Programmazione concorrente

Un programma concorrente contiene due o piu processi
che lavorano assieme per eseguire una determinata
applicazione.

Ciascun processo e un programma seguenziale, cioe un
insieme di istruzioni eseguite sequenzialmente (cioe’, una
dopo l'altra).

Un programma sequenziale ha un single thread of control,
un programma concorrente ha multiple threads of control.

| processi in un programma concorrente comunicano tra
loro utilizzando variabili condivise 0 messagqi.

e | processi devono sincronizzarsi gli uni con gli altri.

« Esistono due tipi base di sincronizzazione: mutua
esclusione e condizione di sincronizzazione.

e La mutua esclusione garantisce ai processi I'accesso
esclusivo ad alcune risorse; la condizione di
sincronizzazione consente di ritardare un processo
fino al verificarsi di un determinato evento.

Origini
La programmazione concorrente nasce negli anni
1960 nell’ambito del sistemi operativi.

Introduzione dei canali o controllori di dispositivi :
consentono I'esecuzione concorrente di operazioni di
I/O e delle istruzioni dei programmi eseguiti dal
calcolatore centrale.

Comunicazione tra canale ed unita centrale tramite |l
segnale di interruzione.

Come conseguenza dell'interruzione parti di un
programma possono essere eseguite in un ordine
non predicibile (interferenza su variabili comuni).

e Successivamente furono introdotti | sistemi
multiprocessore. Inizialmente costosi, ora ampiamente
diffusi. Macchine massively parallel processors.

| sistemi multiprocessore consentono a differenti processi
appartenenti alla stessa applicazione di essere eseqguiti in
parallelo e quindi all’applicazione di essere eseguita piu
velocemente.

Problemi:

- Come suddividere un’applicazione in processi?
- Quanti processi utilizzare?
- Come garantire la corretta sincronizzazione delle loro operazioni?

=» Queste decisioni dipendono dal tipo di applicazione e dal
tipo di architettura hardware.

Tipi di architettura: Single processor

Primary memory

Level 2 cache

Level 1 cache

CPU

Shared- Memory Multiprocessors

Memory Memory
| nterconnection network
Cache Cache
CPU CPU

* |n sistemi a multiprocessore con un numero ridotto di
processori (da 2 a 30 circa), la rete di interconnessione e
realizzata da un memory bus o da crossbar switch.

— UMA (Uniform Memory Access). Tempo di accesso
uniforme da ogni processore ad ogni locazione di
memoria.

— Si chiamano anche symmetric multiprocessors (SMP).

e |n sistemi con un numero elevato di processori (decine o
centinaia) la memoria e organizzata gerarchicamente (per
evitare la congestione del bus).

— La rete di interconnessione e un insieme di switches e
memorie strutturato ad albero. Ogni processore ha
memorie che sono piu vicine ed altre piu lontane lontane

— NUMA (Non Uniform Access Time).

Distributed-memory Multicomputers and
Networks

| nterconnection network

Memory Memory

Cache Cache

CPU CPU

Distributed-memory: classificazione

Multicomputer : | processori e la rete sono fisicamente
vicini (nella stessa struttura): tightly coupled machine.

— La rete di interconnessione rappresenta un cammino di
comunicazione tra i processori ad alta velocita e
larghezza di banda (es. macchine a ipercubo).

Network systems: i nodi sono collegati da una rete locale
(es.Ethernet) o da una rete geografica (Internet): loosely
coupled multiprocessors.

| nodi di una distributed memory machine possono essere o
singoli processori o shared memory multiprocessor.

Distributed shared memory: realizzazione distribuita
dell'astrazione shared memory.

Tipi di applicazioni

a) multithreaded/multitasking:

e Applicazioni strutturate come un insieme di processi
(thread) per semplificare la loro programmazione.

 Sono caratterizzati dal fatto che esistono piu processi
che non processori per eseguire | processi.

e | processi sono schedulati ed eseguiti
Indipendentemente.

Esempi di applicazioni:

e Sistemi a finestre su PC o Workstation

e Sistemi operativi time-sharing e multiprocessor
o Sistemi real time e di controllo dei processi

Tipi di Applicazioni
b) Sistemi distribuiti

 Le componenti dell’applicazione(intrinsecamente
distribuite) vengono eseguite su macchine collegate da
una rete locale rete locale o geografica

e | processi comunicano scambiandosi messaggi.

Esempi di applicazioni:
— File server in rete
— Data-base systems per applicazioni bancarie etc..
— Web server su Internet
— Sistemi fault tolerant
« Tipica organizzazione : client- server.

e | componenti in un sistema distribuito sono spesso
multithreaded applications

Tipi di Applicazioni

c) Applicazioni parallele:

Obiettivo: risolvere un dato problema piu velocemente
(o un problema di dimensioni piu elevate nello stesso
tempo).

Sono eseguite su processori paralleli facendo uso di
algoritmi paralleli.

Esempi di applicazioni:

Applicazioni scientifiche che modellano e simulano
fenomeni fisici complessi (es. previsioni del
tempo,evoluzione del sistema solare etc..)

Elaborazione di immagini. La creazione di effetti speciall
nei film, etc.

Problemi di ottimizzazione di grandi dimensioni

