
1

1

Processi non sequenziali e tipi di
interazione

2

Algoritmo, programma, processo
• Algoritmo: Procedimento logico che deve essere eseguito per

risolvere un determinato problema.
• Programma: Descrizione di un algoritmo mediante un

opportuno formalismo (linguaggio di programmazione), che
rende possibile l’esecuzione dell’algoritmo da parte di un
particolare elaboratore.

• Processo: insieme ordinato degli eventi cui dà luogo un
elaboratore quando opera sotto il controllo di un programma.

Elaboratore: entità astratta realizzata in hardware e parzialmente in software,
in grado di eseguire programmi (descritti in un dato linguaggio).

Evento: Esecuzione di un’operazione tra quelle appartenenti all’insieme che
l’elaboratore sa riconoscere ed eseguire; ogni evento determina una
transizione di stato dell'elaboratore

è Un programma descrive non un processo, ma un insieme di processi,
ognuno dei quali è relativo all’esecuzione del programma da parte
dell’elaboratore per un determinato insieme di dati in ingresso.

3

Processo sequenziale

Sequenza di stati attraverso i quali passa
l’elaboratore durante l’esecuzione di un programma
(storia di un processo o traccia dell’esecuzione del
programma).

Esempio: valutare il massimo comune divisore tra due
numeri naturali x e y:
a) Controllare se i due numeri x e y sono uguali, nel

qual caso il loro M.C.D. coincide con il loro valore
b) Se sono diversi, valutare la loro differenza
c) Tornare ad a) prendendo in considerazione il più

piccolo dei due e la loro differenza

4

Esempio: M.C.D. di x e y (numeri naturali)

int MCD(int x, int y)

{ a = x; b = y;

while (a != b)

if (a > b) a = a – b

else b = b-a;

return a;

}

66624--b

612181818-a

242424242424y

181818181818x

stato
iniziale

stato
finale

2

5

• Più processi possono essere associati allo stesso
programma (istanze).

• Ciascuno rappresenta l’esecuzione dello stesso
codice con dati di ingresso diversi.

Esempi:
• Il compilatore di un linguaggio può dare luogo a più

processi, ciascuno relativo alla traduzione di un
particolare programma.

• Il software di controllo può dare luogo a più processi
che controllano dispositivi uguali o diversi

6

Grafo di precedenza

• Un processo può essere rappresentato
tramite un grafo orientato detto grafo di
precedenza del processo

• I nodi del grafo rappresentano i singoli eventi
del processo, mentre gli archi identificano le
precedenze temporali tra tali eventi

• Un evento corrisponde all’esecuzione di
un’operazione tra quelle appartenenti
all’insieme che l’elaboratore sa riconoscere
ed eseguire

• Essendo il processo strettamente
sequenziale, il grafo di precedenza è ad
Ordinamento Totale (ogni nodo ha
esattamente un predecessore ed un
successore)

a = 18

b = 24

b = 6

a = 12

a = 6

7

Processi non sequenziali
• L’ordinamento totale di un grafo di precedenza deriva

dalla natura sequenziale del processo (a sua volta
imposta dalla natura sequenziale dell’elaboratore).

• In taluni casi l’ordinamento totale è implicito nel
problema da risolvere; spesso è un’imposizione che
deriva dalla natura sequenziale dell’elaboratore.

• Esistono molti esempi di applicazioni che potrebbero
più naturalmente essere rappresentate da processi
non sequenziali.

Processo non sequenziale: l'insieme degli eventi che
lo descrive e` ordinato secondo una relazione
d'ordine parziale. 8

Esempio: valutazione dell’espressione

(3 * 4) + (2 + 3) * (6 - 2)

Grafo di precedenza ad
ordinamento totale:

3 * 4 = 12

2 + 3 = 5

6 - 2 = 4

5 * 4 = 20

12 + 30 = 32

Grafo di precedenza ad
ordinamento parziale:

3 * 4 = 12 2 + 3 = 5 6 - 2 = 4

5 * 4 = 20

12 + 30 = 32

INIZIO

FINE

3

9

Esempio – segue:

• La logica del problema non impone un
ordinamento totale fra le operazioni da eseguire; ad
esempio è indifferente che venga eseguito (2 + 3)
prima di eseguire (6 - 2) o viceversa.

• Entrambe le operazioni precedenti devono invece
essere eseguite prima del prodotto dei loro risultati.

• Certi eventi del processo sono tra loro scorrelati da
qualunque relazione di precedenza temporale è il
risultato dell’elaborazione è indipendente dall’ordine
con cui gli eventi avvengono.

• Molti settori applicativi possono essere rappresentati
da processi non sequenziali: sistemi in tempo reale,
sistemi operativi, sistemi di simulazione, etc…

10

Esempio: Elaborazione di dati su un file sequenziale

elaborazioneN rec N rec

file 1 file 2

buffer B;

int i;

for(i=1; i<=N; i++)

{ lettura(buffer); /* L */

elaborazione(buffer); /* E */

scrittura(buffer); /* S */

}

Grafo di precedenza ad
ordinamento totale:

inizio

L1

E1

S1

Ln

En

Sn

fine

11

Esempio – segue:

• La logica del problema impone due soli vincoli
1. Le operazioni di lettura (o elaborazione o scrittura)

dovranno essere eseguite in sequenza sugli N record.
2. Le operazioni di lettura, elaborazione e scrittura di un

record dovranno essere eseguite in quest’ordine.

• Non esiste alcuna relazione logica di precedenza tra
la lettura dell’i-esimo e la scrittura dell’(i-1)-esimo.

• Il grafo degli eventi più naturale risulta essere quello
ad ordinamento parziale.

12

Esempio – segue: grafo ad ordinamento parziale

inizio

L1

L2

L3

E1

E2

E3

fine

S1

S2

S3

Ln En Sn

• Vincolo di sincronizzazione:
ordinamento di eventi

• Un arco che collega due nodi
rappresenta il vincolo di
precedenza tra i corrispondenti
eventi

4

13

• L’esecuzione di un processo non sequenziale richiede:
– elaboratore non sequenziale
– linguaggio di programmazione non sequenziale

• Elaboratore non sequenziale (in grado di eseguire più
operazioni contemporaneamente):
– architettura parallela
– sistemi multielaboratori (a)
– sistemi monoelaboratori (b)

P1

P2

t t

P1 P1

P2 P2

(a) (b)

Linguaggi non sequenziali (o concorrenti). Caratteristica
comune: consentire la descrizione di un insieme di attività
concorrenti tramite moduli sequenziali che possono essere
eseguiti in parallelo (processi sequenziali) 14

Scomposizione di un processo non
sequenziale

• Scomposizione di un processo non sequenziale in un
insieme di processi sequenziali, eseguiti
“contemporaneamente”, ma analizzati e programmati
separatamente.

• Consente di dominare la complessità di un algoritmo non
sequenziale

• Le attività rappresentate dai processi possono essere:

• completamente indipendenti

• interagenti

15

e11

e12

e13

e21

e22

e23

e31

e32

e33

P1 P2 P3

• L’evoluzione di un processo non influenza quella dell’altro

Processi indipendenti

16

• Nel caso di grafi connessi ad ordinamento parziale, la
scomposizione del processo globale in processi sequenziali
consiste nell’individuare sul grafo un insieme P1….Pn di
sequenze di nodi (insiemi di nodi totalmente ordinati).

L1

L2

L3

E1

E2

E3

S1

S2

S3

P1

P2

P3

• Presenza di vincoli di precedenza tra le operazioni dei
processi (espresse dagli archi) o vincoli di sincronizzazione

• In questo caso i tre processi non sono fra loro indipendenti
(processi interagenti)

5

17

Processi interagenti

• Le interazioni tra i processi di lettura, elaborazione e
scrittura sono relative ad uno scambio di
informazioni. I dati su cui opera il processo di
elaborazione sono forniti dal processo di lettura.

• Vincolo di sincronizzazione: vincolo imposto da
ogni arco del grafo di precedenza che collega nodi di
processi diversi.

• I due processi, quando arrivano ad un punto di
interazione corrispondente ad uno scambio di
informazioni, devono sincronizzarsi, cioè ordinare i
loro eventi come specificato dal grafo di precedenza.

18

Tipi di decomposizione

• La decomposizione di un grafo di precedenza ad ordinamento
parziale in un insieme di sequenze di nodi (processi) può
essere fatta in vari modi.

ESEMPIO: Lettura, elaborazione e scrittura dell’i-esimo record
(i=1,2,…,n)

• I vincoli di sincronizzazione sono gli archi verticali del grafo.
• La scelta più idonea del tipo di decomposizione in processi

sequenziali di un’elaborazione non sequenziale è quella per
la quale le interazioni tra processi sono poco frequenti così
da agevolare l’analisi separata della singole attività.

Li
Ei

Si

19

Interazione tra processi

COOPERAZIONE: comprende tutte le interazioni prevedibili
e desiderate, insite cioè nella logica dei programmi (archi,
nel grafo di precedenza ad ordinamento parziale).

Prevede scambio di informazioni:
• segnali temporali (senza trasferimento di dati)
• dati (messaggi) è comunicazione

èIn entrambi i casi esiste un vincolo di precedenza
(sincronizzazione) tra gli eventi di processi diversi

20

COMPETIZIONE: La macchina concorrente su cui i
processi sono eseguiti mette a disposizione un numero
limitato di risorse:

• competizione per l’uso di risorse comuni che non
possono essere usate contemporaneamente.

è Interazione prevedibile e non desiderata, ma
necessaria.

6

21

Scambio di segnali temporali

Esempio:

• Processo P, costituito da tre operazioni p1, p2, p3; deve
essere eseguito ogni due secondi.

• Processo Q, costituito da quattro operazioni q1, q2, q3, q4;
deve essere eseguito ogni tre secondi.

• Processo O (orologio), ha il compito di registrare il passare
del tempo e di attivare periodicamente i processi P e Q
inviando segnali temporali.

• I nodi O1 , O2, … rappresentano le azioni del processo O e
denotano i secondi scanditi dall’orologio.

• Gli archi che collegano i nodi di O con i nodi di P (Q)
rappresentano i vincoli di precedenza dovuti al fatto che P
(Q) deve essere riattivato ogni due (tre) secondi.

22

p’1

processo P processo O processo Q

p’2

p’3

p’’1

p’’2

p’’3

O1

O2

O3

O4

O5

O6

q’1

q’2

q’3

q’4

q’’1

q’’2

23

• Conclusa una esecuzione P (Q) deve attendere un nuovo
segnale di attivazione prima di ricominciare.

• Relazione di causa ed effetto tra l’esecuzione
dell’operazione di invio da parte del processo mittente e
l’esecuzione dell’operazione di ricezione da parte del
processo ricevente.

• Vincolo di precedenza tra questi eventi (sincronizzazione dei
due processi).

• Comunicazione: è previsto uno scambio di dati.

• Linguaggio di programmazione deve fornire costrutti
linguistici atti a specificare la sincronizzazione e la
eventuale comunicazione tra i processi

24

Competizione
Esempio:

• Due processi P e Q devono usare in certi istanti una comune stampante

ps1, ps2,…, psn e qs1, qs2,…,qsn

sono le istruzioni che P e Q devono rispettivamente eseguire per produrre
un messaggio sulla stampante

• Le due sequenze devono essere eseguite in modo mutuamente esclusivo

px ps1 ps2 psn py
processo P

qx qs1
qs2

qsn qy
processo Q

px e py (qx e qy) denotano rispettivamente l’ultima operazione eseguita
da P (Q) prima della stampa e la prima eseguita dopo la stampa.

Q usa la stampante

P usa la stampante

7

25

• L’interazione si estrinseca in un vincolo di precedenza tra eventi di
processi diversi (psn deve precedere qs1), cioè in un vincolo di
sincronizzazione.

• Non è (come nel caso della comunicazione) un vincolo di causa ed
effetto, cioè l’ordine con cui devono avvenire due eventi non è sempre lo
stesso. Basta che sia verificata la proprietà di mutua esclusione.

px ps1 ps2 psn py

qx qs1 qs2 qsn qy
processo Q

processo P

Q usa la stampante

P usa la stampante

26

Cooperazione à sincronizzazione diretta o esplicita

Competizioneà sincronizzazione indiretta o implicita

Interferenza: interazione provocata da errori di
programmazione:

1. Inserimento nel programma di interazioni tra processi non richieste
dalla natura del problema

2. Erronea soluzione a problemi di interazione (cooperazione e
competizione) necessarie per il corretto funzionamento del
programma

E` un'interazione non prevista e non desiderata

• dipende dalla velocità relativa dei processi

• gli errori possono manifestarsi nel corso
dell’esecuzione del programma a seconda delle diverse
condizioni di velocità di esecuzione dei processi

(errori dipendenti dal tempo)

27

• Esempio di interferenza del primo tipo:

Solo P deve operare su una risorsa R. Per un errore di
programmazione viene inserita in Q un’istruzione che
modifica lo stato di R. La condizione di errore si
presenta solo per particolari velocità relative dei
processi.

• Esempio di interferenza del secondo tipo:

P e Q competono per una stampante. Si garantisce la
mutua esclusione solo per la stampa della prima linea.
La condizione di errore si presenta solo per particolari
velocità relative dei processi.

Uno degli Obiettivi fondamentali della programmazione
concorrente è

l’eliminazione delle interferenze.

28

ARCHITETTURE E LINGUAGGI PER LA
PROGRAMMAZIONE CONCORRENTE

8

29

Linguaggi per la programmazione
concorrente

• Disponendo di macchine concorrenti (in grado di
eseguire più processi sequenziali contemporaneamente)
e di un linguaggio di programmazione con il quale
descrivere algoritmi non sequenziali, è possibile scrivere
e far eseguire programmi concorrenti.

• L’elaborazione complessiva può essere descritta come
un insieme di processi sequenziali asincroni interagenti

30

Proprietà di un linguaggio per la
programmazione concorrente

• Contenere appositi costrutti con i quali sia possibile
dichiarare moduli di programma destinati ad essere
eseguiti come processi sequenziali distinti.

• Non tutti i processi costituenti un’elaborazione vengono
eseguiti contemporaneamente. Alcuni processi vengono
svolti se, dinamicamente, si verificano particolari
condizioni. E’ quindi necessario specificare quando un
processo deve essere attivato e terminato.

• Occorre che siano presenti strumenti linguistici per
specificare le interazioni che dinamicamente potranno
aversi tra i vari processi

31

Architettura di una macchina concorrente

• Difficilmente M ha una struttura fisica con tante unità
di elaborazione quanti sono i processi da svolgere
contemporaneamente durante l’esecuzione di un
programma concorrente.

• M è una macchina astratta ottenuta con tecniche
software (o hardware) basandosi su una macchina
fisica M’ molto più semplice (con un numero di unità
di elaborazione molto minore del numero dei
processi)

Programmi sorgente
scritti nel linguaggio

L
Compilatore di L

Programmi tradotti
nel linguaggio oggetto

per la macchina M

32

macchina astratta M

meccanismo di multiprogrammazione
meccanismo di sincronizzazione

macchina fisica M’
(hardware)

nucleo del sistema

Oltre ai meccanismi di multiprogrammazione e sincronizzazione è
presente anche un meccanismo di protezione (controllo degli accessi
alle risorse).

• Importante per rilevare eventuali interferenze tra i processi.
• Può essere realizzato in hardware o in software nel supporto a

tempo di esecuzione.
• Capabilities e liste di controllo degli accessi

9

33

• Il nucleo corrisponde al supporto a tempo di esecuzione del
compilatore di un linguaggio concorrente.

• Nel nucleo sono sempre presenti due funzionalità base:
• meccanismo di multiprogrammazione
• meccanismo di sincronizzazione e comunicazione

• Il primo meccanismo è quello preposto alla gestione delle
unità di elaborazione della macchina M’ (unità reali)
consentendo ai vari processi eseguiti sulla macchina
astratta M di condividere l’uso delle unità reali di
elaborazione

• Il secondo meccanismo è quello che estende le potenzialità
delle unità reali di elaborazione, rendendo disponile alle
unità virtuali strumenti mediante i quali due o più processi
possono sincronizzarsi e comunicare. 34

Architettura di M
Due diverse organizzazioni logiche:

– Gli elaboratori di M sono collegati ad un’unica memoria
principale (sistemi multiprocessore)

– Gli elaboratori di M sono collegati da una sottorete di
comunicazione, senza memoria comune (sistemi
distribuiti).

Le due precedenti organizzazioni logiche di M definiscono due
modelli di interazione tra i processi:
- Modello a memoria comune, in cui l’interazione tra i processi avviene

su oggetti contenuti nella memoria comune (modello ad ambiente
globale).

- Modello a scambio di messaggi, in cui la comunicazione e la
sincronizzazione tra processi si basa sullo scambio di messaggi sulla
rete che collega i vari elaboratori (modello ad ambiente locale).

