
1

Programmazione concorrente
• Un programma concorrente contiene due o più processi

che lavorano assieme per eseguire una determinata
applicazione.

• Ciascun processo è un programma sequenziale, cioè un
insieme di istruzioni eseguite sequenzialmente (cioe`, una
dopo l'altra).

• Un programma sequenziale ha un single thread of control,
un programma concorrente ha multiple threads of control.

• I processi in un programma concorrente comunicano tra
loro utilizzando variabili condivise o messaggi.

• I processi devono sincronizzarsi gli uni con gli altri.

• Esistono due tipi base di sincronizzazione: mutua
esclusione e condizione di sincronizzazione.

• La mutua esclusione garantisce ai processi l’accesso
esclusivo ad alcune risorse; la condizione di
sincronizzazione consente di ritardare un processo
fino al verificarsi di un determinato evento.

Origini

• La programmazione concorrente nasce negli anni
1960 nell’ambito dei sistemi operativi.

• Introduzione dei canali o controllori di dispositivi :
consentono l’esecuzione concorrente di operazioni di
I/O e delle istruzioni dei programmi eseguiti dal
calcolatore centrale.

• Comunicazione tra canale ed unità centrale tramite il
segnale di interruzione.

• Come conseguenza dell’interruzione parti di un
programma possono essere eseguite in un ordine
non predicibile (interferenza su variabili comuni).

• Successivamente furono introdotti i sistemi
multiprocessore. Inizialmente costosi, ora ampiamente
diffusi. Macchine massively parallel processors.

• I sistemi multiprocessore consentono a differenti processi
appartenenti alla stessa applicazione di essere eseguiti in
parallelo e quindi all’applicazione di essere eseguita più
velocemente.

Problemi:
- Come suddividere un’applicazione in processi?
- Quanti processi utilizzare?
- Come garantire la corretta sincronizzazione delle loro operazioni?

èQueste decisioni dipendono dal tipo di applicazione e dal
tipo di architettura hardware.

2

Tipi di architettura: Single processor

Primary memory

Level 2 cache

Level 1 cache

CPU

Shared- Memory Multiprocessors

Memory Memory

Interconnection network

. . .

Cache

CPU

Cache

CPU

. . .

• In sistemi a multiprocessore con un numero ridotto di
processori (da 2 a 30 circa), la rete di interconnessione è
realizzata da un memory bus o da crossbar switch.

– UMA (Uniform Memory Access). Tempo di accesso
uniforme da ogni processore ad ogni locazione di
memoria.

– Si chiamano anche symmetric multiprocessors (SMP).

• In sistemi con un numero elevato di processori (decine o
centinaia) la memoria è organizzata gerarchicamente (per
evitare la congestione del bus).
– La rete di interconnessione è un insieme di switches e

memorie strutturato ad albero. Ogni processore ha
memorie che sono più vicine ed altre più lontane lontane

– NUMA (Non Uniform Access Time).

Distributed-memory Multicomputers and
Networks

Memory

Cache

CPU

Memory

Cache

CPU

Interconnection network

. . .

3

Distributed-memory: classificazione

• Multicomputer : I processori e la rete sono fisicamente
vicini (nella stessa struttura): tightly coupled machine.
– La rete di interconnessione rappresenta un cammino di

comunicazione tra i processori ad alta velocità e
larghezza di banda (es. macchine a ipercubo).

• Network systems: i nodi sono collegati da una rete locale
(es.Ethernet) o da una rete geografica (Internet): loosely
coupled multiprocessors.

• I nodi di una distributed memory machine possono essere o
singoli processori o shared memory multiprocessor.

• Distributed shared memory: realizzazione distribuita
dell’astrazione shared memory.

Tipi di applicazioni

a) multithreaded/multitasking:
• Applicazioni strutturate come un insieme di processi

(thread) per semplificare la loro programmazione.
• Sono caratterizzati dal fatto che esistono più processi

che non processori per eseguire i processi.
• I processi sono schedulati ed eseguiti

indipendentemente.

Esempi di applicazioni:
• Sistemi a finestre su PC o Workstation
• Sistemi operativi time-sharing e multiprocessor
• Sistemi real time e di controllo dei processi

Tipi di Applicazioni

b) Sistemi distribuiti
• Le componenti dell’applicazione(intrinsecamente

distribuite) vengono eseguite su macchine collegate da
una rete locale rete locale o geografica

• I processi comunicano scambiandosi messaggi.

Esempi di applicazioni:
– File server in rete
– Data-base systems per applicazioni bancarie etc..
– Web server su Internet
– Sistemi fault tolerant

• Tipica organizzazione : client- server.
• I componenti in un sistema distribuito sono spesso

multithreaded applications

Tipi di Applicazioni

c) Applicazioni parallele:
• Obiettivo: risolvere un dato problema più velocemente

(o un problema di dimensioni più elevate nello stesso
tempo).

• Sono eseguite su processori paralleli facendo uso di
algoritmi paralleli.

Esempi di applicazioni:
• Applicazioni scientifiche che modellano e simulano

fenomeni fisici complessi (es. previsioni del
tempo,evoluzione del sistema solare etc..)

• Elaborazione di immagini. La creazione di effetti speciali
nei film, etc.

• Problemi di ottimizzazione di grandi dimensioni

