
Lab0 1

Principles, Models, and Applications for

Distributed Systems M

Luca Foschini

Università degli Studi di Bologna

Facoltà di Ingegneria

Lab assignment 0 (worked-out)

Java Multithreading

Often, local patterns, modes, strategies are useful

models and paradigms static/dynamic

models and strategies proactive/reactive

execution models for the system

monouser/multiuser

single-processor/multi-processor

models for active execution

processes/objects replication

models for allocation entities

processes/objects static/dynamic decisions

Some Basic Models

Lab0 2

Static models / Dynamic models
The number of users of an application is predefined

Users can be added / removed

The number of processes in one application is predefined

The number of processes can change during execution

The maximum number of nodes is predefined

The participating processors may also greatly increase

The number of customers of a service is predefined

The number of services (throughput) is not predefined

The servants are known and predefined

Services (servers) have to change in the number and type

Intermediate servers catalog and activate servants

STATIC and DYNAMIC MODELS

Lab0 3

Execution of one or more applications

Monouser: the use of a dedicated system is typical of
prototype phases

Multiuser: several users can form a better mix of the
executable entities / systems

workstation model
preferably using local resources

processor pool model
resources are used in a transparent way according to
their use and availability

EXECUTION MODEL

Lab0 4

Resources during execution

Processes: active entities capable of performing

- local actions on their environment and
- distributed communication actions with other processes by using

shared memory and message passing

Using external data to the processes themselves (low confinement)

Object entities as an abstraction, the ability to

- enclose and hide internal resources (data abstraction) with
external visibility of operations

- act on internal resources upon external operation requests

Passive objects: data abstractions run by external entities

Active objects: entities capable of execution and scheduling

RESOURCE MODEL

Lab0 5

Passive objects
The PASSIVE object models predict that processes (external to the objects
themselves) can run across the objects and execute methods

- model with a low confinement

- little protection

- interference between different
processes

Active objects
The ACTIVE object models are more close in terms of execution: the
external processes are not allowed to enter, but only to submit requests.
Who run are only internal processes inside active object

- protected objects

- completely (self-)determined

EXECUTION and OBJECTS

STATO STATO

STATO STATO

richiesta esplicita e risposta Lab0 6

Active objects
Active Objects independently

decide their internal behavior

and hide it by confining it

Each active object encloses the

needed concurrency capacity and

defines its own local management of

concurrency, preventing possible

interferences

ACTIVE OBJECTS

 CODA DELLE

ATTIVITA'

CODA DELLE

RICHIESTE

SCHEDULER

RICHIESTE DA

ALTRI OGGETTI

Parte Parallela

Parte non Parallela

v0

v1

v2

v3

ATTIVITA'

m3m2m1m0

METODI

STATO

m4

Stato di Scheduling

Oggetto

GESTORE

Lab0 7

Support automatically adds all the
functions for self-determination

- The tail of external demands

- The tail of the internal activities

- The realization of the scheduling
policy

- The management of the
activation of internal processes

- The management of their termination

- The delivery of results

- The management of error handling

Mechanisms given by the support
Policies left to the user

ACTIVE OBJECTS

 CODA DELLE

ATTIVITA'

CODA DELLE

RICHIESTE

SCHEDULER

RICHIESTE DA

ALTRI OGGETTI

Parte Parallela

Parte non Parallela

v0

v1

v2

v3

ATTIVITA'

m3m2m1m0

METODI

STATO

m4

Stato di Scheduling

Oggetto

GESTORE

Lab0 8

OBJECTS AND CLASSES - digression

Interfaccia

origine

vertice

Stato

Metodi

metodi dati

interfaccia

Passive objects as data and methods

Methods are invoked by the interface and made visible from
the outside

Data is typically protected and not visible from the outside

Data (attributes) are

- Primitive data (e.g., an integer variable called origin)

- References to other objects (e.g., a typed link to another object)

Lab0 9

CLASSES (digression: not too much)

istanze

metodi

classe AGV
modello

posizione

portata

velocità
. . . .

vaiA scaricacarica

abbassasolleva

variabili

valori valorivalorivalori

veicolo a guida

automatica

Interfaccia

origine

vertice

Stato

Metodi

In class-based systems, the classes

- contain methods in a unique way for all instances

- specify for each instance internal data/types (primitive or not)

if the types are not primitive but other objects, the class specifies
what class the references must be

Are there classes at run-time?
Lab0 10

CLASSES at RUNTIME

istanze

metodi

sottoclasse C

va

vb

. . . .

ma mc mb

variabili

valori valorivalorivalori

. . . .

metodi

superclasse SC
v1

v2

. . . .

m1 m3 m2

variabili

. . . .

The classes are present at run-time and loaded dynamically

Are loaded into a heap to find the methods and static variables at
run-time

Also objects are loaded dynamically and refer to their class
for their behavior

The classes are often
related by inheritance and
an instance is expected to refer
to one class and
many superclasses

(you can call

both m1 exposed by SC
and ma exposed by C)

Lab0 11

CLASSES vs INTERFACES

In modern architectures, the interfaces are the contract of
interaction (in Java are programming-level entities)

The classes describe the specific implementations (and are unique

entities describing the behavior of instances)

OO languages often provide inheritance for both

Multiple inheritance (multiple parents) - natural for interfaces

Simple inheritance (single parent) - typical for classes

In Java, interfaces are organized in graphs – and classes may
implement multiple interfaces - but classes are in the inheritance
chain, greatly simplifying support for instances:

An instance requires only the loading of a class (defined)
and all classes in inheritance

Each method is dynamically bound simply by passing
through the chain of classes from the definition class
(ease in the production of static code and dynamic support)

Lab0 12

MULTIPLE INHERITANCE

In OO languages with multiple inheritance between classes (C++,
VBasic,... and branches), the dynamic exploration is on a graph of
classes and, in these systems, the method to execute the search
becomes more complex

There are several classes to match and in the order established by
the inheritance

It applies:

Overriding

and in order

inheritance

in concentrated

systems

superclassi di primo livello

metodi

classe di
attributo1
. . . .

met3 met5met4

metodo2metodo1

variabili

desc.

definizione

descrizioni di variabili e di metodi

desc. desc. desc.

attributo2

attributo3

attributo4

Lab0 13

by-REFERENCE SEMANTICS

The objects do not contain other objects

In object systems, non-primitive attributes have a by-reference semantic:
they contain only references

Through a variable (with a type), it is possible to refer another instance

Changing variable value it is possible to refer another instance afterwards

Passive objects are arranged in a graph of references between themselves
at runtime

unRettangolo

originerett1

vertice

1,1

10,11

unPunto

unPunto

Lab0 14

Lab0 15

Lab assignment: Event Model exercise

The event model architecture involves the

interaction of at least two types of processes:

– the publisher is the process that produces the events;

– the subscriber is the process (or processes, since

several interested subscribers may register with the

same publisher) that registers with the publisher to

receive events.

When a new event occurs, the publisher notifies it

to all subscribers registered with him and returns

to listening to a new event.

Lab0 16

Reference architecture

Editor Subscriber2

Channel

Input

File

1. reads

3. notifyMsg

2. puts

Subscriber1

while(!EOF){

read();

}

E3 E2 E14. push

SubscriberN

Lab0 17

Some more details…

In the worked-out implementation shown here, in addition to the

two entities specified above (called in the following Editor and

Subscriber), we introduce a third entity called Channel.

The Channel is not a process, but a passive object that

maintains the list of all Subscribers and implements the

notification method, actively executed by the Editor as shown in

the previous figure.

In our system, the events are strings cyclically read from the

input console (keyboard) from the Editor process.

A small test program to verify all implemented entities will also

be shown.

Lab0 18

Java: Objects and Threads

Java provides two ways to implement threads:

- as a subclass of Thread class;

- as a class that implements the Runnable interface.

In any case, let us note that a single Java object that

implements a thread has a “double nature” of:

• passive object: all methods except the run() method;

• active object: application method specified within the
run() method.

Lab0 19

The Editor is a cyclic process that reads from the
console (namely, the input file), until the end of
the input file, the events represented by strings
edited by the user, and then places them in the
Channel.

The process behaves as a filter that consumes
all its input until the end of file; it has also to
signal other processes of the termination event.

Single entity specification: Editor

Lab0 20

Subscribers are the processes that receive events

and print them on screen; they execute the following

pseudo-code:
1. processing (waiting for a random time between 2 and 5

sec.)

2. subscription to the Channel;

3. execution of a cycle of receive events until they are

received and printed on-screen N events (N is an integer

randomly chosen between 2 and 6), or to an End Of File

(EOF);

4. de-signing and termination of the Channel.

Subscribers are active entities with a limited

lifetime and perform a loop in their bodies until their

termination.

Single entity specification: Subscriber

Lab0 21

Each Subscriber internally maintains a queue (e.g. realized
as a Java Vector) to save the events sent by the channel and
it implements the following methods:
 read: private method used to read the first event from the

queue of upcoming events. The method is blocking: if the
message queue is empty, the subscriber is blocked.
 NOTE: the effect of read execution is to remove the
event from the Subscriber event queue.

 push: public method used by the channel to report the
event to each subscriber; it queues the event and releases
the blocked Subscriber (if needed).

Tip: for a better reading of the output (to identify the recipient of the
message) you can add to the event printed to the standard output (video)
an identifier of the Subscriber (to identify the i-th instance of the
subscriber. This field will be initialized at Subscriber construction time
(within Subscriber constructor).

Subscriber (more details)

Lab0 22

The Channel (a passive object) must provide the
following methods:

•add/removeSubscriber to, respectively,
add and remove subscribers;

•put, that accepts event publications from the
Editor and notifies all Subscribers of the arrival
of the event.

Note: when the Editor publishes an event and
there are no subscribers registered, the event is
lost. In other words, events are not persistent.

Single entity specification: Channel

Lab0 23

import java.io.*; /* Editor.java */

public class Editor extends Thread {
private Channel channel;

private final static String EOF = "-1";

private BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));

public Editor(Channel c) { super("Editor"); channel = c; } // Constructor method

public void run() {

String msg;

try {

System.out

.println("\n^D(Unix)/^Z(Win)+enter to exit, enter to continue: ");

int i = 0;

while (stdIn.readLine() != null) { //while(!EOF)

i++;

System.out.print("E: message " + i + " ? ");

msg = stdIn.readLine();

channel.put("" + msg);

System.out.println("^D(Unix)/^Z(Win)+enter to exit, enter to continue: ");

} //while, here the Editor has read the EOF

} catch (Exception e) { e.printStackTrace(); }

System.out.println("E: ends...");

channel.put(EOF);

} //run()

} //Editor

Editor code

Lab0 24

import java.util.Random; /* Subscriber.java */

import java.util.Vector;

public class Sottoscrittore extends Thread {

private Channel channel; private int identifier = -1;

private final static String EOF = "-1"; private Vector eventQueue = new Vector();

// Constructor

public Subscriber(Channel c, int id){channel = c; identifier = id; }

public void run()

{try

{ Thread.sleep((int) (Math.random() * 3000)+2000); //step a.

System.out.println("\nSubscriber(S"+identifier+"): begins and subscribes...");

canale.addSubscriber(this); //step b.

Random r = new Random(); int N = 2 + (r.nextInt(5));

System.out.println("\nSubscriber(S"+identifier+"): begins and subscribes...");

for(int i=0; i<N; i++){ //step c.

String readMsg = read();

if(readMsg.equals(EOF)) break; //step c.

System.out.println("S"+identifier+": "+readMsg);

}

Channel.removeSubscriber(this); //step d.

System.out.println("\nS" + identifier + ": unsubscribes and terminates.");

}

catch(Exception e){ System.err.println("An error occurred, the following: "+e);

e.printStackTrace(System.err); }

} //run()

Subscriber code 1/2

Lab0 25

/**

* This call blocks when the event queue is empty.

* NOTE: read method consumes the message from the event queue.

*

*/

private synchronized String read() throws InterruptedException{

if (eventQueue.size() == 0) wait();

String firstReceivedMessage = (String) eventQueue.lastElement();

eventQueue.remove(eventQueue.size() - 1);

return firstReceivedMessage;

}

public synchronized void push(String msg) {

eventQueue.insertElementAt(msg, 0);

notify();

} // push

Subscriber code 2/2

Lab0 26

import java.util.Vector; /* Channel.java */

public class Channel {

private Vector subscribers = new Vector();

/** Public method to be used by the Editor for the publication of events. */

public synchronized void put(String msg) {

if (subscribers.isEmpty()) return;

else

for (int i = 0; i < subscribers.size(); i++) {

Subscriber subscriberIth = (Subscriber) subscribers

.elementAt(i);

subscriberIth.push(msg);

}

}

public synchronized void addSubscriber(Subscriber s) {

// if the subscriber is not registered, add it to the list

if (!subscribers.contains(s))

subscribers.add(s);

}

public synchronized void removeSubscriber(Subscriber s) {

// if the subscriber exists, remove it from the list

if (subscribers.contains(s))

subscribers.removeElement(s);

}

}//Channel

Channel code

Lab0 27

/* testMain.java */

public class testMain {

final static int NUM_SUBSCRIBERS = 5;

public static void main(String[] args) {

Subscriber subscriber;

Channel channel;

Editor editor;

try {

// Create the channel and start the thread

channel = new Channel();

editor = new Editor(channel);

editor.start();

for (int i = 0; i < NUM_SUBSCRIBERS; i++) {

// Create the subscribers and start the threads

subscriber = new Subscriber(channel, i);

subscriber.start();

} //for

} catch (Exception err) {

System.err.println("Error, the following: " + err);

System.exit(1);

} //catch

} //main

} //testMain

Main program code

28

Compilation and Execution

1. How to compile a Java program

javac Channel.java Editor.java

Subscriber.java testMain.java

2. How to execute a Java program

java testMain

Let’s try to compile and execute the event
publication/subscription program

29

Where are the code and the tools?

To download the code:

http://www.lia.deis.unibo.it/Staff/

LucaFoschini/temp/srcLab0.zip

See inside directory C:\

JAVA_HOME=C:\Programmi\jdk1.5.0_09

The compiler (javac)

C:\Programmi\jdk1.5.0_09\bin\javac

The Java interpreter(java)

C:\Programmi\jdk1.5.0_09\java

The Eclipse Integrated Development Environment (IDE)

Leaving .java e
.class files in
the current
directory (“.”)

