Mutua Esclusione

* |l problema della mutua esclusione nasce quando
piu di un processo alla volta pud aver accesso a
variabili comuni.

» Laregola di mutua esclusione impone che le
operazioni con le quali i processi accedono alle
variabili comuni non si sovrappongano nel tempo.

* Nessun vincolo € imposto sull’ordine con il quale
le operazioni sulle variabili vengono eseguite.

Esempi di mutua esclusione

Esempio 1

» Due processi P1 e P2 hanno accesso ad una
struttura organizzata a pila rispettivamente per
inserire e prelevare dati.

» La struttura dati & rappresentata da un vettore stack i
cui elementi costituiscono i singoli dati e da una
variabile top che indica la posizione dell'ultimo
elemento contenuto nella pila.

« | processi utilizzano le operazioni Inserimento e
Prelievo per depositare e prelevare i dati dalla pila.

A
B
typedef item L‘e_secuzionp cqntemporanea di queste operazioni Qa parte
h o dei processi puo portare ad un uso scorretto della risorsa.
itemstack[N;
int top=-1; Possibile sequenza di esecuzione delle due operazioni:

void Inserinmento(itemy)
{ top++;
st ack[t op] =y;

}

item Prelievo()

{ itemx;
x= stack[top];
top--;
return x;

}

TO: t op++; (P1)
T1: x=stack[top]; (P2)
T2: top--; (P2)
T3: stack[top] =y; (P1)

Viene assegnato a x un valore non definito e I'ultimo valore
valido contenuto nella pila viene cancellato dal nuovo valore
diy.

Analogamente si avrebbe nel caso di esecuzione
contemporanea di una qualunque delle due operazioni da
parte dei due processi.

Esempi di Mutua esclusione
Esempio 2

¢ P1e P2 accedono ad una variabile comune contatore che
devono incrementare ogniqualvolta effettuano una
determinata azione.

« Al completamento dell’esecuzione dei processi contatore
deve contenere un valore pari al numero complessivo delle
azioni effettuate dai due processi.

« In termini di istruzioni assembler l'istruzione
contatore= contatore+1;
e puod essere espressa come:

LD cont at or e;
AD 1,
STO cont atore;

Seal termine di un’azionei processi eseguono concorrentemente
lamodificadi contatore, si puo avere una sequenzadel tipo:

TO: LD contatore (P1)
T1: LD contatore P2
T2 AD 1 P2)
T3: STO contatore (P2)
T4: ADL (PY)
T5: STO contatore (PY

Si hacome risultato cheil valore della variabile contatore viene
incrementato di una sola unita.

= E’ necessario che le operazioni di modifica della variabile
contatore siano effettuate in modo mutuamente esclusivo

Istruzioni indivisibili
Azione atomica: esegue una trasformazione di stato indivisibile.
Puo esistere uno stato intermedio nella realizzazione
dell'azione, ma non e rilevabile all’'esterno.

Ipotesi:

« | valori dei tipi base (es. interi) sono memorizzati in parole di
memoria che vengono lette e scritte in modo atomico.

» | valori sono manipolati caricandoli nei registri, operando sui registri
e memorizzando il risultato in memoria

» Ciascun processo ha il proprio set di registri. Cio si realizza, in
genere, con il context switch.

« Ogni risultato intermedio durante la valutazione di un'espressione
viene valutato e memorizzato in registri o in memoria privata del
processo in esecuzione (es. stack privato)

« Con questo modello di macchina se in un processo
un’espressione e non fa riferimento a variabili
modificate da un altro processo, la valutazione
dell'espressione € atomica anche se risulta composta
da azioni atomiche pit elementari.

* Infatti:

— nessuno dei valori da cui e dipende possono
cambiare durante la valutazione di e;

— nessun altro processo puo vedere valori
temporanei che potrebbero essere creati durante
la valutazione di e.

Sezione Critica

« La sequenza di istruzioni con le quali un processo accede
e modifica un insieme di variabili comuni prende il nome
di sezione critica.

¢ Ad un insieme di variabili comuni possono essere
associate una sola sezione critica (usata da tutti i
processi) o piu sezioni critiche (classe di sezioni critiche).

« Laregola di mutua esclusione stabilisce che:

Sezioni critiche appartenenti alla stessa classe
devono escludersi mutuamente nel tempo.

oppure

Una sola sezione critica di una classe puo essere in
esecuzione ad ogni istante.

Realizzazione della regola di mutua
esclusione

» Tempificazione dell’esecuzione dei singoli processi
da parte del programmatore:

Errori time-dependent

« Inibizione delle interruzioni del processore durante
I'esecuzione della sezione critica:

Soluzione parziale ed inefficiente

= Strumenti di sincronizzazione

Schema Generale

» Ogni processo prima di entrare in una sezione critica
deve chiedere 'autorizzazione eseguendo un serie di
istruzioni che gli garantiscono 'uso eslusivo della
risorsa, se questa ¢ libera, oppure ne impediscano
I'accesso se questa & gia occupata (PROLOGO)

* Al completamento dell'azione il processo deve
eseguire una sequenza di istruzioni per dichiarare
libera la sezione critica (EPILOGO)

MUTUA ESCLUSIONE:
Analisi di alcune soluzioni e definizione dei
requisiti
Soluzione 1: Disabilitazione delle interruzioni durante
le sezioni critiche:

— Prologo: disabilitazione delle interruzioni
— Epilogo: abilitazione delle interruzioni

/* strutturaprocesso: */
mai n()
{
<di sabi | i tazione delle interruzioni>;
<sezione critica A>;

<abilitazione delle interruzioni>;

Problemi:

* La soluzione é parziale in quanto & valida solo per sezioni
critiche che operino sullo stesso processore.

« Elimina ogni possibilita di parallelismo.

« Rende insensibile il sistema ad ogni stimolo esterno per
tutta la durata di qualunque sezione critica

Soluzione 2: (A,B) classe di sezioni critiche, libero
variabile logica, inizializzata al valore true, associata

a tale classe:
int |ibero=1;
/* processo Pl: */ /* processo P2: */
mai n() mai n()
{ ... { ...
while (!libero); while (!libero);
|'i ber 0=0; I'i ber 0=0;
<sezione critica A>; <sezione critica B>;
|'i bero=1; |'i bero=1;

« La soluzione non soddisfa la proprieta di mutua
esclusione nell’esecuzione delle sezioni critiche.

Esempio:

TO : P1 esegue listruzione while e trova libero = 1
T1 : P2 esegue listruzione while e trova libero = 1
T3 : P1 pone libero=0 ed entra nella sezione critica

T4 : P2 pone libero=0 ed entra nella sezione critica

=> Tale sequenza ha come risultato che entrambi i processi
sono contemporaneamente nella sezione critica

Soluzione 3: alla classe di sezioni critiche (A,B..) viene
associata la variabile turno che pud assumere i valori

1 e 2 ed inizializzata a 1.

int turno=1,

/* processo Pl: */
mai n()

{ ...
while (turno!=1));

<sezione critica A>;

turno=2;

/* processo P2: */
mai n()

{ ...
while (turno!=2);

<sezione critica B>;

turno=1;

¢ La soluzione assicura che un solo processo alla volta
puo trovarsi nella sezione critica.

« Essa tuttavia impone un vincolo di alternanza nella
esecuzione delle sezioni critiche.

« Ad esempio, se turno = 2, il processo P1 non pud
entrare nella sua sezione critica, anche se questa
non & occupata da P2.

« Solo quando P2 avra eseguito la sezione critica B,
P1 potra eseguire la propria.

Soluzione 4: Alla classe di sezioni critiche (A,B,..) vengono
associate due variabili logiche liberol e libero2

inizializzate al valore false (0):
int |iberol=0;

int |ibero2=0;

/* processo Pl: */
mai n()

{ ...
|'i berol=1;

while (libero2!=0);
<sezione critica A>;
|'i ber01=0;

/* processo P2: */
mai n()

{ ...
|'i ber02=1;

while (liberol!=0);
<sezione critica B>;
|'i ber 02=0;

» La soluzione assicura che un solo processo alla volta pud

trovarsi in una delle sezioni critiche.

e E’ eliminato I'inconveniente della soluzione 2) in quanto la
variabile libero associata ad un processo mantiene il valore
false per tutto il tempo che il processo rimane all'esterno
della sua sezione critica.

« Possono presentarsi condizioni in cui, a seconda della
velocita relativa dei processi, questi non possono entrare
nella loro sezione critica, pur essendo tali sezioni libere
(deadlock).

To : P1 pone liberol=1;
T1 : P2 pone libero2 = 1;

* P1 e P2 ripetono indefinitamente I'esecuzione di while
senza poter entrare nelle rispettive sezioni critiche.

Soluzione 5: Nella soluzione precedente P1 pone
i berol=1 senza conoscere lo stato di P2; in particolare
P1 non sa se P2 & pronto a porre | i ber 02=1.

/* processo Pl: */
nai n()
[
i berol=1;
while (Iibero2!=0)
{ ||iberol=0;

while (Ilibero2)

i berol=1;

}
<sezione critica A>;
I'i ber 01=0;

/* processo P2: */
nai n()
[
i bero2=1;
while (Iiberol!=0)
{ |ibero2=0;

while (liberol)

| i bero2=1;

}
<sezione critica B>;
I'i ber 02=0;

« |l processo P1 analizza lo stato della variabile libero2; se
essa ha il valore true, cioe se il processo P2 ¢ entrato nel
prologo, P1 assegna il valore false alla variabile liberol
e si mette in attesa che P2 abbia completato la sezione
critica

« La stessa cosa fa il processo P2.

« Se i processi partono allo stesso istante e procedono alla
stessa velocita entrambi ripetono indefinitamente i cicli

dell’istruzione while e nessuno entra nella sezione critica
(deadlock)

Soluzione 6: Algoritmo di Dekker

Garantisce le proprieta di mutua esclusione e di assenza di
deadlock.

« Non elimina 'inconveniente che ad un processo venga
indefinitamente impedito di entrare nella propria sezione
critica pur essendo verificate le condizioni logiche per il suo
accesso.

« Problema di starvation: la sezione critica viene
ripetutamente eseguita da altri processi.

« Puo essere esteso al caso di n processi
int |iberol =0;
int |ibero2 =0;
int turno=1; /*domnio {1,2}*/
« Il valore iniziale di turno e indifferente.

int liberol =0;
int |ibero2 =0;
int turno=1; /*dominio {1,2}*/

/* processo Pl: */ /* processo P2: */

mai n() mai n()
{ ... { ...
i berol=1; | i bero2=1;
while (libero2) while (liberol)
if (turno==2) if (turno==1)
{ |'i ber 01=0; { |'i ber 02=0;
whi | e(turno! =1); whi | e(turno! =2);
i berol=1; |'i ber02=1;
} }
<sezione critica A>; <sezione critica B>
turno=2; turno=1;

| i ber01=0; | i ber 02=0;

Soluzione 7: Algoritmo di Peterson

 Risulta piu semplice di quello di Dekker

» Elimina la possibilita di starvation

 Le variabili utilizzate per la sincronizzazione sono:
int liberol =0;

int libero2 =0;
int turno=1; /*domnio {1,2}*/

int liberol =0;
int |ibero2 =0;
int turno=1; /*dominio {1,2}*/

/* processo Pl: */ /* processo P2: */
mai n() mai n()
... ...
|'i berol=1; |'i bero2=1;
turno=2; turno=1;
whi | e(libero2 & turno==2); whi | e(liberol & turno==1);
<sezione critica A>; <sezione critica B>;
|'i ber 01=0; | i ber 02=0;
} }

Proprieta’ della soluzione al problema della
mutua esclusione

a) Sezioni critiche della stessa classe devono essere
eseguite in modo mutuamente esclusivo.

b

-

Quando un processo si trova all’esterno di una
sezione critica non puo rendere impossibile
I'accesso alla stessa sezione (0 a sezioni della
stessa classe) ad altri processi.

c) Non deve essere possibile il verificarsi di situazioni
in cui i processi impediscono mutuamente la
prosecuzione della loro esecuzione (deadlock)

d) Se sono verificate le condizioni logiche per I'accesso
ad una sezione critica da parte di un processo,
guesto non puo essere indefinitamente ritardato a
causa della esecuzione della stessa sezione (o di
sezioni sella stessa classe) da parte di altri processi
(starvation)

e

—

Devono essere eliminate forme di attesa attiva (busy
form of waiting) bloccando I'esecuzione di un
processo per tutto il tempo in cui non puo avere
accesso alla sezione critica.

A differenza delle altre proprieta I'ultima non riguarda la
correttezza della soluzione ma l'efficienza della
realizzazione.

Soluzioni hardware

Nelle soluzioni precedenti si & supposto che I'hardware
garantisca la mutua esclusione solo a livello di lettura e
scrittura di una singola parola di memoria.

Lindivisibilita € sempre assicurata solo riguardo
all'ispezione o all'assegnamento di un valore ad una
singola variabile comune.

Molte macchine posseggono particolari istruzioni che
consentano di esaminare e modificare il contenuto di una
parola o di scambiare il contenuto di due parole in un ciclo
di memoria.

In questo caso e possibile dare una semplice soluzione al
problema della mutua esclusione.

Lock e Unlock
voi d | ock(int *x)
{ while (!*x);

*x=0;
}
voi d unl ock(int *x)
{ *x=1,
}

x riferisce una variabile logica associata ad una classe
di sezioni critiche inizializzata al valore 1 (true).

(x=0 risorsa occupata, x=1 risorsa libera)

Lock e Unlock

« Soluzione al problema della mutua esclusione:

int x=1;
/* processo Pl: */ /* processo P2: */
mai n() mai n()
... ...
| ock(&x); | ock(&x);
<sezione critica A>; <sezione critica B>;
unl ock(&x) ; unl ock(&x) ;
} }

Si noti che a differenza della | ock, I'operazione unl ock &
indivisibile.

Ipotesi: lock(x) e unlock(x) operazioni indivisibili.

=>L’esecuzione contemporanea di due lock(x)
(ciascuna su un diverso elaboratore) viene
automaticamente sequenzializzata dall’hardware.

| requisiti a),b),c) sono soddisfatti. Il soddisfacimento
del requisito d) non & implicito nella soluzione. Per
superare I'inconveniente della starvation occorre
un’opportuna realizzazione del meccanismo di
arbitraggio per I'accesso in memoria.

Il requisito €) non & soddisfatto, essendo presente
nella lock una forma di attesa attiva

Indivisibilita® delle operazioni lock e unlock
Istruzione test and set (x):

Consente la lettura e la modifica di una parola in
memoria in modo indivisibile, cioe in un solo ciclo di
memoria.
int test-and-set(int *a)
{int R
R=*a;
*a=0;
return R

» Operazione lock(x):

void | ock(int *x)
{ while (!test-and-set(x));
}

Implementazione di lock e unlock

Se il set di istruzioni dell'architettura prevede la test-
and-set (t sl):

I ock(x):
tsl register, x (copia x nel registro e pone x=0)
cnp register, 1 (il contenuto del registro vale 1?)
jne |ock (se x=0 ricomincia il ciclo)
ret (ritorna al chiamante;

accesso alla sezione critica)

unl ock(x):
nove x,1 (inserisce 1 in x)
ret (ritorna al chiamante)

Operazione EXCH A, X:

» Scambia i contenuti del registro A e della parola
contenuta nell'indirizzo X in un ciclo di memoria:
void EXCH (int *a; int *b)
{ int tenp;
temp=*a;
* a:* bY
*b=t enp;
}

voi d lock(int *x)
{ priv=l;
do EXCH (x, &priv)
while (priv==1);
}
(priv & una variabile locale a ciascun processo)

Proprieta della soluzione basata su lock e
unlock

 Siapplica in ambiente multiprocessore.

* Va bene nel caso di sezioni critiche molto brevi
(attesa attiva)

 Per ridurre al minimo questa attesa € opportuno
disabilitare il sistema di interruzioni durante
I'esecuzione della lock e unlock

