
RMI 1

Luca Foschini

Università degli Studi di Bologna

Facoltà di Ingegneria

Java RMI

(Remote Method Invocation)

Principles, Models, and Applications

for Distributed Systems M

RMI 2

RMI: motivations and main characteristics

Java Remote Procedure Call (RPC): RMI allows

remote Java methods execution seamlessly integrated with

OO paradigm.

Definition and main characteristics

Set of tools, policies, and mechanisms that allow a Java

application to call the methods of an object instatiated on a

remote host.

RMI locally creates a reference to remote object (instantiated

on a remote host).

The client application calls the needed remote methods using

this local reference.

Single working environment on heterogeneous systems

thanks to Java bytecode portability.

RMI 3

• Java does not directly provide remote references, but
using RMI it is possible to built them.

• Remote Method Invocation
– Two proxies: stub client-side and skeleton server-side

– Proxy pattern: these components hide the distributed aspect of the
application.

Remote objects access

• What are the differences respect
to calls to methods of a local
object?

– Reliability, semantics, duration, ...

• NOTE: it is not possible to
directly refer to a remote object
 need of an active

distributed framework

C 1 i n s t a n c e

C L I E N T n o d e S E R V E R n o d e

S 1 i n s t a n c e

S 1 S k e l e t o nC 1 S t u b

RMI 4

RMI architecture

Service

level

Stream-based

communication

protocol (TCP)

Only SYNCHRONOUS and BLOCKING interactions

Different

stub/skeleton

for each

application

Levels shared

by all

applications

RMI 5

• Stub e skeleton:

– Stub: local proxy that receives method invocations on behalf of the
remote object

– Skeleton: remote entity that receives method invocations made on the
stub and invokes them on the real object

• Remote Reference Layer (RRL):

– Manages remote references, parameters and stream-oriented connection
abstraction

• Transport Layer

– Manages connections between different JVMs

– Can use different transport protocols, as long as they are connection-
oriented  typically TCP

– Uses a proprietary protocol

• The name system, Registry: name service that allows to the server
to publish a service and to the client to obtain the proxy to access it.

RMI layered architecture

RMI 6

Distributed objects model
For the Java distributed objects model, a remote object is:

• An object whose methods can be invoked from another JVM, that may be
running on a different host;

• The object is described by remote interfaces that declare available methods.

Local invocation vs. remote invocation
The client invokes remote object methods using the remote reference
(interface variable)

• Same syntaxtransparent

Always synchronous blocking invocation

• Semantic: different

– Local invocationmaximum reliability

– Remote invocation: communication could fail

 “at most once” semantic (using CTP)

– Remote server: each invocation is processed independently and
parallel to others (typically multi-threaded parallel servers)

RMI features

RMI 7

A few practical observations

• Separation between

– Behavior definition  interface

– Behavior implementation  class

• Remote components are referred to using interface
variables

1. Behavior definition using
• an interface that must extend java.rmi.Remote

• each method must declare that it may throw
java.rmi.RemoteException

2. Behavior implementation, class that
• implemenst the previously described interface;

• extends java.rmi.UnicastRemoteObject

Interfaces and implementation

RMI 8

1. Define interfaces and implementations of the component to be
used from remote hosts

2. Compile the classes (using javac) and generate stub and skeleton
(using rmic) of the classes to be used from remote hosts

3. Publish the service on the registry name service

– start the registry

– register the service (the server must send a bind request to the registry)

4. Obtain (client-side) the reference to the remote object sending a
lookup request to the registry

After the last step, client and server can interact.

Note: this is a simplified workflow, next slides will give more details
on the registry and dynamic class loading.

Steps to develop a Java RMI

RMI 9

Implementation: interface

public interface EchoInterface
 extends java.rmi.Remote {

 String getEcho(String echo)
 throws java.rmi.RemoteException;
}

• The interface extends the Remote
interface

• Each method:

– Has to declare that it could throw a
RemoteException, i.e. remote method
invocation is NOT completely
transparent

– Returns only one result and has zero,
one or more input parameters (no
output parameters)

– Accepts parameters either by value
(primitive data types or Serializable
objects) or by reference (Remote
objects)  more details in the following
slides.

RMI 10

Implementation: Server

public class EchoRMIServer
 extends java.rmi.server.UnicastRemoteObject
 implements EchoInterface{

// Costruttore
 public EchoRMIServer()
 throws java.rmi.RemoteException
 { super(); }

 // Implementazione del metodo remoto
 dichiarato nell'interfaccia
 public String getEcho(String echo)
 throws java.rmi.RemoteException
 { return echo; }

 public static void main(String[] args){
 // Registrazione del servizio
try
 {
 EchoRMIServer serverRMI =
 new EchoRMIServer();
 Naming.rebind("EchoService", serverRMI);
 }
catch (Exception e)
{e.printStackTrace(); System.exit(1); }
 }

}

Registering service

• Accepts bind and rebind

requests only by the local

registry

The class that implements the

server

• Has to extend the

UnicastRemoteObject class

• Has to implement all the methods

declared by the interface

A process running on the server

host registers all the services:

• Makes as many bind/rebind as

the server object to register,

each one with a logic name

RMI 11

public class EchoRMIClient
{
 // Avvio del Client RMI
 public static void main(String[] args)
 {

 BufferedReader stdIn=
 new BufferedReader(
 new InputStreamReader(System.in));
 try
 {
 // Connessione al servizio RMI remoto
 EchoInterface serverRMI = (EchoInterface)
 java.rmi.Naming.lookup("EchoService");

 // Interazione con l'utente
 String message, echo;
 System.out.print("Messaggio? ");
 message = stdIn.readLine();

 // Richiesta del servizio remoto
 echo = serverRMI.getEcho(message);
 System.out.println("Echo: "+echo+"\n");
 }
 catch (Exception e)
 { e.printStackTrace(); System.exit(1); }

 }
}

Implementation: Client

Services used exploiting an

interface variable obtained

by sending a request to

the registry

Lookup of a remote reference,

namely a stub instance of the

remote object (using a lookup

and assigning it to a interface

variable)

Remote method invocation:

– Synchronous blocking
method using the
parameters declared in the
interface

RMI 12

• Service localization: a client running on a host that needs a service, has to find
a server, running on another host, that provides it.

• Possible solutions:

– The client knows the address of the server

– The user manually configurates the client and selects the server’s address

– A standard service (naming service) with a well known address that the client knows,
takes the forwarder role

RMI Registry

N a m e R e fe re n c e

E c h o

D a y tim e

L o g in

E c h o

S e rv e r

D a y tim e

S e rv e r

L o g in

S e rv e r

• Java RMI uses a
naming service called

RMI Registry

• The Registry mantains
a set of couples

{name, reference}

– Name: arbitrary
string

• There is NO location
transparence

RMI 13

java.rmi.Naming class methods:
public static void bind(String name, Remote obj)

public static void rebind(String name, Remote obj)

public static void unbind(String name)

public static String[] list(String name)

public static Remote lookup(String name)

Each of these methods sends a request to the RMI registry identified by host
and port as location

name  combines the registry location and the logic name of the service,
formatted as: //registryHost:registryPort/logical_name

– registryHost = address of the host where the register is running

– registryPort = port where the registry is listening (default 1099)

– logical_name = name of the service that we want to access

Registry activation (on the server): use the rmiregistry application, started
in a shell on its own, optionally specifying the port to use (default 1099):

rmiregistry or rmiregistry 10345

N.B.: the registry is activated in a new JVM instance

Naming Class and Registry activation

There is NO
location
transparency

RMI 14

Compilation and Execution

Compilation

1. Compilation interface and classes
javac EchoInterface.java

EchoRMIServer.java

EchoRMIClient.java

2. Build Stub and Skeleton executables
rmic [-vcompat] EchoRMIServer

Note: when using Java 1.5 and above pass the -vcompat option to rmic

Execution

1. Server side (registry and server)

• Start registry: rmiregistry

• Start server: java EchoRMIServer

2. Execution: java EchoRMIClient

EchoRMIServer_Stub.class

EchoRMIServer_Skel.class

RMI 15

Parameters passing – remote

Local:
• Copy primitive data types
• By reference all Java objects (“by address”)

Remote: (problems when referring to non local entities and contents)
• By value  primitive data types and Serializable Object

– Objects whos location is not relevant to the state can be passed by value: the object is
serialized, sent to the destination and deserialized to build a local copy

• Passing by remote reference Remote Object via RMI
– Object whose utility is bound to their locality (server) are passed by remote reference:

the stub gets serialized and dispatched to the other peer. Each stub instance identifies a
single remote object using an identifier (ObjID) which is unique in the context of the JVM
in which the target object exists.

Type Local Method Remote Method

Primitive data type By value By value

Objects By reference By value (Serializable interface, deep copy)

Remote object By remote reference (Remote interface)

RMI 16

In general, RPC systems apply a double transformation to input and
output parameters to solve problems related to heterogeneous
representations:

– Marshalling: action that codes arguments and results to be transmitted

– Unmarshalling: reverse action that decodes arguments and results

Thanks to the use of bytecode (interpreted and independent of the local system),
Java does not need un/marshalling, the objects are simply de/serialized using
mechanisms provided by the language

– Serialization: transformation of complex objects into simple byte sequences

• writeObject() method on an output stream

– Deserialization: decoding of a byte sequence and building of a copy of the original
object

• readObject() method on an input stream

Stub and skeleton use these mechanisms to exchange input and output
with the remote host

Serialization

RMI 17

Sample serializable “Record” object written on streams
Record record = new Record();

FileOutputStream fos = new FileOutputStream(“data.ser”);

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(record);

FileInputStream fis = new FileInputStream(“data.ser”);

ObjectInputStream ois = new ObjectInputStream(fis);

record = (Record)ois.readObject();

This technique is appliable only to serializable objects, i.e. objects that:
– Implement the Serializable interface

– Contain only serializable objects (internal fields)

NOTE:

The real object is NOT transferredo, Java only sends the data that characterize
the specific instance

– no methods, no costants, no static variables, no transient variables

Upon deserialization, Java builds a a copy of the “received” instance exploiting
the .class file (that must be available!) of the object and the data received.

Using streams for object TX/RX

RMI 18

Modify the echo server

 Message sent as serializable object instead of String

public class Message implements Serializable

{ String content;

// … other fields

// Costructor

public Message(String msg){ content=msg; }

public String toString(){ return content; }

}

The object gets tranferred as its whole content

Serialization: example

RMI 19

Stub and Skeleton

• Stub and Skeleton

– Allow calling a remote service as if it was local (they act as proxies)

– Are generated by the RMI compiler

– Java environment natively supports de/serialiation

• Communication algorithm

1. The client obtains a stub instance

2. The client calls the desired methods on the stub and waits for result

3. The stub:

• Serializes the information needed for the method invocation (method id and
arguments)

• Sends informations to the skeleton exploiting the RRL abstractions

4. The skeleton:

• Deserializes the received data

• Calls the method on the object that implements the server (dispatching)

• Serializes the return value and sends it to the stub

5. The stub:

• Deserializes the return value

• Returns the result to the client

RMI 20

RMI details

RMI 21

Stub and Remote References

HostClient

JVMClient

Client

HostServer

JVMServer

rmiregistry

r1

s1

The Client uses the RMI Server implemented by the Service class
exploiting the reference to the local stub stub1 (instance of the
Service_Stub class provided to the client by the registry)

Service_Stub contains a RemoteRef (r1) that allows the RRL to reach
the server

RemoteRef

Service_Stub

stub1

Service

RMI 22

The Registry is itself a RMI Server
– Interface: java.rmi.registry.Registry

– Class that implements it: sun.rmi.registry.RegistryImpl

public interface Registry extends Remote {

public static final int REGISTRY_PORT = 1099;

public Remote lookup(String name)

throws RemoteException, NotBoundException, AccessException;

public void bind(String name, Remote obj)

throws RemoteException, AlreadyBoundException, AccessException;

public static void rebind(String name, Remote obj)

throws RemoteException, AccessException;

public static void unbind(String name)

throws RemoteException, NotBoundException, AccessException;

public static String[] list(String name)

throws RemoteException, AccessException;

}

It is possible to instantiate a new registry using the following method:

public static Registry createRegistry(int port) that is provided by the
LocateRegistry class

This method creates a registry in the same instance of the JVM of the calling process

Registry implementation

RMI 23

RMI architecture (again)

Service

level

Stream-based

communication

protocol (TCP)

Only SYNCHRONOUS and BLOCKING interactions

Different

stub/skeleton

for each

application

Levels shared

by all

applications

RMI 24

Stub
• It relies on the Remote Reference Layer (RRL)

– Extends java.rmi.server.RemoteStub

– Implements java.rmi.Remote and the remote interface of the server (e.g.
EchoInterface)

– Contains an instance of the reference to the remote object (super.ref,
class java.rmi.server.RemoteRef)

• The stub invokes methods, manages the de/serialization, and
sends/receives arguments and results

…

// call creation

java.rmi.server.RemoteCall remotecall =

super.ref.newCall(this, operations,

0, 6658547101130801417L);

// parameters serialization

try{

ObjectOutput objectoutput =

remotecall.getOutputStream();

objectoutput.writeObject(message);

}

…

// method invocation, using RRL

super.ref.invoke(remotecall);

…

// de-serialization of the return value

String message1;

try{

ObjectInput objectinput =

remotecall.getInputStream();

message1 = (String)objectinput.readObject();

}

…

// signal end of call to RRL

finally{

super.ref.done(remotecall); //why is it needed?

}

// return result

// to application layer

return message1;

…

Integer that identifies the
method requested

RMI 25

Skeleton

• Skeleton manages de/serialization, sends/receives data relying on
RRL, and invokes requested methods (dispatching)

• dispatch method invoked by RRL, having a input parameters

– Reference to the server (java.rmi.server.Remote)

– Remote call, operation id and interface hash

public void dispatch(Remote remote,

RemoteCall remotecall,

int opnum, long hash)throws Exception{

…

EchoRMIServer echormiserver =

(EchoRMIServer)remote;

switch(opnum){

case 0: // operation 0

String message;

try{ // parameters de-serialization

ObjectInput objectinput =

remotecall.getInputStream();

message =

(String)objectinput.readObject();

}

catch(…){…}

finally{ // free the input stream

remotecall.releaseInputStream();

}

// method invocation

String message1 = echormiserver.getEcho(message);

try{ // serialization of the return value

ObjectOutput objectoutput =

remotecall.getResultStream(true);

objectoutput.writeObject(message1);

}

catch(…){…}

break;

… // manage other methods

default:

throw new UnmarshalException("invalid ...");

} //switch

} // dispatch

RMI 26

Transport level: concurrency
• Specification very open

– Communication and concurrency are crucial aspects

– Freedom to realize different implementations but

• Implementation  Parallel thread-safe server

i.e. application layer must manage concurrency-related
aspects  use locks: synchronized

• Process for each service request

RMI typically uses Java threads  built on request

This means that there is a thread for each invocation on
the remote object running on a JVM

• Given the thread building policy, who does implement it?

read the skeleton code  typically does not build threads

(which component can manage concurrency and instantiate
threads?)

RMI 27

Transport level: communication

• The specification is open
– It only defines some guidelines about reasonable resource usage

• If there is already a connection (transport level) between two JVM,
try to reuse it.

• Many possibilities
1. Open a single connection and use it to send one request at

time  strong request serialization effects

2. Use an already established connection if it is free, else
open another connection  uses more resources
(connections), but the serialization effects are smoothed

3. Use a single connection (transport layer) to send multiple
requests, and use demultiplexing to send requests and receive
responses

S
e
ria

liz
a
tio

n
 e

ffe
c
ts

RMI 28

Deployment issues

• A RMI application needs local access to the .class files (for exection
and de/serialization)

• Server needs to access:

– Interfaces that define the service compile time

– Service implementation compile time

– stub and skeleton of the class that implement the service run time

– other classes used by the server compile time and run time

• Client needs to access:

– Interfaces that define the service compile time

– stub of the class that implements the service run time

– other classes used by the server needed by the client (e.g. return
values) compile time and run time

– other classes used by the client compile time and run time

RMI 29

RMI Registry: the bootstrap problem

How does the system start (bootstrap) and how does it find
the remote reference?

– Java provides the Naming class, that in turn provides
static methods for un/binding and to locate the server

– The methods to send requests to the registry need the
stub of the registry

– How to obtain a stub instance of the registry without using
the registry?

Locally built stub using:
• Server address and port contained in the remote object

• Identifier (local to the server host) of the registry object mandated by
the RMI specification fixed constant

RMI 30

Security and registry

Problem: accessing the registry (that can be found with a port scanner)
it is possible to maliciously redirect the invocations to registered
RMI servers

(e.g. list()+rebind())

Solution:

The methods bind(), rebind() and unbind() can be invoked only from
the host on which the registry is running

 external nodes can not modify the client/server structure

Note: this means that on the machine that hosts servers that invoke
registry methods, there must be at least one registry running

RMI 31

Bibliography

• Oracle website:

– http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

• W.Grosso, “Java RMI”, Ed. O’Reilly, 2002

• R. Öberg, “Mastering RMI, Developing Enterprise Applications in
Java and EJB”, Ed. Wiley, 2001

• M. Pianciamore, “Programmazione Object Oriented in Java: Java
Remote Method Invocation”, 2000

Contacts – Luca Foschini:

– E-mail: luca.foschini@unibo.it

– Home page: www.lia.deis.unibo.it/Staff/LucaFoschini

RMI 32

Classpath and execution

Rmiregistry, server and client must access to the various classes needed for
execution. It is important to take care at the working directory of registry,
server andclient

Assuming that all the .class files are in the current directory (“.”), and that we are
starting the registry, client, and server from the current directory, we must add
that directory to the classpath.

Using Linux: edit in your HOME directory the ".profile" file (create it if it
does not exist). The .profile file must contain the following lines to add
the current directory to the CLASSPATH:

CLASSPATH=.:$CLASSPATH

export CLASSPATH

The course’s FAQ describes the PATH environment variable too

What if we want to start client, server and registry from different
directories?

RMI 33

RMI Class loading

Java uses a ClassLoader, namely an entity that can
dynamically load classes and can refer to and find classes
whenever such necessity raises

Classec can be loaded both from the local disk
and from the network (e.g. applets) enforcing
different security levels

Java allows the definition of a hierarchy of
different ClassLoaders, each one
responsible for the loading of different
classes. They can be even defined by
the user

ClassLoaders have separate domains and
can not interfere with each other. They can
even be inconsistent.

Security Enforcing managed by the Security Manager

bootstrap
class loader

(java.*)

system
class loader
(CLASSPATH)

Other
class loader

Other
class loader

RMI 34

RMI Class loading

Java defines a hierarchy of different
ClassLoaders, each one responsible for a
different set of classes. They can be
specialized by the user-

Classloader: resolves class names used in
class definitions (code – bytecode)

Java RMI Codebase classloader:
responsible for the loading of classes that
can be reached using a standard URL
(codebase) even remote

RMIClassLoader IS NOT a real ClassLoader,
instead it is a RMI support component that
executes two crucial tasks:

– Extracts the codebase field from the
reference of the remote object

– Uses the codebase classloader to load the
needed classes from the remote location.

bootstrap
class loader

(java.*)

system
class loader
(CLASSPATH)

codebase
class loader

(URL1)

codebase
class loader

(URL2)

RMIClassLoader

codebase loader table

RMI 35

RMI Security

Every JVM, can have a Security Manager, a component that checks the
correct execution of each operation and makes sure that there are no
security breaches

• Both the client and server must be started specifying the file containing
the requested privileges (policy file) interrogated by the security
manager (for dynamic security control)

• To safely execute code, Java RMI requires a RMISecurityManager
– RMISecurityManager checks the accesses (specified in the policy file) to system

resources and blocks unauthorized accesses

– The security manager is created within the RMI application (both client side, and
server side), if there isn’t already one

if (System.getSecurityManager() == null)

{System.setSecurityManager(new RMISecurityManager()); }

• Examples:
– Client: java -Djava.security.policy=echo.policy EchoRMIClient

– Server: java -Djava.security.policy=echo.policy EchoRMIServer

RMI 36

Policy file

• Policy file structure:

grant {

permission java.net.SocketPermission "*:1024-65535", "connect, accept";

permission java.net.SocketPermission "*:80", "connect";

permission java.io.File Permission "c:\\home\\RMIdir\\-", "read";

};

• The first permission allows client and server to establish connections
for remote interaction (non-privileged ports)

• The second permission allows to get bytecode from a http server
listening on port

• The third permission allows to get bytecode from the root of the
allowed directory.

RMI 37

Dynamic code downloading

It may be necessary to dynamically load code (stub or classes)

• Steps:

1. Find the code (local or remote)

2. Download it (if it is remote)

3. Safely execute the code

• The information about code repositories are stored at server side and are
sent to the client when needed:

– RMI Server started specifying the option

java.rmi.server.codebase the URL where necessary classes are stored

– The URL can be

• A HTTP server (http://)

• A FTP server (ftp://)

• A local directory (file://)

• codebase is a server property that is stored in the RemoteRef published
on the registry (i.e. contained in the stub instance)

• Classes are looked for first in the local CLASSPATH, then in the
codebase

RMI 38

Using codebase

• codebase (stored in a
RemoteRef) is used by the
client to download the classes
related to the server
(interfaces, stub, objects sent
as return value)

– NOTE: difference between
stub instance and class

• What happens when there is a
parameter passing by value
(from the client to the server)
of an object that is an instance
of a class unknown to the
server?

– The server uses the
codebase to download the
classes related to the client
(objects passed as calling
parameters)

