
Mobile Agents: An Introduction
Gian Pietro Picco

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

picco@elet.polimi.it

Abstract| Mobile agents are enjoying a lot of popularity

as a novel abstraction for structuring distributed applica-

tions. In this paper, we provide an introduction to the

related research �eld by showing evidence of the bene�ts

mobile agents can potentially achieve, illustrating the foun-

dations of architectures and technologies for mobile agents,

and discussing some of the open issues still hampering a

wider acceptance of this paradigm.

Keywords|Mobile agent, mobile code, design paradigm.

I. Introduction

Conventional distributed systems typically assume a
static con�guration of the environment where the dis-
tributed application executes. Communication among a set
of hosts is enabled by physical links whose con�guration is
�xed and statically determined. Similarly, the various por-
tions of the distributed applications that run on the nodes
of the system are typically bound to such nodes for their
whole life. Hence, the topology of the system, both at the
physical and logical level, is essentially assumed as �xed.

This view is being challenged by technical developments
that introduce a degree of mobility in the distributed sys-
tem. Some forms of mobility are already evident to the
general public, through the increasing pervasiveness of cel-
lular phones, wireless LANs, and Internet mobile access.
Wireless networking introduces a form of physical mobility
by enabling untethered communication among hosts, even
while they are moving within the physical space.

At the same time, a less evident but equally revolution-
ary form of mobility is reshaping the logical structure of
distributed systems, by providing a 
uid software fabric in
which the components of an application can dynamically
change their location. This form of logical mobility1, often
called code mobility, allows for the code and possibly also
the state of an executing program to be migrated, in part
or as a whole, at run-time. Proposals vary according to
the granularity of the unit of mobility and the modality of
relocation. Variants exist where the code and state of an
executing program are always migrated together, and the
decision about migration is taken autonomously by the pro-
gram itself. This latter kind of roaming application com-
ponent is usually termed a mobile agent.

The key conceptual contribution of mobile agents, and
more in general of code mobility, is to raise the location
where an application component is executed from the sta-
tus of con�guration or deployment detail to that of �rst-
class element in the application design. This change of
perspective has the potential for inspiring a new breed of

1The reader interested in the relationship between physical and
logical mobility, and related research issues, is redirected to [1].

concepts, models, and, ultimately, technologies that will
shape the next generation of distributed computing.

The goal of this paper is to introduce the reader to the
research �eld concerned with mobile agents. This goal is
achieved by presenting the conceptual foundations, that
have their grounds in logical mobility at large, and by re-
viewing the state of the art.

The paper is structured as follows. Section II presents
the rationale for using mobile agents, and hints at why
and when mobile agents are preferable over other solutions.
Section III reviews the basic architectural paradigms for
code mobility, including mobile agents. Section IV con-
tains a critical discussion of the mobile agent technology
currently available. Section V presents re
ections on the
present and the future of the research area. Finally, Sec-
tion VI contains the concluding remarks.

II. The Case for Mobile Agents

A question that is often a subject of debate is what can
be done with mobile agents that cannot be done with con-
ventional technology or, in other terms, whether a \killer
application" exists for mobile agents.

This question appears to be ill-de�ned. Since the in-
ception of this research area, Harrison et al. [2] pointed
out, later supported by other researchers, that any func-
tionality that can be implemented with mobile agents can
also be implemented with conventional technology. Thus,
the question of whether a killer application exists is an ir-
relevant one. Mobile agents should be considered only as
another tool in the arsenal of the designer of distributed
applications.

It is true, however, that some application domains are
more amenable than others to mobile agents or, in general,
code mobility. Thus, the key point is to understand pre-
cisely what are the potential advantages and bene�ts the
mobile approach may provide over conventional technolo-
gies, and when, i.e., under what conditions, these bene�ts
can be e�ectively achieved.

In the following, we analyze a couple of success stories
available in literature, and then draw some general consid-
erations about the use of mobile agents.

A. Mobile Agents for Database Access

Papastavrou et al. [3] tackled the problem of enabling
access to databases on the Web. A conventional solution
exploits the Java Database Connectivity (JDBC) [4] API
for enabling the client (a Web browser) to access and ma-
nipulate a relational DBMS. To use this API, a client must
�rst download the JDBC driver, containing the interface



9

75

257

12
25

57

11
28

53

5 10
22

0

50

100

150

200

250

300

LAN (10 Mb/s) Dial-up (28,800 b/s) Cellular (9,600 b/s)

S
ec

on
ds

Applet
Single mobile agent
Mobile agent/DMBS-agent
Messages/DMBS-agent

Fig. 1. Comparing the latency generated by short DBMS transac-
tions on the Web. (Adapted from [3].)

to the remote DMBS. Such driver is typically downloaded
dynamically as part of the Java applet that constitutes
the application front-end. This e�ectively makes a Web
browser an application-speci�c DBMS client, without any
user intervention.

Nevertheless, there are a couple of problems with this ap-
proach. First, the setup phase, that involves the download
and initialization of the JDBC driver, is typically a very
resource-consuming and slow procedure. Second, the Web
client is no longer lightweight (as Web interaction would
require), rather it becomes more similar to a full-
edged,
data-aware LAN client.

The authors propose the use of mobile agents to obviate
to the aforementioned problems in the following way. Upon
connection to the Web site, the client downloads the ap-
plication front-end, but instead of downloading the JDBC
driver, it receives a small program|the code of the mobile
agent. When the user speci�es a query through the front-
end, this code is used to spawn a mobile agent that contains
the query and is shipped to the target DBMS, where the
JDBC driver is loaded and initialized for the agent. At
this point, the mobile agent is co-located with the DBMS
and can exploit local interaction to submit the query and
collect the results, before returning to the client. This so-
lution is likely to improve bandwidth usage and the latency
perceived by the user, by avoiding the driver download and
by exploiting local interaction with the DBMS.

Two enhancements to this idea are also considered in [3].
The �rst one stems from the observation that a JDBC
driver must be loaded and initialized at the DBMS server
for each mobile agent received. To optimize execution for a
stream of mobile agents belonging to the same application,

8,4 8,9

24,9

51,3

0

10

20

30

40

50

60

3 Queries 6 Queries

S
ec

on
ds

Applet
Mobile agent

Fig. 2. Comparing the latency generated by Web queries executed in
parallel on multiple nodes. A �xed 10Mb/s network is considered.
(Adapted from [3].)

the authors propose the use of another mobile agent, that
is spawned as soon as the client submits the �rst query.
This second agent, called a DBMS-agent, is dispatched to
the DBMS server where, after its JDBC driver is loaded, it
remains \parked" for the duration of the application. The
DBMS-agent acts as a proxy for the mobile agents carry-
ing the client queries. These agents do not need to load
JDBC drivers; instead, they act as messengers, by dele-
gating the invocation of the query to the already JDBC-
enabled DBMS-agent, from which they collect the results
that are brought back to the client. Clearly, this solution
speeds up the execution of queries after the �rst one, by re-
ducing the time spent on the DBMS to initialize the agents
for JDBC.
Finally, a second variant further re�nes the previous one

by using messages, rather than mobile agents, to carry the
query from the client front-end to the DBMS-agent parked
at the DBMS, and for returning the results.
A comparison between the conventional JDBC solution

and the three variants described that exploit mobile agents
is allowed by the experimental results provided in [3]. The
improvements brought by mobile agents are remarkable.
Figure 1 shows the latency perceived by the client for a
short transaction made of three queries. The combination
of a DBMS-agent and messages leads to transactions that
are about two times faster on a �xed Ethernet network,
and up to ten times faster on a GSM cellular link.
Similarly remarkable results hold for access to multiple

DBMS, as shown in Figure 2. In this case, the ability of mo-
bile agents to be dispatched concurrently towards di�erent
nodes, and back to the source, determines an improvement
over a sequence of JDBC queries performed by the client.

B. Mobile Agents for Network Management

Baldi and Picco [5] evaluated whether and how mobile
agents, together with other forms of logical mobility, can
be useful in the �eld of network management. Mainstream
network management architectures, like the Simple Net-
work Management Protocol (SNMP) [6], are still largely
centralized. A network management station (nms) oper-
ated by the manager, polls data from the network devices,
and subsequently performs all the computation. To make
matters worse, the primitives available to poll data are ex-
tremely �ne-grained; thus, a high number of interactions
retrieving low-level data are needed in order to reconstruct
the desired high-level information. Clearly, this central-
ized architecture poses a tough challenge to scalability. In
particular, it tends to cause congestion in the nms neigh-
borhood, thus paradoxically complicating the task of man-
aging the network.
In their work, the authors build an analytical model of a

generic network management task, and compare the traf-
�c generated by plain SNMP against the one generated
by mobile agents. In their solution, the set of SNMP re-
quests is encapsulated in a program that is able to migrate
autonomously from one managed device to another and
gather the relevant results, that are returned to the nms
with a single message.



The results are interesting, in that they show clearly how
mobile agents can be bene�cial or detrimental depending
on the application requirements and design goals. For in-
stance, the idea of a mobile agent that simply visits each
node and collects the relevant data does not seem to be a
good one, as shown2 by Figure 3 from the point of view
of overall traÆc reduction. If all the data gathered must
be returned to the nms, the agent must carry at each hop
the whole amount of data collected at that point. Thus,
the overall traÆc generated by the mobile agent solution
increases much more rapidly than the one generated by the
client-server solution exploited by SNMP.
On the other hand, the ability to relocate a computation

directly on the data source opens up the possibility to per-
form semantic compression, i.e., to reduce the amount of
information being transmitted by �ltering it at the source,
based on its content. Thus, for instance, it is possible to
�nd out what is the most loaded interface on a router by
performing the necessary SNMP queries while co-located
with it, rather than by transmitting all the necessary data
back to the nms. This particular form of semantic compres-
sion local to a device, may not be suÆcient to overcome the
state growth problem depicted above, as shown in Figure 3.
Mobile agents able to roam multiple devices may provide
a form of global semantic compression, where the �ltering
takes place not only locally to a device, but also across mul-
tiple devices. Thus, for instance, the most loaded interface
in the network could be computed by retaining, at each
hop, only the current maximum value, hence eliminating
the state growth. This last possibility may provide a sig-
ni�cant reduction in the overall management traÆc (up to
30% for the data set shown in Figure 3).
Nevertheless, as mentioned before, the overall manage-

ment traÆc is only of marginal importance. To overcome
the limitations of the centralized SNMP architecture, the
main priority is to reduce the traÆc around the nms|
a task mobile agents turn out to be extremely e�ective
at. While SNMP requires a pairwise interaction between
the nms and each managed device, mobile agents once un-
leashed can visit the devices autonomously, without requir-
ing any communication with the nms until all the results
have been collected. Thus, no matter how many devices are
visited by the mobile agent, the nms is involved only in the
initial dispatching of the agent and in the �nal collection of
results, while the remaining traÆc is steered by the mobile
agent away from the nms. This fact alone leads to a signif-
icant traÆc reduction even when no semantic compression
is performed, as shown in Figure 3.
Clearly, mobile agents unveil their full potential when the

bene�t of reducing the traÆc around the nms is combined
with the possibility of performing semantic compression.
In this case the improvement over the plain SNMP client-
server scheme is outstanding, as witnessed by Figure 3. The

2For the sake of presentation, the chart relies on some simplifying
assumptions. Requests and replies are assumed to have all the same
size (50 and 100 bytes, respectively), the size of the migrated code
is assumed to be always 2 Kbytes, and the number of queries per
node is assumed to be 20. See [5] for a discussion of how the traÆc
expressions are determined.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of managed devices

M
an

ag
em

en
tt

ra
ffi

c
(K

by
te

)

MA

MA, local semantic
compression
MA, traffic around NMS only

MA, global semantic
compression
MA, NMS traffic only and local
semantic compression
SNMP

Fig. 3. Plain SNMP vs. mobile agents.

traÆc generated around the nms not only becomes negligi-
ble with respect to the one generated by SNMP (2.1 Kbytes
instead of 60 Kbytes, for a traÆc reduction of over 95%),
but also constant with respect to the number of nodes.

C. Commonly Agreed Bene�ts of Mobile Agents

The applications discussed thus far highlight many of the
bene�ts of mobile agents. Several researchers have tackled
the problem of �nding out what are the potential assets
of mobile agents (see for instance [2], [7], [8]). By and
large, mobile agents, and more generally code mobility, are
acknowledged to bring two main advantages over conven-
tional, client-server based technologies:

Enhanced Flexibility. Clients typically access the resources
hosted by a server through a prede�ned set of services,
whose interface is prede�ned and commonly agreed among
the client and the server. It is usually complex, if at all pos-
sible, to change dynamically this interface to encompass
new services, or to adapt the existing ones to previously
unforeseen needs. Mobile agents can be used to update
dynamically the interface on the client and/or server side.
For instance, this technique is used by the application dis-
cussed in Section II-A to change dynamically the interface
of the DBMS server, and allow the client to interact with
it without requiring JDBC.
Reduced Bandwidth Consumption. The ability to migrate
a client program to achieve co-location with the resources
it must access on the server reduces the need for remote
communication and thus may enable, under some condi-
tions, a more eÆcient use of the communication link. In
particular, semantic compression may often be achieved,
as discussed in Section II-B.

Moreover, several other advantages have been identi�ed,
including for instance:

Improved Fault Tolerance. In conventional systems, a
high-level interaction between a client and a server, e.g., a
commercial transaction or a complex network management
task, unfolds as a series of pairwise low-level interactions
under the form of request and replies. During these inter-
actions, the state of the overall computation is distributed.
This fact heavily complicates the task of recovering from a



fault, due to the distributed consensus problem. Instead,
agents embedding the code describing the whole high-level
interaction can migrate on the server. Thus, the state of
the interaction remains entirely local, and faults can be
dealt with easily, e.g., using checkpoints.
Support for Disconnected Operations. Mobile agents can
carry out their tasks autonomously and independently of
the application that dispatched them. This capability, that
is at the core of many of the advantages mobile agents
provide, is particularly useful in scenarios characterized by
physical mobility, where the constraints posed by terminals
and communication links often force the user to disconnect
from the network, e.g., to save battery power. In these sce-
narios, a mobile agent can be unleashed into the network
to perform some task on behalf of a user, who meanwhile
is totally disconnected. Results can be eventually gathered
by the user upon reconnection.
Protocol Encapsulation. In conventional systems, data is
typically a passive element that gets processed by other
active components in the system. Thus, for instance, net-
work packets contain data that is processed at interme-
diate nodes and then forwarded to destination; similarly,
documents in a work
ow process are exchanged among
the process actors, that manipulate them according to
organization-wide procedures. Mobile agents and code mo-
bility may change this view dramatically, by allowing a
piece of data to travel within the system together with
the application logic needed to interpret and manipulate
it. Thus, a packet could 
ow in the network carrying along
with it its own routing routines, as proposed in some ac-
tive network schemes [9]; a document could contain code
representing automated business procedures that would get
invoked at various step during the work
ow [10]. Clearly,
this possibility greatly improves the 
exibility of the sys-
tem, simplifying the deployment of di�erent, co-existing
policies for using data.

After this brief discussion, it is evident that mobile
agents hold the potential for providing relevant bene�ts.
The two case studies presented made also clear, however,
that mobile agents can be exploited in di�erent ways, and
that the bene�ts obtained depend heavily on the particular
design alternative chosen. In the next section, we elaborate
on this latter theme by putting mobile agents in the more
general context of design paradigms for code mobility.

III. Mobile Agents as a New Design Paradigm

Most of research about mobile agents spurred from and
focused on technologies that enable a unit of execution to
migrate at run-time to a di�erent host. Nevertheless, the
key contribution of the �eld is not technology. Exploiting
mobile agents, and in general logical mobility, is not strictly
tied to the use of technology expressly developed to sup-
port mobility, much like exploiting object-orientation is not
limited to using an object-oriented programming language.
Instead, the crucial contribution put forth by logical mo-
bility is to foster a new design style for distributed applica-
tions, where the location of components is not con�gured
once and for all, but becomes instead a �rst-class element

under the control of the designer.
Nevertheless, as evidenced by the various alternatives

considered in the previous section, the basic idea of mobile
agent can be exploited in several variants and, moreover,
di�erent terminologies are popular among researchers.
Thus, for instance, Papastavrou et al. term their solution
exploiting a mobile agent \parked" at the Web server an
instantiation of the client/agent/server paradigm [3]. Oth-
ers would refer to the very same solution as an example of
a single-hop mobile agent, as opposed to the common no-
tion of a multi-hop mobile agent that roams several nodes
in sequence.
The scene is complicated even further by the fact that

mobile agents represent only a subset of the larger space
of alternatives o�ered by logical mobility. Alternatives are
possible where migration does not involve the whole unit
of execution representing an agent, but only some of its
constituents, typically the code. Although these forms of
mobile code are often improperly considered mobile agents
as well, the design style they foster is profoundly di�erent,
both in terms of the abstractions they represent and of the
impact they have on the overall eÆciency of the resulting
implementation.
In this section, we hint exactly at these two aspects. In

the �rst part, we present one of the few characterizations
of the design paradigms for code mobility available in lit-
erature. In the second part, we brie
y discuss how forms
of code mobility that are less powerful and expressive than
mobile agents may actually be a better solution in some
cases. Finally, we provide some general remarks about de-
sign issues related with mobile agents.

A. Design Paradigms for Code Mobility

The characterization of architectural paradigms we re-
port here, originally proposed in [11], focuses on the dif-
ferent ways it is possible to perform a service, that would
be otherwise performed with a client-server paradigm, by
moving around the three fundamental elements of such ser-
vice. The elements are the know-how about the service
(i.e., its code), the resources that are needed to carry it
out (e.g., a �le, a DBMS, an object), and the active com-
ponent in the system that is in charge of performing it.
Clearly, a service can be e�ectively performed only when
these three capabilities are co-located. In a pure client-
server paradigm, these capabilities are permanently co-
located by design on the server node, and are exploited
remotely by the client. Instead, the following mobile code
paradigms provide di�erent strategies for relocating these
capabilities at run-time.
In the Code on Demand (cod) paradigm, one of the two

components (e.g., the client) lacks the know-how about how
to perform the service, although it owns the necessary re-
sources. The corresponding code is then downloaded from a
remote server acting as a code repository, and subsequently
executed. This paradigm provides enhanced 
exibility by
allowing the server to change dynamically the behavior of
the client (or vice versa). For instance, this is the scheme
typically employed by Web applets.



In the Remote Evaluation (rev) paradigm, the client
owns the know-how about the service, but lacks the re-
sources necessary to its execution, which are owned by the
server component. As proposed in the pioneering work de-
scribed in [12], a sort of enhanced client-server interaction
takes place, where the client includes in the request to the
server also the code required to perform the service. Af-
ter this code is received and its execution has started on
the server, the interaction proceeds as in the client-server
paradigm: the code received is able to access the resources
now co-located with it, and eventually send the results back
to the client. This design solution underlies well-known
systems like remote shells and SQL servers.
Finally, in the Mobile Agent (ma) paradigm the client

knows how to perform the service but lacks part of the re-
sources, which are owned by the server. The client then au-
tonomously migrates to become co-located with the server,
and thus to perform the service by exploiting local access
to resources. This de�nition encompasses the common def-
inition of a multi-hop mobile agent.
It is worth noting how cod and rev actually stress

the notion of mobile code as opposed to mobile agents.
For instance, the design solution presented in [3] and de-
scribed in Section II-A, that exploits a mobile agent that
remains parked at the DBMS to act as a proxy for further
queries, could appear at �rst as an instantiation of the cod
paradigm. Similarly, the scheme exploited in the same ap-
plication to deal with multiple DBMSes resembles closely
the rev paradigm, although in that application the whole
agent is always returned to the client.
Instead, these solutions must be regarded as instantia-

tions of the mobile agent paradigm, because a whole active
component is being relocated. Instead, both cod and rev
allow relocation of just the code portion of this component.
This di�erence, that at �rst could appear as irrelevant or
pedantic, may change dramatically the performance of the
resulting design, as described in the following.

B. Mobile Code or Mobile Agents?

Since all the aforementioned design paradigms allow the
dynamic relocation of the components of a distributed ap-
plication, a legitimate question to ask is whether one should
choose the purest mobile agent paradigm, or just a mobile
code design, exploiting code on demand or remote evalua-
tion. As with every design choice, the answer is given by
application requirements and engineering tradeo�s.
Mobile agents provide a relevant asset because of the

metaphor they embody. Agents that are able to dynam-
ically and autonomously relocate themselves according to
the application needs may provide, for certain applications,
the building block of a uniform and elegant design where
every active component is able to spontaneously relocate
itself. This characteristic of the paradigm is probably at
the core of its success, and provides also the link to other
disciplines, like arti�cial intelligence, that brought this con-
cept to the extreme by proposing agent-oriented program-
ming [13] as a new way to create distributed applications.
On the other hand, a naive use of mobile agents may

lead quickly to a highly ineÆcient design. Both case stud-
ies in Section II already evidenced this possibility. In the
DBMS application, the alternative where a mobile agent is
employed to carry the query from the client to the DBMS-
agent is always the worst of mobile agent ones. Clearly, in
that case the cost of creating a mobile agent for each re-
quest just to carry a message is overkill; message passing is
much more e�ective in this case. A similar argument holds
for the network management application of Section II-B,
where the use of a mobile agent that roams the network
and collects information|indeed a very popular piece of
the mobile agent folklore|may actually lead to a design
that actually performs worse than the conventional one.

This latter remark, however, does not necessarily hold
for the other mobile code paradigms. Figure 4 is adapted
from [5], where the authors considered, besides mobile
agents, also the aforementioned mobile code paradigms. As
the leftmost chart shows, cod allows a traÆc reduction of
about 30%, even in the case where no semantic compres-
sion is possible, i.e., when mobile agents would perform
really poorly. The reason lies in the fact that cod allows
to pay the cost for migrating code only once, when the code
fragment gets installed at destination. From that point on,
communication takes place like in a normal client-server
interaction. Thus, the higher is the frequency of invoca-
tion of the management task, the bigger is the gain cod

can provide3. Instead, the chart in the center of Figure 4
shows that also rev may be more convenient than client-
server even without semantic compression, if the number
of queries that must be performed locally on the device is
high enough. Thus, mobile code may succeed where mobile
agents are failing.

Moreover, under some conditions mobile code may be
more convenient even in the scenarios where mobile agents
would seem always advisable. For instance, the rightmost
chart in Figure 4 compares the performance of code on
demand against mobile agents when global semantic com-
pression is enabled and only the traÆc generated around
the nms is considered|optimal conditions for using mobile
agents. Still, if the network of managed devices is small
enough, mobile agents might lead to worse performance.

C. Some Re
ections

Mobile agents are a powerful abstraction. Nevertheless,
expressive power always comes as a tradeo� for eÆciency;
relocating a whole executing unit is more demanding than
relocating only one of its constituents. The considerations
expressed thus far reveal that mobile agents are only one
extreme of the spectrum of alternatives that, starting from
the static client-server paradigm provide the ability to re-
con�gure dynamically the system through code mobility.
Thus, if the motivation for using mobile agents is to op-
timize system performance, e.g., in terms of traÆc or la-
tency, attention should be paid to the choice between mo-
bile agents and mobile code.

State of the art research still does not provide clear guide-

3The charts in Figure 4 assume twenty invocations.



0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of managed devices

M
an

ag
em

en
tt

ra
ffi

c
(K

B
yt

es
)

CS

REV

COD

0

50

100

150

200

250

300

350

1 10 19 28 37 46 55 64 73 82 91 100

SNMP queries per management query

M
an

ag
em

en
tt

ra
ffi

c
(K

B
yt

es
)

CS

REV

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of managed devices

M
an

ag
em

en
tt

ra
ffi

c
(K

by
te

s)

MA, NMS traffic only and
local semantic compression
MA, NMS traffic only and
global semantic compression
COD

Fig. 4. Mobile code for network management.

lines about when to use a design paradigm or the other, and
studies like those reported in this paper are extremely rare.
Moreover, there might be other and better paradigms be-
sides those presented here, or new and more e�ective ways
to combine them among themselves and with conventional
paradigms like client-server.

A new viewpoint on these issues may be contributed by
researchers investigating theories of mobility [14]. Research
has concentrated thus far on formal models where the unit
of execution coincides with the unit of mobility, with few
exceptions (e.g., [15]). Nevertheless, the fact that these
investigations are set in an abstract environment, free of
the idiosyncrasies of real implementations, is likely to help
unveil some of the fundamental characteristics of logical
mobility at large. While this is likely to improve our under-
standing of the general issues related with the fundamental
design styles concerned with mobility, this is also hopefully
going to shape the next generation of the related technol-
ogy, by shedding some light on the fundamental constructs
that are needed to deal with mobility and their semantics.

IV. Mobile Agent Technology

Technology has traditionally been the main focus of re-
search on mobile agents. As a matter of fact, the very term
\mobile agent" was made popular by the Telescript lan-
guage [16], developed by General Magic in 1994. The em-
phasis on technology is witnessed, among the other things,
by the large number of systems contained in the Mobile
Agent List [17], maintained at the University of Stuttgart,
Germany, that provides an approximate census of the mo-
bile agent systems currently available.

In this section we give an overview of the fundamen-
tal characteristics concerned with migration, and discuss
other relevant issues. The presentation is necessarily con-
cise. Surveys of mobile agent technology can be found in
literature (e.g., [7], [18], [19], [20]) that may help the reader
in comparing available systems.

A. Core Support for Mobility

Mobile agent systems typically identify the agent with a
unit of execution belonging to the lower layers of the virtual

machine, e.g., a thread or a process. A unit of execution4 is
constituted by the code governing its behavior, by the data
associated with it and necessary to its computation, and by
its execution state, e.g., program counter, and call stack.
Mobile agent systems allow migration of the whole unit or
a part thereof, i.e., one or more of the three constituents
mentioned above. The most relevant di�erences among
existing systems lie exactly in what they allow to move,
and how it is actually moved.

A �rst distinction can be drawn based on whether the
execution state is migrated along with the executing unit
or not. Systems providing the former option are said to
support strong mobility, as opposed to systems that dis-
card the execution state across migration, and are hence
said to provide only weak mobility. In this latter kind of
systems, if the application requires the ability to retain the
thread of control, extra programming is required in order
to save manually the execution state. Instead, in systems
supporting strong mobility, migration is completely trans-
parent to the migrated program, which resumes execution
right after the migration instruction. This has the dou-
ble advantage of reducing the programming e�ort of using
migration to the invocation of a single operation, and of
requiring a smaller code size of the migrated code.

Despite these advantages, most of the mobile agent sys-
tems support only weak mobility. The reason lies in the
fact that the vast majority of them are built on top of the
Java Virtual Machine (JVM), which provides mechanisms
suÆcient to implement weak mobility (namely the ability
to program the class loader) but insuÆcient to deal with
the execution state. This is perceived by the community as
one of the main drawbacks of Java as the implementation
platform, and research is investigating alternative solution
based either on a pre-compilation step (e.g., [21]) or on
modi�cations of the JVM (e.g., [22]). Systems that are
not based on Java do not su�er of this limitation and of-
ten provide strong mobility, like in Telescript, Tacoma [23],
Ara [24], and D'Agents [25].

Another dimension to understand the mechanisms sup-
porting mobility is constituted by the strategies employed
to relocate the code constituting the executing unit. Al-

4We follow the classi�cation proposed in [7], where the reader may
�nd a more detailed description of the issues brie
y mentioned here.



though a number of strategies are potentially meaningful
and useful, the use of Java as an implementation language
has often biased the designers of mobile agent systems to-
wards mechanisms that are directly inspired by the Java
class loader, and its use within Web browsers to support
applet downloading. In this scheme, only the agent's root
class is migrated along with the agent; after migration, ad-
ditional classes needed for execution of the agent are down-
loaded dynamically from the agent source host, or from
some other code repository. This mechanism, adopted by
many of the Java-based systems, notably Mole [26] and
Aglets [27], relies on the assumption that the code repos-
itory is always available, thus implicitly neglecting one of
the main advantages of mobile agents, i.e., the ability to
support disconnected operations. On the other hand, other
systems, e.g., D'Agents, always ship the whole code base
together with the agent, thus in many cases sending also
classes that are used infrequently. The �Code [28] system
supports both strategies, and in addition allows the pro-
grammer to compute dynamically the agent's class closure
and subsequently choose which classes should be migrated
and which not, thus achieving maximum 
exibility.

Finally, the third dimension is constituted by the data
the mobile agent may carry along during migration. The
unit of execution running at the source is likely to con-
tain bindings to resources (e.g., objects, �les, other units)
that are shared with other units on that host. To allow
mobility of the executing unit requires both a mechanism
and a policy to determine how these bindings are handled
upon migration. As discussed in [7], a number of strate-
gies are possible. Essentially, the binding to a resource can
be severed, retained, or re-established with a di�erent but
compatible resource. When the binding is retained, two
alternatives are possible: either the resource is migrated
along with the agent, or the binding is stretched across the
network by creating a network reference from the new host
of the agent. When the binding is instead re-established
to a new, compatible resource, such resource is typically
constituted either by a copy of the original one, or by a
stationary resource having the same type (e.g., a printer).

Once more, the use of Java seems to have hampered
creativity, favoring solutions that are easily implementable
with the language features. The typical strategy for Java-
based systems is simply to rely on the serialization mecha-
nism provided by Java, that allows to copy the full object
closure of an agent, while enabling the programmer to tag
those �elds that should not be serialized. Thus, data man-
agement upon migration is completely left to the program-
mer. Exceptions are the FarGo system [29], which intro-
duces an elegant model that aims at building a distributed
application out of (possibly mobile) components linked by
the aforementioned binding types, and the �Code system,
for which a package implementing the binding mechanism
described in [7] has been implemented. Among the non-
Java systems, once again the Telescript language already
had a sophisticated mechanism that ruled migration and
security through a single notion of ownership.

B. Other Relevant (and Open) Issues

The research challenge involved in providing support for
mobility does not end with the design of core mechanisms
and constructs that enable the relocation of software com-
ponents. Mobility introduces several other challenges, that
we are going to review brie
y in this section. Among these,
security is probably the one that attracted most research
e�orts, and also raised several concerns about practical uses
of mobile agents. It is not uncommon to hear people make
analogies with viruses when learning about code mobility.
To be fair, it must be said that the importance of secu-

rity is sometimes overestimated. A signi�cant example is
provided precisely by the network management application
domain discussed earlier, where the current security prac-
tice in the SNMP world is to protect accesses to the device
data through a password that is sent on the wire unen-
crypted. Clearly, in this domain the use of a mobile agent
system that does not provide security does not represent
a step backward, and yet it could provide the remarkable
bene�ts discussed in Section II-B.
In the applications for which security is indeed an is-

sue, two specular problems capture the attention of de-
signers. The �rst problem is how to protect a machine
that is executing foreign, untrusted mobile code. Most of
the issues raised by this problem can be successfully tack-
led by reusing or adapting well-known solutions already
developed, e.g., for Internet security. A notable excep-
tion to this statement is constituted by resource control,
at least for Java-based systems. A Java thread, the ex-
ecuting unit that typically embodies a mobile agent, can
run inde�nitely and consume all the resources of the as-
sociated JVM. Providing resource allocation in Java is an
open research issue, that is being targeted both inside (e.g.,
[22]) and outside (e.g., [30]) the mobile agent community.
On the other hand, many non-Java based systems, begin-
ning with Telescript, provide quite sophisticated resource
control mechanisms.
Nevertheless, the true conceptual challenge posed by mo-

bile agents to security is in the dual problem, i.e., protect-
ing the migrating code from the host that is executing it.
This problem is speci�cally introduced by migration, and
is complicated by the fact that the very same parts of the
agent that must be protected, i.e., its code and data, must
at the same time be disclosed to the host in order to enable
execution. Many scenarios that involve the use of mobile
agents for commercial transactions, e.g., those related to
e-commerce, are severely complicated by this security con-
cern. A solution to this problem has been initially claimed
impossible, until a few researchers showed that is at least
possible to prevent or detect tampering (see for instance
some of the papers in [31]).
Mobile agents introduce other new challenges, particu-

larly as far as communication is concerned. In conventional
distributed applications, the parties involved in communi-
cation are stationary, and thus communication channels
can be easily established and maintained. Instead, mo-
bile agents de�ne a scenario where the communication end-
points may be in continuous movement, and whose current



location may be diÆcult, if not practically impossible, to
track. Thus, as pointed out in [32], the problem of ensuring
reliable communication among mobile agents is not a mat-
ter of ensuring fault tolerance, like in distributed systems,
but is posed by the sheer presence of mobility even un-
der the assumption of a fault-free network. Typical mech-
anisms, like broadcasting or forwarding, may \miss" an
agent that is crossing the same link in the opposing direc-
tion, or may chase the mobile agent forever.
Most of existing systems ignore or circumvent this issue,

and typically provide either conventional mechanisms (e.g.,
remote procedure calls) without any adaptation for mobil-
ity, or restrict communication in some way, e.g., by limiting
it to co-located agents or by constraining agent movement.
Indeed, research is focusing more on de�ning new primi-
tives for inter-agent communication than on analyzing the
related guarantees. The Telescript language has inspired a
number of systems where a meet primitive belongs to the
default interface of agents, and can be invoked by other
agents in order to establish a sort of rendezvous. Some
systems provide communication among group of agents, ei-
ther by exploiting an event dispatching mechanism limited
to the scope of a host (e.g., Aglets [27]), through dedicated
primitives (e.g., Mole [33]). or by adapting a coordination
perspective that exploits tuple spaces, (e.g., Lime [34] and
MARS [35]).
Nevertheless, reliability, and in particular fault tolerance,

is an important issue in mobile agent systems, and a one
that impacts facets other than inter-agent communication.
We discussed in Section II how the ability to constrain the
scope of interactions to a local environment is a feature
of mobile agents that may enhance the fault tolerance of
the overall distributed system. Nevertheless, this is true
only if agent migration is itself fault tolerant, and if proper
mechanisms for local recovery are in place.
Like for communication, however, fault tolerance is often

neglected by mobile agent systems. Very few systems pro-
vide mechanisms to ensure fault tolerant migration, and
existing ones (e.g., [36], [37]) exploit heavyweight trans-
actional mechanisms that seriously compromise the whole
idea of mobile agent. On the other hand, many systems
provide some form of persistence for mobile agents, pro-
viding automatic or manual support for checkpointing.

V. Discussion and Open Issues

Mobile agent enthusiasts are often wondering why this
concept has not made it yet into the mainstream of dis-
tributed systems. The blame is typically placed on the lack
of proper security mechanisms, especially to protect agents
from malicious hosts. However, as we already pointed out,
this observation may hold for some speci�c application do-
mains, or for speci�c technologies, but cannot be consid-
ered to hamper the whole research �eld. We believe the
reason lies elsewhere.
A �rst reason is the way today's platforms convey the

mobile agent concept. Thus far, researchers have focused
too much on the technicalities of building a mobile agent
system, often losing the global picture of why that system

is being built. Too often, the systems contain features that
totally hamper achievement of some of the main bene�ts of
mobile agents. A macroscopic example is, for instance, the
aforementioned design choice of migrating code solely by on
demand dynamic download, which prevents by design the
capability to provide support for disconnected operations,
and heavily limits the overall autonomy of agents.
A related issue is the role of the Java language. It is

evident even from this concise introduction that Java con-
stitutes a double-edged sword for the �eld of mobile agents.
On one hand, it provides a lot of features that simplify the
life of the programmer of mobile agents. On the other
hand, this very fact determines a strong bias in the design
alternatives that are explored by designers, thus discourag-
ing them from exploring avenues of research that are less
tied to Java's idiosyncrasies|and possibly more fruitful.
Moreover, most of the current systems provide only the

mobile agent abstraction, which considers the unit of mi-
gration coincident with the unit of execution. Nevertheless,
in this paper we argued and provided evidence that mobile
agents are not always the best abstraction for a design in-
volving mobility, and the use of primitives that migrate
code or state separately from the unit of execution may
actually provide a better design.
Finally, the majority of current systems appears to be

designed with the goal to substitute, rather than comple-
ment, existing middleware for distributed systems. The
result is that they usually come packaged as stand-alone,
monolithic software, that is typically diÆcult to tailor to
speci�c needs. This clashes with the argument that mobile
agents are only one among the many solutions that can be
exploited by a designer, even in the context of the same
distributed application.
These reasons are probably a consequence of the rela-

tive immaturity of the �eld. Mobile agent systems simply
need to move out of the prototype phase towards a more
rationale design, whose goals and requirements are clearly
stated by taking into account the need to maximize the
advantages of mobile agents and to foster a smooth inte-
gration with mainstream techniques.
However, there is probably another reason that is cur-

rently reducing the acceptance of mobile agent, whose na-
ture is less technological. Mobile agents will be adopted
only when a suÆcient body of literature will provide in-
controvertible evidence about when and how much they are
useful. Unfortunately, case studies like those we presented
in Section II, that not only analyze thoroughly the impli-
cations of using mobile agents in a real application domain,
but also do it on a quantitative and experimental basis, are
still very rare. The mobile agent research community must
put more e�ort into validating its own outcomes, in order
to gain credibility outside.

VI. Conclusions

In this paper, we provided a brief introduction to the
research �eld concerned with mobile agents, touching also
on the more general topic of code mobility.
Mobile agents and mobile code are destined to in
uence



research in distributed systems for the years to come, by
setting the premises for a new wave of architectures that
exhibit a high degree of recon�gurability and adaptability.

Thus far, technology has been instrumental in dissem-
inating new design paradigms where application compo-
nents are not permanently bound to the hosts where they
execute. Further research is needed to consolidate the con-
ceptual foundations of this approach, as well as to assess
precisely the tradeo�s that will determine its applicability.

VII. Acknowledgements

The author wishes to thank Amy Murphy and Antonio
Corradi for their precious comments on early drafts of this
paper.

References

[1] G.-C. Roman, G.P. Picco, and A.L. Murphy, \Software Engi-
neering for Mobility: A Roadmap," in The Future of Software
Engineering, A. Finkelstein, Ed., pp. 241{258. ACM Press, 2000.

[2] C.G. Harrison, D.M. Chess, and A. Kershenbaum, \Mobile
Agents: Are they a good idea?," in Mobile Object Systems:
Towards the Programmable Internet, J. Vitek and C. Tschudin,
Eds., vol. 1222 of LNCS, pp. 25{47. Springer, Apr. 1997, Also
available as IBM Technical Report.

[3] S. Papastavrou, G. Samaras, and E. Pitoura, \Mobile Agents

for WWW Distributed Database Access," in Proc. of the 15th

Int. Conf. on Data Engineering (ICDE99), 1999.
[4] Sun Microsystems, \JDBC Technology," Available at http:

//java.sun.com/products/jdbc.
[5] M. Baldi and G.P. Picco, \Evaluating the Tradeo�s of Mobile

Code Design Paradigms in Network Management Applications,"
in Proc. of the 20th Int. Conf. on Software Engineering, R. Kem-
merer, Ed. Apr. 1998, pp. 146{155, IEEE CS Press.

[6] J. Case, M. Fedor, M. Scho�stall, and C. Davin, \Simple Net-
work Management Protocol," RFC 1157, May 1990.

[7] A. Fuggetta, G.P. Picco, and G. Vigna, \Understanding Code
Mobility," IEEE Trans. on Software Engineering, vol. 24, no.
5, 1998.

[8] D.B. Lange and M. Oshima, \Seven good reasons for mobile
agents ," Communications of the ACM, vol. 42, no. 3, 1999.

[9] D.L. Tennenhouse et al., \A Survey of Active Network Re-
search," IEEE Communications, vol. 35, no. 1, Jan. 1997.

[10] G. Cugola and C. Ghezzi, \Design and Implementation of
PROSYT: a distributed Process Support System," in Proc. of
the 8th Int. Workshop on Enabling Technologies: Infrastruc-
tures for Collaborative Enterprises, Stanford, CA, USA, June
1999.

[11] A. Carzaniga, G.P. Picco, and G. Vigna, \Designing Distributed

Applications with Mobile Code Paradigms," in Proc. of the 19th

Int. Conf. on Software Engineering (ICSE'97), R. Taylor, Ed.
1997, pp. 22{32, ACM Press.

[12] J.W. Stamos and D.K. Gi�ord, \Remote Evaluation," ACM
Trans. on Programming Languages and Systems, vol. 12, no. 4,
pp. 537{565, Oct. 1990.

[13] N.R. Jennings, \On Agent-Based Software Engineering," Arti-
�cial Intelligence, vol. 117, no. 2, pp. 277{296, 2000.

[14] G. Di Marzo Serugendo, M. Muhugusa, and C. Tschudin, \A
Survey of Theories for Mobile Agents," WWW Journal, vol. 1,
no. 1, 1998.

[15] C. Mascolo, G.P. Picco, and G.-C. Roman, \A Fine-Grained

Model for Code Mobility," in Proc. of the 7th European
Software Engineering Conf. held jointly with the 7th ACM
SIGSOFT Symp. on the Foundations of Software Engineering
(ESEC/FSE'99), O. Nierstrasz and M. Lemoine, Eds., Toulouse
(France), Sept. 1999, vol. 1687 of LNCS, pp. 39{56.

[16] J.E. White, \Telescript Technology: Mobile Agents," in Soft-
ware Agents, J. Bradshaw, Ed. AAAI Press/MIT Press, 1996.

[17] F. Hohl, \Mobile Agent List," http://mole.informatik.

uni-stuttgart.de/mal/mal.html.
[18] N.M. Karnik and A. Tripathi, \Design Issues in Mobile-Agent

Programming Systems," IEEE Concurrency, 1998.

[19] J. Kiniry and D. Zimmerman, \A Hands-On Look at Java Mobile
Agents," IEEE Internet Computing, vol. 1, no. 4, 1997.

[20] T. Thorn, \Programming Languages for Mobile Code," ACM
Computing Surveys, vol. 29, no. 3, pp. 213{239, Sept. 1997.

[21] T. Sakamoto and T. Sekiguchi and A. Yonezawa, \Bytecode
Transformation for Portable Thread Migration in Java," In Kotz
and Mattern [38].

[22] N. Suri et al., \Strong Mobility and Fine-Grained Resource
Control in NOMADS," In Kotz and Mattern [38], pp. 2{15.

[23] D. Johansen, F.B. Schneider, and R. van Renesse, \Operating
system support for mobile agents," in Mobility, Mobile Agents,
and Process Migration, D. Milojicic et al., Eds. Addison-Wesley,
1998.

[24] H. Peine and T. Stolpmann, \The Architecture of the Ara Plat-
form for Mobile Agents," in Mobile Agents: 1st Int. Workshop
MA '97, K. Rothermel and R. Popescu-Zeletin, Eds. Apr. 1997,
vol. 1219 of LNCS, pp. 50{61, Springer.

[25] R.S. Gray, G. Cybenko, D. Kotz, R.A. Peterson, and D. Rus,
\D'Agents: Applications and Performance of a Mobile-Agent
System," Software: Practice and Experience, 2001, to appear.

[26] M. Stra�er, J. Baumann, and F. Hohl, \Mole|A Java Based
Mobile Agent System," in Special Issues in Object-Oriented
Programming: Workshop Reader of the 10th European Conf. on
Object-Oriented Programming ECOOP'96, M. M�uhla�user, Ed.
July 1996, pp. 327{334, dpunkt.

[27] D.B. Lange and M. Oshima, Eds., Programming and Deploying
Java Mobile Agents with Aglets, Addison-Wesley, 1998.

[28] G.P. Picco, \�Code: A Lightweight and Flexible Mobile Code
Toolkit," In Rothermel and Hohl [39], pp. 160{171.

[29] O. Holder, I. Ben-Shaul, and H. Gazit, \Dynamic Layout of Dis-
tributed Applications in FarGo," in Proc. of the 21st Int. Conf.
on Software Engineering (ICSE'99), D. Garlan and J. Kramer,
Eds., Los Angeles, May 1999, pp. 163{173, ACM Press.

[30] G. Czajkowski and T. von Eicken, \JRes: A Resource Account-
ing Interface for Java," in ACM Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
Vancouver, Canada, Oct. 1998, pp. 21{35.

[31] G. Vigna, Ed., Mobile Agents and Security, vol. 1419 of LNCS,
Springer, 1998.

[32] A.L. Murphy and G.P. Picco, \Reliable Communication for
Highly Mobile Agents," in Proc. of the 1st Int. Symp. on Agent
Systems and Applications held jointly with the 3rd Int. Symp. on
Mobile Agents (ASA/MA'99), D.S. Milojicic, Ed., Palm Springs,
Oct. 1999, pp. 141{150, IEEE Computer Society, To appear also
in J. of Autonomous Agents and Multi-Agent Systems.

[33] J. Baumann et al., \Communication Concepts for Mobile Agent
Systems," In Rothermel and Hohl [39], pp. 123{135.

[34] G.P. Picco, A.L. Murphy, and G.-C. Roman, \Lime: Linda
Meets Mobility," in Proc. of the 21st Int. Conf. on Software
Engineering, D. Garlan, Ed., May 1999, pp. 368{377.

[35] G. Cabri, L. Leonardi, and F. Zambonelli, \Reactive Tuple
Spaces for Mobile Agent Coordination," In Rothermel and Hohl
[39], pp. 237{248.

[36] M. Stra�er K. Rothermel, \A Fault-Tolerant Protocol for Provid-
ing the Exactly-Once Property of Mobile Agents," in Proc. of the
17th IEEE Symp. on Reliable Distributed Systems (SRDS'98),
Los Alamitos, CA, USA, 1998, pp. 100{108.

[37] F.M. Assis Silva and R. Popescu-Zeletin, \An Approach for
Providing Mobile Agent Fault Tolerance," In Rothermel and
Hohl [39], pp. 14{25.

[38] D. Kotz and F. Mattern, Eds., Agent Systems, Mobile Agents,

and Applications|2nd Int. Symp. on Agent Systems and Appli-
cations and 4th Int. Symp. on Mobile Agents, ASA/MA 2000,
vol. 1882 of LNCS, Zurich, Sept. 2000. Springer.

[39] K. Rothermel and F. Hohl, Eds., Proc. of Mobile Agents: 2nd

Int. Workshop MA'98, vol. 1477 of LNCS, Stuttgart, Sept. 1998.
Springer.


