
Principles, Models, and Applications

for Distributed Systems M

Luca Foschini

Università degli Studi di Bologna

Facoltà di Ingegneria

Lab assignment 1

Java Multithreading

Lab1 1

Reference architecture

Subscriber2

1. put

Subscriber1

while(!EOF){

 read();

}

E3 E2 E1
4. push e

isMessage

Editor1

for(…){

 put(…); // 1.

 Thread.

 sleep(3000);

}

Editor2

EditorM

Channel

while(true){

 sleep(…);

 notifyMsg();

}

E3 E2 E1

SubscriberN

Let us consider

this diagram

Lab1 2

Assignment (step-by-step): Step 1

Change the editor to allow multiple editors

add a new field to be used as Editor identifier, as already happens for

Subscribers

• Remove the input from console generation, replacing

it with automatic generation of strings. The new Editor

executes N_PUBBLICATIONS, for example 7: each

publication (String) contains the identifier of the

publisher and the number of the current iteration; for

example: "E1, publication 1".

• The time between one generation and one another is 3

seconds.

• Modify the test program and see what happens when

several editors use the same channel.

Lab1 3

Change the Channel architecture in order to decouple the

event generation time and the event notification time.

Redefine the Channel as an autonomous and active entity

to better separate other application entities.

The final operation to be obtained is the following: Publishers

publish events, generated asynchronously, to the Channel

and the active Channel, every 2 seconds, notifies all the

events received by editors during the last period (i.e. 2

seconds) to all registered subscribers.

Lab1 4

Assignment (step-by-step): Step 2

Let us note that to obtain the desired behavior it is necessary to change the

Channel by making it an active process (a Java Thread) and by adding an

event queue.

With a closer view to implementation details:

 The Channel is a thread and realizes the behavior described in the previous
slide. The event queue is a String array with MAX_EVENTS elements
(String[MAX_EVENTS]). Along with the updates of that data structure you

will need to update a counter (realized as an int) that indicates the array
filling level.

 Note: the data structure containing the event has finite size. Hence, the put

in method should suspend when event queue full of the Channel (by using a
wait()). In other words, Editor threads will suspend until there is (again)

room in the queue.

 The Editor is the same as described in step 1. Let us note that, compared to
the Editor designed in the worked-out assignment, this Editor does not
publish the EOF, because the interaction with the human user has being
replaced by an automatic generation.

 The Subscriber is unchanged: it prints to standard output (screen) a number
of events, e.g., MAX_EVENTS, and then it ends. Lab1 5

Assignment (step-by-step): Step 2 – Details

