
Web Services 1

Luca Foschini

Università degli Studi di Bologna

Facoltà di Ingegneria

WEB SERVICES implementation and usage

Principles, Models, and Applications

for Distributed Systems M

Web Services 2

Differences between services offered on Web

and Web Services
Users can use services offered on a Web site using an
integrated system, C2B

Web Services (WS), instead, are standard to obtain via
web the mechanisms offered by a programming language

typically B2B

Based on HTML-compatible environments; in addition, we
assume to use tools that consider more recent and available
extensions such as XML (eXtensible Markup Language)

Open environment perspective

Web Services

Web Services 3

MIDDLEWARE AND COMPONENTS:

state-of-the-art and future directions

Providing services for distributed, pervasive, ubiquitous

computing

Services as systems or frameworks for integration and

composition of distributed objects.

MIDDLEWARE for system support

With portability across
heterogeneous
systems and security
checks guaranteesInternet

Object A

Object B

Object C

Web Services 4

Widely deployed MIDDLEWARES based on a
Client-Server architecture: RPC (C) and RMI (Java)

Problems:
– Dependant on a programming language

– Hard to integrate with existing (possibly legacy) systems and
tools

Object-oriented MIDDLEWARE

Internet

Object A

Object B

Object C

Web Services 5

Web Services as Integration MIDDLEWARE
SOAP (Simple Object Access Protocol)

WSDL (Web Services Description Language)

UDDI (Universal Discovery, Description and Integration)

and other extensions

To enable interoperability

using programming over

Web (exploiting XML)

Web Services as protocols and standards

Web

UDDI

Service

Provider

Service

Requestor

Publish Search

Find

WSDL

Description

Web Services 6

SOAP
Communication protocol for C/S interaction, for
both requests and responses

WSDL
XML-based language to describe available

services

UDDI

Name system to import and export the properties

of services

there are also other extensions.

Web Services: Protocols

Service

Description

XML-Based

Messaging

Network

WSDL

SOAP

HTTP, FTP, email,

MQ, IIOP, etc.

Web Services 7

XML allows to impose structure (not meaning) over typically
unstructured data.

XML is compatible with HTML, even for already existing
documents.

XML allows to omit information structure (if it exists and it
is known).

XML allows to use external tools for data validation,
elaboration, and management.

XML allows to use wrapping to refer to repeating
structures.

XML is the de facto standard for Web Services for
generalized use.

XML – advantages

Web Services 8

SOAP protocol designed to work over Web protocols while
supporting the specification, design and management of
components and operations.

Solution to support parameters and values as message payload

and for remote invocation of objects based on Web

technologies

PROJECT ASSUMPTIONS AND GUIDELINES

- XML to serialize data

- HTTP as transport protocol

Example

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>

<m:GetLastTradePrice>
<symbol>MOT</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP (SIMPLE OBJECT ACCESS PROTOCOL)

Web Services 9

SOAP Protocol

Envelope wraps the message

content

Header contains additional

informations (such as security

tokens)

Body wraps requests and

responses (typically, the message

to send)

Fault wraps possible errors and

exceptions

SOAP (SIMPLE OBJECT ACCESS PROTOCOL)

Web Services 10

Typical C/S interaction (between sender and receiver), but

with high interoperability

Client

application
SOAP Envelope

Server

application

Envelope

Header

............

.............

<SOAP-ENV:Body

<m:GetLastTradePrice xmlns:m="some -URI">

<m:symbol>IBM</m:symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

Body

SOAP (SIMPLE OBJECT ACCESS PROTOCOL)

Web Services 11

Protocol to send data:

- Platform independent data serialization

- Lightweight, resilient, flexible operations

- Support for almost all architectures

(.NET, J2EE, IBM WebSphere, Sun ONE)

Server

application
Client

application

XML Document XML Document

HTTP HTTP

SOAP (SIMPLE OBJECT ACCESS PROTOCOL)

Web Services 12

SOAP protocol specifies:

• interaction style

– document (one-way interaction)

– RPC like
• XML elements management

• transport

It DOES NOT specify local interaction

SOAP configures

a stateless interaction protocol

Without providing support to semantic informations of the
interaction contract

SOAP typically exploits web operations GET and POST

SOAP (SIMPLE OBJECT ACCESS PROTOCOL)

Web Services 13

A simple example: a financial application (client) uses a service that
provides real-time stock quotes.

This interaction involves the request of the latest quote of a capital
stock and the response from server.

Main steps:

Client application builds a request in XML format using the SOAP syntax

Client application sends the request to a web server via HTTP

Server receives and parses the request, transforms it to a command,
dispatches it to an application running on the server side

The application receives the command and retrieves from its
database the requested data (as an example)

The application builds a response in XML format and returns it to the Web
server

The Web server returns the result to the client as an HTTP response

SOAP and EXECUTION: example

Web Services 14

<POST /StockQuote/HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

SOAPAction: “Some-URI”

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

SOAP_ENV:encodingStyle=
”http://schemas.xmlsoap.org/soap/encoding/>

<SOAP-ENV:Body>

<m:GetLastTradePriceRequest xmlns:m=”Some-URI”>

<symbol>MOT</symbol>

</m: GetLastTradePriceRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP and XML (request)

Web Services 15

<HTTP/1.1 200 OK

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

SOAP-ENV:
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m=”Some-URI”>

<price>34.5</price>

</m: GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP and XML (response)

Web Services 16

<HTTP/1.1 200 OK

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

<SOAP:Envelope

XMLns:SOAP="HTTP://schemas.XMLSOAP.org/SOAP/envelope"

SOAP:encodingStyle=
"HTTP://schemas.XMLSOAP.org/SOAP/encoding">

<SOAP:Body>

<SOAP:Fault>

<faultcode>Client</faultcode>

<faultstring>Invalid Request</faultstring>

<faultactor>unknown</faultactor>

<detail>Requested stock…</detail>

</SOAP:Fault>

</SOAP:Body>

</SOAP:Envelope>

SOAP and XML (error)

Web Services 17

First definition:

WS (Web Services)

Platform and implementation independent software

components that can be:

• described using a service description language (WSDL)

• invoked using a remote API, usually over the network (SOAP)

• (published in a service registry (UDDI))

we will not present this aspect rmiregstry?!?

Web Services

Web Services 18

For WS, in addition to communication…

We need a mechanism to describe both abstract and concrete
service aspects

WSDL (Web Services Description Language)

A XML proposal to describe Web Services and
publishing them specifying the message format for both
requests and responses in a standard and portable way.

WDSL specifies:

• what a service can do (requests, responses and
parameters)

• where it resides

• how to invoke it

Web Services: WSDL

Web Services 19

To use an unknown Web service:

– get the WSDL file

– analyze the WSDL document to obtain

• service location

• method names and parameters

• how to access methods

– build a SOAP request

– send the SOAP request to the service and wait for a response

The rationale is to have a broad support and many facilities,
up to the complete automation by a middleware

Some parts of WSDL are similar to an IDL

Web Services Description Language

Web Services 20

WSDL basic elements

WSDL document

Types (type information for the document, e.g., XML Schema)

Message 1 Message 4Message 3Message 2

Operation 1 Operation 3Operation 2

Message 6Message 5

Interface (abstract service)

binding 1

endpoint 1

binding 2

endpoint 2

binding 3

endpoint 3

binding 4

endpoint 4

Service (the interface in all

its available implementations)

A
b

st
ra

ct
 d

es
cr

ip
ti

o
n

 o
f

th
e

se
rv

ic
e

C
o

n
cr

et
e

d
es

cr
ip

ti
o

n

o
f

th
e

se
rv

ic
e

Web Services 21

WSDL describes Web Services starting from the message
exchange between Requestor and Provider

Messages are described first in an abstract form, then in a more
concrete way (protocol and format)

A message is a collection of typed elements

An operation is a message exchange

An interface (portType v.1) is a collection of operations

A service is the implementation of an interface and it contains an

endpoint collection (port v. 1)

An endpoint is the concrete implementation of the service and it

includes all the concrete details needed for successful

communication

A binding is the link needed to request concrete operations

WSDL v 2.0 Architecture

abstract

concrete

Web Services 22

WSDL describes abstract and concrete aspects

WSDL 2.0

abstract

concrete

Web Services Descriptor

Service

Binding

Interface

Message

Types

Service

Interface

Definition

Service

Implementation

Definition

Message

. . .

Endpoint

Endpoint

Operation

Web Services 23

A WSDL document is composed by:

– Abstract parts

Type, Message, Operation, Interface

– Concrete parts

Binding, Endpoint, Service

WSDL defines first abstract elements, then the relative concrete
elements

The abstract version of the service is generalized, flexible and easily
extensible.

The concrete details are specified in each element that take part in
the service

A SERVICE in WSDL

Web Services 24

• type

A data type in a message using XML Schema

• message

Information actually exchanged between requestor and provider,

specialized as input, output, and fault messages

• operation

Specification of the name of a operation, its input and output

parameters and is composed by messages

• interface

A set of abstract operations and messages, identified by a

unique id, that corresponds to the service itself, and is unique in a

WSDL document.

Abstract elements in WSDL

Web Services 25

• binding details of the implementation and operations
contained in an interface

Specifies the actual protocol: transport and data coding

(HTTP, SOAP; SMTP; FTP; …)

• endpoint identifies the network address of the service

• service collection of related endpoints

It allows to group interfaces to emphasize the endpoints supported
by a service.

For example, all the endpoints associated to a transaction that
requires multiple steps

Concrete parts in WSDL

Web Services 26

The first section of a WSDL document describes the abstract data
types needed by operations

<types> <schema>

<element name="TradePriceRequest">

<complexType>

<all>

<element name="symbol" type="string"/>

</all>

</complexType>

</element>

<element name="TradePriceResponse">

<complexType>

<all>

<element name="price" type="float"/>

</all>

</complexType>

</element>

</schema> </types>

Web Services: WSDL types

Web Services 27

Then, the messages and operations description:

<message name="GetLastTradePriceInput">

<part name="body" element="xsd1:TradePriceRequest"/>

</message>

<message name="GetLastTradePriceOutput">

<part name="body" element="xsd1:TradePrice"/>

</message>

Each operation comprises a request and a response message,

grouped into an interface

<interface name="StockQuoteInterface">

<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceInput"/>

<output message="tns:GetLastTradePriceOutput"/>

</operation>

</interface>

WSDL message, operation, and interface

Web Services 28

A binding is a link between the interface name (type), one or more

operation names (name) and actions to execute (soapAction):

<binding name="StockQuoteSoapBinding“

type="tns:StockQuoteInterface">

<soap:binding>

<operation name="GetLastTradePrice“>

<soap:operation

soapAction="http://lia.deis.unibo.it/soap/bin/"/>

<input><soap:body use=“literal”/><input>

<output><soap:body use=“literal”/></output>

</operation>

…

</binding>

They refer to concrete implementation

WSDL binding

Web Services 29

The last part of a WSDL document describes the service

and the Web server to use to access it:

<service name="StockQuoteService">

<documentation>

Stock exchange service

</documentation>

<endpoint name="StockQuoteEndPoint"

binding="tns:StockQuoteBinding">

<soap:address location="http://www.stockquote.com"/>

</endpoint>

</service>

In addition it describes all needed concrete details

WSDL endpoint and service

Web Services 30

WSDL may be used as:

• description of the service contract IDL

• IDL specification starting point to compile the (Client-

side) stub

WSDL usage

service providerservice requestor

application object
(client)

application object
(service provider)

stub skeleton

WSDL of
service provider

WSDL compiler
(server side)

WSDL compiler
(client side)

SOAP-based
middleware

SOAP-based
middleware

SOAP messages

WSDL
generator

1
2

Web Services 31

Development process

Web Services 32

1. Download the file labWS.zip, extract it, and set the

destination directory as current directory (labWS)

2. Open the file setupEnv.bat and adapt it to your working

environment by setting the appropriate variables

• LAB_HOME=<full path to labWS directory>

• JAVA_HOME=<full path to JDK directory>

3. Run (in the current directory) setupEnv.bat from the

command prompt (this step completes the environment

setup)

Environment setup

Web Services 33

/* We already know Java RMI, let’s see the service declaration as Java

RMI remote interface */

public interface EchoInterface extends java.rmi.Remote {

public String echoString(String in0)

throws RemoteException;

public String appendString(String in0, String in1)

throws RemoteException;

public int sum(int in0, int in1)

throws RemoteException;

}

… there are tools (e.g. AXIS Java2WSDL) that automatically generate a

WSDL document from a Java interface

EchoInterface service: Java interface

Web Services 34

// Let us see now, for the same interface the WSDL document

<wsdl:message name="appendStringRequest">

<wsdl:part name="in0" type="soapenc:string"/>

<wsdl:part name="in1" type="soapenc:string"/>
</wsdl:message>

</wsdl:message>

<wsdl:message name="appendStringResponse">

<wsdl:part name="appendStringReturn" type="soapenc:string"/>
</wsdl:message>

<wsdl:message name="echoStringResponse">

<wsdl:part name="echoStringReturn" type="soapenc:string"/>
</wsdl:message>

<wsdl:message name="echoStringRequest">

<wsdl:part name="in0" type="soapenc:string"/>

<wsdl:message name="sumRequest">

<wsdl:part name="in0" type="xsd:int"/>

<wsdl:part name="in1" type="xsd:int"/>
</wsdl:message>

<wsdl:message name="sumResponse">

<wsdl:part name="sumReturn" type="xsd:int"/>
</wsdl:message>

EchoInterface WSDL: WSDL Types

Web Services 35

<wsdl:portType name="EchoInterface">

<wsdl:operation name="echoString" parameterOrder="in0">

<wsdl:input message="impl:echoStringRequest"

name="echoStringRequest"/>

<wsdl:output message="impl:echoStringResponse"

name="echoStringResponse"/>

</wsdl:operation>

<wsdl:operation name="appendString" parameterOrder="in0 in1">

<wsdl:input message="impl:appendStringRequest"

name="appendStringRequest"/>

<wsdl:output message="impl:appendStringResponse“

name="appendStringResponse"/>

</wsdl:operation>

<wsdl:operation name "sum" parameterOrder="in0 in1">

<wsdl:input message="impl:sumRequest" name="sumRequest"/>

<wsdl:output message="impl:sumResponse" name="sumResponse"/>

</wsdl:operation>

</wsdl:portType>

EchoInterface WSDL: interface

(WSDL v. 1 portType)

Web Services 36

<wsdl:binding name="EchoServiceSoapBinding“

type="impl:EchoInterface">

<wsdlsoap:binding style="rpc

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="echoString">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="echoStringRequest">

<wsdlsoap:body

encodingStyle=http://schemas.xmlsoap.org/soap/encoding/

namespace="urn:EsempioEchoService" use="encoded"/>

</wsdl:input>

<wsdl:output name="echoStringResponse">

<wsdlsoap:body

encodingStyle=http://schemas.xmlsoap.org/soap/encoding/

namespace="urn:EsempioEchoService" use="encoded"/>

</wsdl:output>

</wsdl:operation>

...

</wsdl:binding>

EchoInterface WSDL: binding

Web Services 37

<wsdl:service name="EchoInterfaceService">

<wsdl:port binding="impl:EchoServiceSoapBinding"

name="EchoService">

<wsdlsoap:address location=

"http://192.168.1.100:8079/axis2/services/EchoService"/>

</wsdl:port>

</wsdl:service>

EchoInterface WSDL: service and

endpoint (WSDL v. 1 port)

Web Services 38

We will use Apache AXIS library

It offers a set of tools for Web service development both

client and server side

In this lab, we will focus on the client side only

We will see two different implementation strategies:

– Direct call construction

– Automatic code generation (WSDL2Java compiler) and

stub usage for the remote invocation similar to RMI

EchoInterface WS Java invocation

Web Services 39

AXIS library provides several abstractions to simplify the

development process of WSs in Java

– Service: a generic WS

– Call: a single invocation (RPC like) of a remote

operation

– QName: an “XML qualified name” composed by an

URL that identifies the reference XML namespace and

a local name within the namespace

In addition… tools for automatic client stub

generation: WSDL2Java

Abstractions and Tools

provided by Apache AXIS

Web Services 40

ClientBuildCall.java 1/2

import javax.xml.namespace.QName;

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

public class ClientBuildCall {

public static void main(String[] args) {

try

{ String endpoint = // Set the remote endpoint as full URL

"http://192.168.1.100:8079/axis/services/EchoService";

Service service = new Service();

Call call = (Call) service.createCall(); // Build call

// Initialize the call object specifying the target endpoint
call.setTargetEndpointAddress(new java.net.URL(endpoint));

call.setOperationName(

// QName is the XML qualified name that references the requested operation
// specified within the WSDL document

new QName("http://192.168.1.100:8079/axis/services/EchoService",

"echoString"));

Web Services 41

ClientBuildCall.java 2/2

/* For multiple input/output parameters, AXIS uses java Object arrays

* Note: AXIS library automatically executes several support actions

* 1) converts the input from the locale format (Java) to serialized XML text;

* 2) wraps and sends the SOAP request;

* 3) receives and extracts the SOAP response;

* 4) converts the output from serialized XML text to local format (Java);

*/

String ret = (String) call.invoke(new Object[]{"Hello!"});

System.out.println("Result: " + ret);

} catch (Exception e) { System.err.println(e.toString()); }

} // main

} // ClientBuildCall

Web Services 42

1. Change current directory to the directory containing source

code:

> cd src

2. Compile:

> javac ClientBuildCall.java

3. Execute client:

> java ClientBuildCall

Try to call other services, by changing the source code

and repeating steps 2 and 3

Compilation and Execution step-by-step

Web Services 43

ClientStubCall.java

import java.net.URL;

import org.apache.axis.client.Service;

import EchoExample.EchoServiceSoapBindingStub;

public class ClientStubCall {
public static void main(String[] args) {

try // Use client stub automatically generated by WSDL2Java compiler
{ EchoServiceSoapBindingStub service =

new EchoServiceSoapBindingStub(

// We only need to identify the endpoint as URL
new URL("http://137.204.45.59:8079/axis/services/EchoService"),

new Service());

// The stub provides remote operations as local methods similar to RMI Stub

String result = service.echoString("Hello!");
System.out.println("Result: " + result);

} catch (Exception e) {

System.err.println(e.toString());

}

} // main
} // ClientStubCall

Web Services 44

1. Change current directory to the directory containing source

code:

> cd src

2. Compile the stub using the script generateClasses.bat
> generateClasses.bat EchoService.wsdl

3. Compile client:

> javac ClientStubCall.java

4. Execute client:

> java ClientStubCall

Try to call other services, by changing the source code and

repeating steps 3 and 4

Compilation and Execution step-by-step

