
1

Introduzione ai thread

2

Processi leggeri

• Immagine di un processo (codice, variabili locali e
globali, stack, descrittore)

• Risorse possedute: (file aperti, processi figli,
dispositivi di I/O..),

• L’immagine di un processo e le risorse da esso
possedute costituiscono il suo spazio di
indirizzamento.

• La locazione dello spazio di indirizzamento dipende
dalla tecnica di gestione della memoria adottata.
Potrà essere contenuto in tutto o solo in parte nella
memoria principale (registri base ed indice,
impaginazione, segmentazione).

3

Processi (pesanti) e thread

• Proprietà dei processi: spazi di indirizzamento
distinti, cioe` non condividono memoria (es.Unix)

• Complessità delle operazioni di cambio di
contesto tra due processi: comportano il salvataggio
ed il ripristino dello spazio di indirizzamento
(overhead). Analogamente per le operazioni di
creazione e terminazione di un processo.

• Utilizzo del modello a scambio di messaggi
(es.Unix)

4

Processi & thread
• Il concetto di processo e` basato su due aspetti

indipendenti:
– Possesso delle risorse contenute nel suo spazio di

indirizzamento.
– Esecuzione. Flusso di esecuzione, all’interno di uno o più

programmi, che condivide la CPU con altri flussi, possiede
uno stato e viene messo in esecuzione sulla base della
politica di scheduling.

• I due aspetti sono indipendenti e possono essere gestiti
separatamente dal S.O.:
– processo leggero (thread): elemento cui viene assegnata

la CPU
– processo pesante (processo o task): elemento che

possiede le risorse

5

• Un thread rappresenta un flusso di esecuzione
all’interno di un processo pesante.

• Multithreading: molteplicità di flussi di esecuzione
all’interno di un processo pesante.

• Tutti i thread definiti in un processo condividono le
risorse del processo, risiedono nello stesso spazio
di indirizzamento ed hanno accesso a dati
comuni.

6

Ogni thread ha:
– uno stato di esecuzione (runnig, ready, blocked)
– un contesto che è salvato quando il thread non è

in esecuzione
– uno stack di esecuzione
– uno spazio di memoria privato per le variabili

locali
– accesso alla memoria e alle risorse del task

condiviso con gli altri thread.

Vantaggi
– maggiore efficienza: le operazioni di context

switch, creazione etc., sono più economiche
rispetto ai processi.

– maggiori possibilità di utilizzo di architetture
multiprocessore.

7

un thread per
processo

più thread per
processo

Processi multipli:
un thread per

processo

Processi multipli:
più thread per

processo

8

Soluzioni adottate

• MS-DOS: un solo processo utente ed un solo thread.

• UNIX: più processi utente ciascuno con un solo
thread.

• Supporto run time di Java: un solo processo, più
thread.

• Linux, Windows NT, Solaris: più processi utente
ciascuno con più thread.

9

10

• I thread possono eseguire parti diverse di una stessa
applicazione.

Esempio: web browser
– thread che scrive il testo sul video
– thread che ricerca dati sulla rete

Esempio: word processing
– thread che mostra i grafici sul video
– thread che legge i comandi inviati dall’utente
– thread che evidenzia gli errori di scrittura

• I thread possono eseguire le stesse funzioni (o funzioni
simili) di un’applicazione.

Esempio: web server
– thread che accetta le richieste e crea altri thread per

servirle.
– thread che servono la richiesta (possono essere diversi a

seconda del tipo di richiesta).

11

Realizzazione dei thread
A livello utente (es. Java)
• Hp: sistema operativo multitasking
• Libreria di funzioni (thread package) che opera a

livello utente e fornisce il supporto per la creazione,
terminazione, sincronizzazione dei thread e per la
scelta di quale thread mettere in esecuzione
(scheduling).

• Il sistema operativo ignora la presenza dei thread
continuando a gestire solo i processi.

• Quando un processo è in esecuzione parte con un
solo thread che può creare nuovi thread chiamando
una apposita funzione di libreria.

12

• Gerarchia di thread o thread tutti allo stesso livello.
• La soluzione è efficiente (tempo di switch tra thread),

flessibile (possibilità di modificare l’algoritmo di
scheduling), scalabile (modifica semplice del numero di
thread).

• Se un thread si blocca in seguito ad una chiamata ad una
funzione del package (es. wait), va in esecuzione un altro
thread dello stesso processo.

• I thread possono chiamare delle system call (es. I/O):
intervento del sistema operativo che blocca il processo e
conseguentemente l’esecuzione di tutti i suoi thread.

• Il S.O. interviene anche nel caso allo scadere del quanto
di tempo assegnato ad un processo (sistemi time sharing).

• Non è possibile sfruttare il parallelismo proprio di
architetture multiprocessore: un processo (con tutti i suoi
thread) è assegnato ad uno dei processori.

13

Realizzazione di thread

A livello di nucleo (es. NT, Linux):
• Il S.O. si fa carico di tutte le funzioni per la gestione

dei thread. Mantiene tutti i descrittori dei thread (oltre
a quelli dei processi).

• A ciascuna funzione corrisponde una system call.
• Quando un thread si blocca il S.O. può mettere in

esecuzione un altro thread dello stesso processo.
• Soluzione meno efficiente della precedente.
• Possibilità di eseguire thread diversi appartenenti allo

stesso processo su unità di elaborazione differenti
(architettura multiprocessore).

14

Realizzazione di thread

Soluzione mista (es. Solaris):
• Creazione di thread, politiche di assegnazione della

CPU e sincronizzazione a livello utente.
• I thread a livello utente sono mappati in un numero

(minore o uguale) di thread a livello nucleo.

Vantaggi:
• Thread della stessa applicazione possono essere

eseguiti in parallelo su processori diversi.
• Una chiamata di sistema bloccante non blocca

necessariamente lo stesso processo

