
Mutua Esclusione

• Il problema della mutua esclusione nasce quando 
più di un processo alla volta può aver accesso a 
variabili comuni.

• La regola di mutua esclusione impone che le 
operazioni con le quali i processi accedono alle 
variabili comuni non si sovrappongano nel tempo.

• Nessun vincolo è imposto sull’ordine con il quale 
le operazioni sulle variabili vengono eseguite.
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Esempi di mutua esclusione

Esempio 1
• Due processi P1 e P2 hanno accesso ad una 

struttura organizzata a pila rispettivamente per 
inserire e prelevare dati.

• La struttura dati è rappresentata da un vettore stack i 
cui elementi costituiscono i singoli dati e da una 
variabile top che indica la posizione dell’ultimo 
elemento contenuto nella pila.

• I processi utilizzano le operazioni Inserimento e 
Prelievo per depositare e prelevare i dati dalla pila.



typedef ... item;
item stack[N];
int top=-1;

void Inserimento(item y)
{ top++; 

stack[top]=y;
}

item Prelievo()
{ item x;

x= stack[top];
top--; 
return x;

}



• L’esecuzione contemporanea di queste operazioni da parte 
dei processi può portare ad un uso scorretto della risorsa.

• Possibile sequenza di esecuzione delle due operazioni:

T0: top++; (P1)
T1: x=stack[top]; (P2)
T2: top--; (P2)
T3: stack[top]=y;  (P1)

• Viene assegnato a x un valore non definito e l’ultimo valore 
valido contenuto nella pila viene cancellato dal nuovo valore 
di y.

• Analogamente si avrebbe nel caso di esecuzione 
contemporanea di una qualunque delle due operazioni da 
parte dei due processi.



Esempi di Mutua esclusione
Esempio 2

• P1 e P2 accedono ad una variabile comune contatore che 
devono incrementare ogniqualvolta effettuano una 
determinata azione.

• Al completamento dell’esecuzione dei processi contatore
deve contenere un valore pari al numero complessivo delle 
azioni effettuate dai due processi.

• In termini di istruzioni assembler l’istruzione

contatore= contatore+1;

• può essere espressa come:

LD contatore;
AD 1;
STO contatore;



Se al termine di un’azione i processi eseguono concorrentemente
la modifica di contatore, si può avere una sequenza del tipo:

T0:   LD contatore (P1)
T1:   LD contatore (P2)
T2:   AD 1 (P2)
T3:   STO contatore (P2)
T4:   AD1 (P1)
T5:   STO contatore (P1)

Si ha come risultato che il valore della variabile contatore viene 
incrementato di una sola unità.

è E’ necessario che le operazioni di modifica della variabile 
contatore siano effettuate in modo mutuamente esclusivo



Istruzioni indivisibili
Azione atomica: esegue una trasformazione di stato indivisibile. 

Può esistere uno stato intermedio nella realizzazione 
dell’azione, ma non è rilevabile all’esterno.

Ipotesi:

• I valori dei tipi base (es. interi) sono memorizzati in parole di 
memoria che vengono lette e scritte in modo atomico.

• I valori sono manipolati caricandoli nei registri, operando sui registri
e memorizzando il risultato in memoria

• Ciascun processo ha il proprio set di registri. Ciò si realizza, in 
genere, con il context switch.

• Ogni risultato intermedio durante la valutazione di un’espressione 
viene valutato e memorizzato in registri o in memoria privata del 
processo in esecuzione (es. stack privato)



• Con questo modello di macchina se in un processo 
un’espressione e non fa riferimento a variabili 
modificate da un altro processo, la valutazione 
dell’espressione è atomica anche se risulta composta 
da azioni atomiche più elementari.

• Infatti:

– nessuno dei valori da cui e dipende possono 
cambiare durante la valutazione di e;

– nessun altro processo può vedere valori 
temporanei che potrebbero essere creati durante 
la valutazione di e.



Sezione Critica

• La sequenza di istruzioni con le quali un processo accede 
e modifica un insieme di variabili comuni prende il nome 
di sezione critica.

• Ad un insieme di variabili comuni possono essere 
associate una sola sezione critica (usata da tutti i 
processi) o più sezioni critiche (classe di sezioni critiche).

• La regola di mutua esclusione stabilisce che:

Sezioni critiche appartenenti alla stessa classe 
devono escludersi mutuamente nel tempo.

oppure

Una sola sezione critica di una classe può essere in 
esecuzione ad ogni istante.



Realizzazione della regola di mutua 
esclusione

• Tempificazione dell’esecuzione dei singoli processi 
da parte del programmatore:

Errori time-dependent

• Inibizione delle interruzioni del processore durante 
l’esecuzione della sezione critica:

Soluzione parziale ed inefficiente

è Strumenti di sincronizzazione



Schema Generale

• Ogni processo prima di entrare in una sezione critica 
deve chiedere l’autorizzazione eseguendo un serie di 
istruzioni che gli garantiscono l’uso eslusivo della 
risorsa, se questa è libera, oppure ne impediscano
l’accesso se questa è già occupata (PROLOGO) .

• Al completamento dell’azione  il processo deve 
eseguire una sequenza di istruzioni per dichiarare 
libera la sezione critica (EPILOGO)



MUTUA ESCLUSIONE:
Analisi di alcune soluzioni e definizione dei 

requisiti
Soluzione 1: Disabilitazione delle interruzioni durante 

le sezioni critiche:

– Prologo:  disabilitazione delle interruzioni
– Epilogo:  abilitazione delle interruzioni

/* struttura processo: */
main()
{ ...

<disabilitazione delle interruzioni>;
<sezione critica A>;
<abilitazione delle interruzioni>;
...

}



Problemi:

• La soluzione è parziale in quanto è valida solo per sezioni 
critiche che operino sullo stesso processore.

• Elimina ogni possibilità di parallelismo.

• Rende insensibile il sistema ad ogni stimolo esterno per 
tutta la durata di qualunque sezione critica



Soluzione 2: (A,B) classe di sezioni critiche, libero
variabile logica, inizializzata al valore true, associata 
a tale classe:

int libero=1;

/* processo P1: */
main()
{ ...

while (!libero);
libero=0;
<sezione critica A>;
libero=1;

...
}

/* processo P2: */
main()
{ ...

while (!libero);
libero=0;
<sezione critica B>;
libero=1;

...
}



• La soluzione non soddisfa la proprietà di mutua 
esclusione nell’esecuzione delle sezioni critiche.

Esempio:

T0 :  P1 esegue l’istruzione while e trova libero = 1

T1 :  P2 esegue l’istruzione while e trova libero = 1

T3 :  P1 pone libero=0 ed entra nella sezione critica

T4  :  P2 pone libero=0 ed entra nella sezione critica

èTale sequenza ha come risultato che entrambi i processi  
sono contemporaneamente nella sezione critica



Soluzione 3: alla classe di sezioni critiche (A,B..) viene 
associata la variabile turno che può assumere i valori 
1 e 2 ed inizializzata a 1.

int turno=1;

/* processo P1: */
main()
{ ...

while (turno!=1));

<sezione critica A>;

turno=2;

...
}

/* processo P2: */
main()
{ ...

while (turno!=2);

<sezione critica B>;

turno=1;

...
}



• La soluzione assicura che un solo processo alla volta 
può trovarsi nella sezione critica.

• Essa tuttavia impone un vincolo di alternanza nella 
esecuzione delle sezioni critiche.

• Ad esempio, se turno = 2, il processo P1 non può 
entrare nella sua sezione critica, anche se questa 
non è occupata da P2.

• Solo quando P2 avrà eseguito la sezione critica B, 
P1 potrà eseguire la propria.



Soluzione 4: Alla classe di sezioni critiche (A,B,..) vengono 
associate due variabili logiche libero1 e libero2
inizializzate al valore false (0):

int libero1=0;

int libero2=0;

/* processo P1: */
main()
{ ...

libero1=1;
while (libero2!=0);
<sezione critica A>;
libero1=0;

...
}

/* processo P2: */
main()
{ ...

libero2=1;
while (libero1!=0);
<sezione critica B>;
libero2=0;

...
}



• La soluzione assicura che un solo processo alla volta può 
trovarsi in una delle sezioni critiche.

• E’ eliminato l’inconveniente della soluzione 2) in quanto la 
variabile libero associata ad un processo mantiene il valore 
false per tutto il tempo che il processo rimane all’esterno 
della sua sezione critica.

• Possono presentarsi condizioni in cui, a seconda della 
velocità relativa dei processi, questi non possono entrare
nella loro sezione critica, pur essendo tali sezioni libere 
(deadlock).

To : P1 pone libero1= 1;
T1  : P2 pone libero2 = 1;

• P1 e P2 ripetono indefinitamente l’esecuzione di while
senza poter entrare nelle rispettive sezioni critiche.



Soluzione 5: Nella soluzione precedente P1 pone 
libero1=1 senza conoscere lo stato di P2; in particolare 
P1 non sa se P2 è pronto a porre libero2=1.

/* processo P1: */
main()
{ ...

libero1=1;
while (libero2!=0)
{  libero1=0;

while (libero2)
libero1=1;

}
<sezione critica A>;
libero1=0;
...

}

/* processo P2: */
main()
{ ...

libero2=1;
while (libero1!=0)
{  libero2=0;

while (libero1)
libero2=1;

}
<sezione critica B>;
libero2=0;
...

}



• Il processo P1 analizza lo stato della variabile  libero2; se 
essa ha il valore true, cioè se il processo P2 è entrato nel 
prologo, P1 assegna il valore false alla variabile  libero1
e si mette in attesa che P2 abbia completato la sezione 
critica

• La stessa cosa fa il processo P2.

• Se i processi partono allo stesso istante e procedono alla 
stessa velocità entrambi ripetono indefinitamente i cicli 
dell’istruzione while e nessuno entra nella sezione critica 
(deadlock)



Soluzione 6: Algoritmo di Dekker

Garantisce le proprietà di mutua esclusione e di assenza di 
deadlock.

• Non elimina l’inconveniente che ad un processo venga 
indefinitamente impedito di entrare nella propria sezione 
critica pur essendo verificate le condizioni logiche per il suo 
accesso.

• Problema di starvation: la sezione critica viene 
ripetutamente eseguita da altri processi.

• Può essere esteso al caso di n processi

int libero1 =0;
int libero2 =0;
int turno=1; /*dominio {1,2}*/

• Il valore iniziale di turno è indifferente.



/* processo P1: */
main()
{ ...

libero1=1;
while (libero2)

if (turno==2) 
{  libero1=0;

while(turno!=1);
libero1=1;

}
<sezione critica A>;
turno=2;
libero1=0;
...

}

/* processo P2: */
main()
{ ...

libero2=1;
while (libero1)

if (turno==1) 
{  libero2=0;

while(turno!=2);
libero2=1;

}
<sezione critica B>;
turno=1;
libero2=0;
...

}

int libero1 =0;
int libero2 =0;
int turno=1; /*dominio {1,2}*/



Soluzione 7: Algoritmo di Peterson

• Risulta più semplice di quello di Dekker

• Elimina la possibilità di starvation

• Le variabili utilizzate per la sincronizzazione sono:

int libero1 =0;
int libero2 =0;
int turno=1; /*dominio {1,2}*/



/* processo P1: */
main()
{ ...
libero1=1;
turno=2;
while(libero2 && turno==2);
<sezione critica A>;
libero1=0;

...
}

/* processo P2: */
main()
{ ...
libero2=1;
turno=1;
while(libero1 && turno==1);
<sezione critica B>;
libero2=0;

...
}

int libero1 =0;
int libero2 =0;
int turno=1; /*dominio {1,2}*/



Proprieta` della soluzione al problema della 
mutua esclusione

a) Sezioni critiche della stessa classe devono essere 
eseguite in modo mutuamente esclusivo.

b) Quando un processo si trova all’esterno di una 
sezione critica non può rendere impossibile
l’accesso alla stessa sezione (o a sezioni della 
stessa classe) ad altri processi.

c) Non deve essere possibile il verificarsi di situazioni 
in cui i processi impediscono mutuamente la 
prosecuzione della loro esecuzione (deadlock)



d) Se sono verificate le condizioni logiche per l’accesso 
ad una sezione critica da parte di un processo, 
questo non può essere indefinitamente ritardato a 
causa della esecuzione della stessa sezione ( o di 
sezioni sella stessa classe) da parte di altri processi 
(starvation)

e) Devono essere eliminate forme di attesa attiva (busy
form of waiting) bloccando l’esecuzione di un 
processo per tutto il tempo in cui non può avere
accesso alla sezione critica.

A differenza delle altre proprietà l’ultima non riguarda la 
correttezza della soluzione ma l’efficienza della 
realizzazione.



Soluzioni hardware
• Nelle soluzioni precedenti si è supposto che l’hardware 

garantisca la mutua esclusione solo a livello di lettura e 
scrittura di una singola parola di memoria.

• L’indivisibilità è sempre assicurata solo riguardo 
all’ispezione o all'assegnamento di un valore ad una 
singola variabile comune.

• Molte macchine posseggono particolari istruzioni che 
consentano di esaminare e modificare il contenuto di una 
parola o di scambiare il contenuto di due parole in un ciclo 
di memoria.

• In questo caso è possibile dare una semplice soluzione al 
problema della mutua esclusione.



Lock e Unlock

void lock(int *x) 

{ while (!*x);

*x=0;

}

void unlock(int *x)

{ *x=1;

}

x riferisce una variabile logica associata ad una classe 
di sezioni critiche inizializzata al valore 1 (true).

(x=0 risorsa occupata, x=1 risorsa libera)



Lock e Unlock

• Soluzione al problema della mutua esclusione:

int x=1;

/* processo P1: */
main()
{ ...
lock(&x);
<sezione critica A>;
unlock(&x);

...
}

/* processo P2: */
main()
{ ...
lock(&x);
<sezione critica B>;
unlock(&x);

...
}

Si noti che a differenza della lock, l’operazione unlock è 
indivisibile.



Ipotesi: lock(x) e unlock(x) operazioni indivisibili.

èL’esecuzione contemporanea di due lock(x) 
(ciascuna su un diverso elaboratore) viene 
automaticamente sequenzializzata dall’hardware.

• I requisiti a),b),c) sono soddisfatti. Il soddisfacimento 
del requisito d) non è implicito nella soluzione. Per 
superare l’inconveniente della starvation occorre 
un’opportuna realizzazione del meccanismo di 
arbitraggio per l’accesso in memoria.

• Il requisito e) non è soddisfatto, essendo presente 
nella lock una forma di attesa attiva



Indivisibilita` delle operazioni lock e unlock

Istruzione test and set (x):

Consente la lettura e la modifica di una parola in 
memoria in modo indivisibile, cioè in un solo ciclo di 
memoria.

int test-and-set(int *a)
{ int R;

R=*a;
*a=0;

return R;
}

• Operazione lock(x):

void lock(int *x) 
{ while (!test-and-set(x));
}



Implementazione di lock e unlock

Se il set di istruzioni dell'architettura prevede la test-
and-set (tsl):

lock(x):
tsl register, x (copia x nel registro e pone x=0)
cmp register, 1 (il contenuto del registro vale 1?)
jne lock ( se x=0 ricomincia il ciclo)
ret (ritorna al chiamante;

accesso alla sezione critica)

unlock(x):
move x,1 (inserisce 1 in x)
ret (ritorna al chiamante)



Operazione  EXCH A,X:

• Scambia i contenuti del registro A e della parola 
contenuta nell’indirizzo X in un ciclo di memoria:

void EXCH (int *a; int *b)
{ int temp;
temp=*a;
*a=*b;
*b=temp;

}

void lock(int *x)
{ priv=1;

do EXCH (x,&priv)
while (priv==1);

}

(priv è una variabile locale a ciascun processo)



Proprietà della soluzione basata su lock e 
unlock

• Si applica in ambiente multiprocessore.

• Va bene nel caso di sezioni critiche molto brevi
(attesa attiva)

• Per ridurre al minimo questa attesa è opportuno 
disabilitare il sistema di interruzioni durante 
l’esecuzione della lock e unlock


