Introduzione ai thread

Processi leggeri

* Immagine di un processo (codice, variabili locali e
globali, stack, descrittore)

* Risorse possedute: (file aperti, processi figli,
dispositivi di 1/0..),

* L'immagine di un processo e le risorse da esso
possedute costituiscono il suo spazio di
indirizzamento.

» Lalocazione dello spazio di indirizzamento dipende
dalla tecnica di gestione della memoria adottata.
Potra essere contenuto in tutto o solo in parte nella
memoria principale (registri base ed indice,
impaginazione, segmentazione).

Processi (pesanti) e thread

* Proprieta dei processi: spazi di indirizzamento

distinti, cioe® non condividono memoria (es.Unix)
Complessita delle operazioni di cambio di
contesto tra due processi: comportano il salvataggio
ed il ripristino dello spazio di indirizzamento
(overhead). Analogamente per le operazioni di
creazione e terminazione di un processo.

Utilizzo del modello a scambio di messaggi
(es.Unix)

Processi & thread
« |l concetto di processo e basato su due aspetti
indipendenti:

— Possesso delle risorse contenute nel suo spazio di
indirizzamento.

— Esecuzione. Flusso di esecuzione, all'interno di uno o piu
programmi, che condivide la CPU con altri flussi, possiede
uno stato e viene messo in esecuzione sulla base della
politica di scheduling.

* | due aspetti sono indipendenti e possono essere gestiti
separatamente dal S.O.:
— processo leggero (thread): elemento cui viene assegnata
la CPU
— processo pesante (processo o task): elemento che
possiede le risorse

=



* Un thread rappresenta un flusso di esecuzione
all'interno di un processo pesante.

* Multithreading: molteplicita di flussi di esecuzione
all'interno di un processo pesante.

Tutti i thread definiti in un processo condividono le
risorse del processo, risiedono nello stesso spazio
di indirizzamento ed hanno accesso a dati
comuni.

Ogni thread ha:

— uno stato di esecuzione (runnig, ready, blocked)

— un contesto che é salvato quando il thread non &
in esecuzione

— uno stack di esecuzione

— uno spazio di memoria privato per le variabili
locali

— accesso alla memoria e alle risorse del task
condiviso con gli altri thread.

Vantaggi
— maggiore efficienza: le operazioni di context
switch, creazione etc., sono pit economiche
rispetto ai processi.
— maggiori possibilita di utilizzo di architetture
multiprocessore.

%

un thread per piu thread per
processo processo
Processi multipli: Processi multipli:
un thread per piu thread per
processo processo

Soluzioni adottate

* MS-DOS: un solo processo utente ed un solo thread.

» UNIX: pit processi utente ciascuno con un solo
thread.

* Supporto run time di Java: un solo processo, piu
thread.

e Linux, Windows NT, Solaris: piu processi utente
ciascuno con piu thread.

N



S MS-DOS

one process
one thread

8¢

&

JAVA

runtime engine

one process

‘multiple threads

NT, Solaris, MACH, 0S/2

8¢

88

‘multiple processes
one thread per process

e S SSe ISP TSSPVSP S SP

‘multiple processes
multiple threads per process

« | thread possono eseguire parti diverse di una stessa
applicazione.

Esempio: web browser
— thread che scrive il testo sul video
— thread che ricerca dati sulla rete
Esempio: word processing
— thread che mostra i grafici sul video
— thread che legge i comandi inviati dall’'utente
— thread che evidenzia gli errori di scrittura
« | thread possono eseguire le stesse funzioni (o funzioni
simili) di un’applicazione.
Esempio: web server
— thread che accetta le richieste e crea altri thread per

servirle.
— thread che servono la richiesta (possono essere diversi a
seconda del tipo di richiesta). 10

Realizzazione dei thread

A livello utente (es. Java)

* Hp: sistema operativo multitasking

« Libreria di funzioni (thread package) che opera a
livello utente e fornisce il supporto per la creazione,
terminazione, sincronizzazione dei thread e per la
scelta di quale thread mettere in esecuzione

(scheduling).

Il sistema operativo ignora la presenza dei thread
continuando a gestire solo i processi.
Quando un processo € in esecuzione parte con un

solo thread che puo creare nuovi thread chiamando
una apposita funzione di libreria.

« Gerarchia di thread o thread tutti allo stesso livello.

« La soluzione ¢ efficiente (tempo di switch tra t read,
flessibile (possibilita di modificare I'algoritmo di
scheduling), scalabile (modifica semplice del numero di
thread).

« Se un thread si blocca in seguito ad una chiamata ad una
funzione del package (es. wait), va in esecuzione un altro
thread dello stesso processo.

¢ | thread possono chiamare delle system call (es. I/O):
intervento del sistema operativo che blocca il processo e
conseguentemente I'esecuzione di tutti i suoi thread.

¢ 11 S.O. interviene anche nel caso allo scadere del quanto
di tempo assegnato ad un processo (sistemi time sharing).

« Non e possibile sfruttare il parallelismo proprio di
architetture multiprocessore: un processo (con tutti i suoi
thread ) & assegnato ad uno dei processori.

[¢M)



Realizzazione di thread

A livello dinucleo (es. NT, Linux):

Il S.O. si fa carico di tutte le funzioni per la gestione
dei thread. Mantiene tutti i descrittori dei thread (oltre
a quelli dei processi).

A ciascuna funzione corrisponde una system call.
Quando un thread si blocca il S.O. pud mettere in
esecuzione un altro thread dello stesso processo.
Soluzione meno efficiente della precedente.
Possibilita di eseguire thread diversi appartenenti allo
stesso processo su unita di elaborazione differenti
(architettura multiprocessore).

Realizzazione di thread

Soluzione mista (es. Solaris):

» Creazione di thread, politiche di assegnazione della
CPU e sincronizzazione a livello utente.

* | thread a livello utente sono mappati in un numero
(minore o uguale) di thread a livello nucleo.

Vantaggi:

« Thread della stessa applicazione possono essere
eseguiti in parallelo su processori diversi.

* Una chiamata di sistema bloccante non blocca
necessariamente lo stesso processo

[



