione di buffer
se:

pl= p2modn
e Durante I'operazione di deposito si ha:

pl=ns (msg_disp)
ns (msg_disp)=nw(spazio_disp) -1 £ n+ ns(spazio_disp) -1 (dalla (1))

« Durante la operazione di prelievo si ha:

p2=nw (msg_disp)-1

nw (msg_disp)=ns(spazio_disp)+1 £ ns(msg_disp) (dalla (2)) ,,

Si ha:
nw (msg_disp) £ ns(msg_disp) £ n+ nw (msg_disp) -2

da cui:
0 £ns (msg_disp) - nw(msg_disp) £ n-2
e quindi:
O£p;-p,-1£n-2
da cui:

1£p;-p,En-1 [6]

La [6], che vale quando due processi stanno
contemporaneamente lavorando sul buffer, e in
contraddizione con la [5]. Quindi la condizione che produttore
e consumatore non accedano contemporaneamente alla
stessa porzione di buffer e soddisfatta.

cvd

34

Nel caso di piu produttori e piu consumatori:

aggiungiamo | due semafori mutexl e mutex?2

semaphore nutexl, nutex2;

mut ex1. val ue=1;
mut ex2. val ue=1;

Processo produttore:

mai n()

{ for(; ;)

{ <produz. nessaggi 0>;
wait (&spazi o_disp);
wai t (&mt exl);
<i nseri nent o ness. >;

si ghal (&mut ex1)
si gnal (&rsg_di sp);

}
}

Processo consumatore:

mai n()
{ for(; ;)
{ wait (&mrsg_disp);
wai t (&t ex2)
<prelievo ness. >;
si ghal (&mut ex?2)
si gnal (&spazi o_di sp);
<consuno nessaggi 0>;
}
}

35

Esempi di uso del semafori:
gestione di risorse

« R1,R2,...Rn n unita di uno stesso tipo di risorsa (tutte
equivalenti fra loro).

« P1,P2,... Pm m processi che devono operare su una
gualunque risorsa in modo esclusivo tramite le
operazioni A, B, ...

| Soluzione

« Siassegna un semaforo di mutua esclusione M, (v. 1.=1)
ad ogni risorsa R,

36

processo P.:

R.A rappresenta |' esecuzione

wai t (M)/ dell'operazione A su R,

. gnal (M)

Inconvenienti della soluzione:

 Come decide il generico processo su quali risorse operare
(come viene scelto 1)?

» Puo capitare che, una volta scelta R;, se su di essa sta
operando in quel momento un secondo processo P, Il
processo P, si blocchi su wait(M;), pur essendo disponibili
altre risorse R,, (ht]).

37

Il Soluzione: viene introdotta una nuova risorsa G, gestore di
R1, R2, ... Rn. Essa puo essere concepita come una
struttura dati destinata a mantenere lo stato delle risorse
gestite. Sul gestore si opera tramite due procedure:

Richiesta e Rilascio.
unsigned int Richiesta();

void Rilascio(unsigned int Xx);

(dove Il parametro x rappresenta lI'indice della risorsa
assegnata o rilasciata)

:> semaforo RIS con valore iniziale = n

E’ necessario un vettore di variabili booleane Libero[i] per registrare
guale risorsa e in un certo istante libera (Libero[i] = 1) e quale occupata
(Liberoli] = 0).

Strutture dati del gestore:

» le procedure Richiesta e Rilascio dovranno essere
eseguite in mutua esclusione

=» semaforo nut ex di mutua esclusione conv.i. =1
 Un processo che esegue Richiesta verifica la
disponibilita’ di una qualunque risorsa R;.

e Un processo che esegue Rilascio rende nuovamente
disponibile una risorsa

= semaforori s con valore iniziale = n

 E’necessario un vettore di variabili booleane Li berof i |
per registrare quale risorsa e in un certo istante libera

(Li bero[i1] = 1)e quale occupata (Li bero[i] = 0).

39

Il Soluzione - segue

semaphore mut ex, r

| nt Li bero[n];

void inizializza()

| S

{/*inizialilzzazione del gestore:*/

mut ex. val ue= 1;
ris.val ue= n;
for(i = 0; 1<n;

Li bero[1i]

| ++)

:1,

[*true*/

40

Il Soluzione - segue

Int Richiesta ()

{ unsigned int x, i;
wait(&is);
wai t (&rut ex) ;
| =0;
do
| ++:

while (! Libero[i]);
X =1;
Li bero[i] = O;
si gnal (&rut ex) ;
return x;

}

void Rilascio (unsigned int Xx)
{ unsigned int i;

wai t (&rut ex) ;

| =X;

Li bero[i]= 1;

si gnal (&mut ex) ;

signal (&is);

41

Schema del processo:

mai n()

{ unsigned int risorsa,;

ri sorsa=Ri chi esta();
<uso della risorsa>

Ri | ascio(risorsa);

42

Realizzazione di politiche di gestione delle
risorse

Nei problemi di sincronizzazione visti precedentemente si
ha che:

— La decisione se un processo possa proseguire I'esecuzione

dipende dal valore di un solo semaforo (es.,"mutex”, “spazio
disponibile”, “messaggio disponibile”)

— La scelta del processo da riattivare avviene tramite I'algoritmo
Implementato nella signal (FIFO).

In problemi di sincronizzazione piu complessi si ha che:

— La decisione se un processo puo proseguire I'esecuzione dipende
In generale dal verificarsi di una condizione di sincronizzazione

— La scelta del processo da riattivare puo avvenire sulla base di
priorita tra processi

43

Problema del “readers and writers”

-------- CRCRC

risorsa

Condizioni di sincronizzazione:

e | processi lettori possono usare la risorsa
contemporaneamente.

e | processi scrittori hanno accesso esclusivo alla risorsa.

* | processi lettori e scrittori si escludono mutuamente
nell’'uso della risorsa.

44

Soluzione 1

Un processo lettore aspetta solo se la risorsa e gia stata
assegnata ad un processo scrittore: cioe nessun lettore
aspetta se uno scrittore e gia in attesa (possibilita di attesa
Infinita da parte dei processi scrittori).

Soluzione 2

Un processo lettore aspetta se un processo scrittore e in
attesa (possibilita di attesa infinita da parte dei processi
lettor).

45

Soluzione 1:

| nt r eadcount =0;

semaphore nut ex,

W,

mut ex. val ue=1;: w. val ue=1;

READER

mai n()
{ wait(&mutex),;
readcount ++;
I f (readcount ==
wai t (&w) ;
si gnal (&mut ex) ;

<| ettura>

wai t (&rut ex) ;

readcount --;

| f (readcount ==0)
si gnal (&w) ;

si ghal (&mut ex) ;

1)

WRITER

mai n()
{ wait(&w);

<scrittura>

si gnal (&w) :
}

46

Soluzione 2:
I nt readcount,

semaphor e nut exl,

wr it ecount =0:;

mut ex2, nmutex3, w,

r,

mut ex1. val ue=1; nmutex2.val ue=1; nutex3.val ue=1;w val ue=1; r.val ue=1;
MIERDER WRITER
e iy mai n(){
wai t (mut ex3) ; wai t (mut ex2) ;
vai t(r); Witecount ++:

wai t (mut ex1) ;
readcount ++;

signal (r);

<| ettura>

wai t (nut ex1)
readcount --;
I f (readcount

I f (readcount ==1)
wai t (w);
si gnal (nmut ex1) ;

si gnal (nut ex3) ;

== O)
si gnal (w);
si gnal (nut exl);}

i f (witecount==1)
wait(r);

si gnal (nut ex?2) ;

wai t (w) ;

<scrittura>

si gnal (w)

wai t (mut ex2)

writecount--;

i f (witecount==0)
signal (r);

si gnal (nutex2);}

47

