
THE CONCEPT OF OBJECT

An object may be defined as a service

center equipped with a visible part

(interface) and an hidden part

Service

center

Operation A

Operation B

Operation C

Hidden

part

Visible part

(INTERFACE)

An object offers to other objects

(clients) a set of activities (operations)

without making known / accessible its

internal organization

THE CONCEPT OF OBJECT

Service

center
Operation A

Operation B

Operation C

Hidden

part

Visible part

(INTERFACE)

Each client can create (instantiate)

many objects, as needed, from a sort

of "model" of the object (class)

Class

THE CONCEPT OF OBJECT

Service

center
Operation A

Operation B

Operation C

Hidden

part

Visible part

(INTERFACE)

SYSTEMS OF OBJECTS

Architecture of an object-based system:

• a set of objects that interact with one

each other

• without knowing anything of their

internal representations

• message exchange

 interaction model

OBJECT: BASIC IDEA

• integrates data and elaboration

(behavior)

• promotes both top-down and bottom-

up design and development

approaches

• captures the fundamental principles of

proper structuring of the software

• introduces very rich interactions

oriented to complexity management

OBJECT PROPERTIES

• An object has state, operation(s) and

identity

• Structure and operation of similar

objects are defined in their common

class of which they are instances

• The terms instance and object may

be used interchangenbly

THE CONCEPT OF CLASS

• The class describes the internal

structure and the behavior of an

obejct

• Objects belonging to the same class

have:

– the same internal (state) representation

– the same operations

– the same function

A CLASS combines the properties of:

• software component: it can have its

own data / operations

• module: it encapsulates data and

functions, implementing proper

protection mechanisms

• abstract data type: it acts as a

"shape" to create new objects

THE CONCEPT OF CLASS

THE JAVA LANGUAGE

 It is a fully object-oriented language: apart
primitive types (int, float, ...), there are

only classes and objects

 It highly inspires to C++, but has been

designed without any backward

compatibility requirement w.r.t. C (even

though is is similar…)

 A program is a set of classes

 even the main is defined inside a class!

JAVA APPROACH

BYTE-CODE

JAVA

JAVAC Source

Compiler Byte Code

File System

Loader

Hardware

Interpreter

Code – Compiler Generator

Byte Code

JAVA CLASSES

A Java class is an entity sintactically similar
to a struct

• but, contains not only data...

• … but also functions that operate over

those data

• And specifies the protection level

– pubblic: visible from other classes

– private: visible only inside the class

– ...

JAVA CLASSES

A Java class is an entity with a “double

nature":

• it is a software component, that may have

its own data and operations, properly

protected

• but it contains also the definition of an

abstract data type, that is a “shape” to

create new objects, that also have proper

protection mechanisms

JAVA CLASSES

• The part of a class that realizes the concept of

software component is called static part

– contains all data and functions that characterize the

class as an autonomous software component

• The other part of the class, that contains the

definition of an Abstract Data Type (ADT)

("schema for objects"), is the non-static part

– contains data and functions that characterize the

objects that will be built later using this "schema"

THE CONCEPT OF CLASS

STATIC Part

ADT Definition

A class is a software component:

it can have its data (STATIC) and

its operations (STATIC)

A class contains also the

definition of ADT, usable as a

"blueprint" to create then new

objects (NON static part)

• If there is only the STATIC part:
– the class operates only as a software component

– it contains data and functions, as a module

– in addition, it is possible to define appropriate

protection levels

– typical use case: function libraries

• If there is only the NON STATIC part:
– it defines only an ADT

– it specifies the internal structure of a data type,

as structs (in C)

– in addition, it is possible to specify also the

functions that operate over those data

THE CONCEPT OF CLASS

JAVA PROGRAMS

A Java program is a set of

classes and objects

• The classes are static

components, that exist

already at the beginning

of the program

A Java program is a set of

classes and objects

• The classes are static

components, that exist

already at the beginning

of the program

• The objects instead are

dynamic components,

that are dynamically

created when needed at

runtime

JAVA PROGRAMS

THE SIMPLEST PROGRAM

• The simplest Java program is constituted by

a single class acting as single software

component

• It has only the static part

• At least, it has to define
a single (static) function: the main

THE MAIN IN JAVA

 The main in Java is a public function with the

following fixed interface:

 public static void

 main(String args[]){

 }

• Must be declared public, static, void

• Must not have return value (it is void)

• Must always have line command arguments, even if they
are not used, as a String array (the first is not the

program name)

JAVA PRIMITIVE DATA TYPES

• characters
– char (2 byte) UNICODE coding

– it corresponds to ASCII for the first 127 characters

– and to ANSI / ASCII for the first 255 characters

– char constants also expressed as'\u2122'

• integers (signed)
– byte (1 byte) -128 ... +127

– short (2 byte) -32768 ... +32767

– int (4 byte) -2.147.483.648 ... 2.147.483.647

– long (8 byte) -9 1018 ... +9 1018

NB: long constants end with the letter L

• real (IEEE-754)
– float (4 byte) - 1045 ... + 1038

 (6-7 significant digits)

– double (8 byte) - 10328 ... + 10308

(14-15 significant digits)

• boolean
– boolean (1 bit) false e true

– independent type totally decoupled from

integers: it is not possible to turn boolean into

integers and viceversa, not even with a cast

– all relational and logical expressions return as
a result a boolean, and no more an int

(as it was in C)!

JAVA PRIMITIVE DATA TYPES

OBJECTS

EXAMPLE: THE COUNTER

• This class does not contain its own data or

functions (static)

• It supplies only the definition of an ADT that
will be used then to instantiate objects

public class Counter {

 private int val;

 public void reset() { val = 0; }

 public void inc() { val++; }

 public int getValue() {

 return val;

}

}

Data

Operations

(behavior)

U
n

iq
u

e
 lin

g
u

is
tic

c
o

n
s
tru

c
t fo

r d
a
ta

a
n

d
 o

p
e
ra

tio
n

s

OBJECTS

EXAMPLE: THE COUNTER

• This class does not contain its own data or

functions (static)

• It supplies only the definition of an ADT that
will be used then to instantiate objects

public class Counter {

 private int val;

 public void reset() { val = 0; }

 public void inc() { val++; }

 public int getValue() {

 return val;

}

}

Data

Operations

(behavior)

U
n

iq
u

e
 lin

g
u

is
tic

c
o

n
s
tru

c
t fo

r d
a
ta

a
n

d
 o

p
e
ra

tio
n

s

The field val is private: it can be

accessed only by operations defined

within the same class (reset, inc,

getValue), and not by any other!

It grants encapsulation

JAVA OBJECTS

• The OBJECTS are “dynamic” components:

are created “on-the-fly”, when they are used,

through the new operator

• They are created as an copy and similar to a

class (non-static part), that describes its

properties

• Over them, it is possible to invoke the public

operations exposed by the class

• It is not needed to take care of object

destruction: Java has a garbage collector!

OBJECT CREATION

To create an object:

• first a reference is defined, its type is the

name of the class that acts as model

• then it creates dynamically the object

through the operator new (similar to C malloc)

Example:

Counter c; // reference definition

...

c = new Counter(); // object creation

JAVA OBJECTS

Use: “message passing” style

• not a function with the object as parameter…

• …but rather an object over which methods are

invoked

For instance, if c is a Counter, a client can

write:

 c.reset();

 c.inc(); c.inc();

 int x = c.getValue();

COMPLETE EXAMPLE

public class Example1 {

 public static void main(String v[]) {

 Counter c = new Counter();

 c.reset();

 c.inc(); c.inc();

 System.out.println(c.getValue());

 }

}

• The main creates a new object Counter…

• ...and then uses it by name, with dot notation…

• …without the need to dereference it explicitly!

EXAMPLE: DEVELOPMENT

• The two classes must be written in two

separate files, called, respectively:

– Example1.java (it contains the class Example1)

– Counter.java (it contains the class Counter)

• That is necessary because both classes are
public: in a .java file there can be one only

public class
– but there can be other, non public, ones

• To compile:

 javac Example1.java Counter.java

Note: the order does not matter

EXAMPLE: DEVELOPMENT

• The two classes must be written in two

separate files, called, respectively:

– Example1.java (contiene la classe Esempio1)

– Counter.java (contiene la classe Counter)

• That is necessary because both classes
are public: in a .java file there can be one

only pubblic class
– but there can be other, non public, ones

• To compile:

 javac Example1.java Counter.java

Also separately, but in order:
javac Counter.java

javac Esempio1.java

The class Counter must already exist when

the class Esempio1 is compiled

EXAMPLE: EXECUTION

• The compilation of those two files
generates two files .class, called,

respectively:

– Example1.class

– Counter.class

• To run the program it is sufficient to
invoke the interpreter (java) with the name

of the (public) class that contains the main

 java Example1

ERROR MANAGEMENT

• Often there are “critical” instructions,

that under certain conditions may

produce errors

• The classical approach consists in

inserting controls (if… else..) trying to a

priori intercept critical situations

• But this management way is ofter

unsatisfactory
 it is not easy to foresee all the situations

that may produce errors

 “managing” the error ofter means only to

print a message on the screen

EXCEPTIONS

Java introduces the concept of exception

• Instead of trying to foresee error

situations, it tries to execute the operation

in a controlled code block

• if the error situation occurs, the operation

raises an exception

• the exception is caught by the code block

where the operation has been executed…

• … and can be managed in the most

appropriate way

try {

 /* critical operation that may

 raise exceptions */

}

catch (Exception e) {

 /* exception management */

}

If the operation raises different types of exceptions in
response to different types of error, more catch

blocks may follow the same try block

EXCEPTIONS

WHAT IS AN EXCEPTION in JAVA

• An exception is an object, instance of
java.lang.Throwable or one of its

subclasses.

• The two most common subclasses are
java.lang.Exception and

java.lang.Error

• The word “exception”, however, often

refers to both of them

• An Error indicates problems related to

class loading and function of the Java

virtual machine (es. not enough memory),

and is considered not recoverable:

 hence it should be not caught

• An Exception, instead, indicates

recoverable situations, at least in principle

(end of file, array index out of bounds, input

errors, etc.):

 it should be caught and managed

WHAT IS AN EXCEPTION

JAVA ARRAY

• Java arrays are objects, instances of a special
class defined by []

• Hence, the reference is defined (as for any object)...

 int[] v; int v[];

 Counter[] w; Counter w[];

• …and then the object is dynamically created:

 v = new int[3];

 w = new Counter[8];

JAVA ARRAY

• Java arrays are objects, instances of a special
class defined by []

• Hence, the reference is defined (as for any object)...

 int[] v; int v[];

 Counter[] w; Counter w[];

• …and then the object is dynamically created:

 v = new int[3];

 w = new Counter[8];

The position of[] is either after the name, as in C, or

after the type (not available in C)

It is a reference, hence it does not have to

specify any dimension!

The dimension is specified at the creation (“new” execution)

Attention!! Each array element:

• is a variable, if the array elements are of
primitive type (int, float, char, …)

 v = new int[3];

• is a reference to a (future) object, if the array

elements are (references to) objects

 w = new Counter[3];
All inizialized
to null

JAVA ARRAY

Hence, in the first case, primitive value arrays,

each array element is a normal variable,

“already usable” as is:

 v = new int[3];

 v[0] = 1; v[1] = 34;

1 34

v

JAVA ARRAY

APPENDIX:

STRUCTURED

PROGRAMMING

• Goal: make easier to read programs (hence

also their modification and maintenance).

• Suppression of unconditional jumps (go to) in

the control flow.

• The executive part of a program can be seen

as a (complex) command obtained from the

elementary instructions, using certain rules of

composition (control structures).

STRUCTURED

PROGRAMMING

Key concepts:

• concatenation and composition CODE BLOCK

• conditional instruction SELECTION
– branches the control flow based on the true/false value

of a boolean expression (“choice condition”)

• repetition and iteration CICLE
– executes repetitively an instruction until a certain

boolean expression is true (“iteration condition”)

CONTROL STRUCTURES

<block> ::= {

 [<statements and definitions>]

 { <instructions> }

}

• The visibility scope of block symbols is

restricted to the block itself

• after a block the semicolon is not

needed (but it terminates simple

instructions)

I1

I2

I3

In

(CODE) BLOCK

 <selection> ::=

 <choice> | <multiple-choice>

• the second is not essential, and we will not see it.

CONDITIONAL INSTRUCTIONS

<choice> ::= if (<cond>) <instruction1>

 [else <instruction2>]

condition
true false

instruction2 instruction1

The condition is evaluated when the “if” is executed.

SIMPLE CHOICE INSTRUCTION

condition
true false

instruction2 instruction1

The else part is optional:

if omitted, when the condition

is false the control flow

continues with the instruction
that follows the if

SIMPLE CHOICE INSTRUCTION

<choice> ::= if (<cond>) <instruction1>

 [else <instruction2>]

• <instruction1> and <instruction2> are, each one, single

instructions

• If it is necessary to specify more instructions, it is

necessary to use a block

if (n > 0) { /* block beginning */

 a = b + 5;

 c = a;

} /* block end */

else n = b;

EXAMPLE of if INSTRUCTION

 <iteration> ::=

 <while> | <for> | <do-while>

• Iteration instructions:
 have one only entry point and one only exit point in

the program flow

 hence, they can be interpreted as a single action in

sequential computation

ITERATION INSTRUCTIONS

<while> ::=

 while(<condition>) <instruction>

condition

true

false

 instruction

while INSTRUCTION

• The instruction is repeated until

the condition is/remains true

• If the condition is false, the

iteration is not executed

(not even one time)

• In general, it is not known (in

advance) how many times the

instruction will be repeated

Before or afterwards, directly or

indirectly, the instruction has to modify

the condition: otherwise, the iteration

will last forever!

INFINITE CYCLE

Hence, typically the instruction

is a block, within which some of the

 variables that appear in the condition

is modified (to avoid infinite cycling)

condition

true

false

 instruction

<while> ::=

 while(<condition>) <instruction>

while INSTRUCTION

• It is an evolution of the while instruction aimed

to avoid some frequent mistakes:

 lack of variable initialization

 lack of variable modification phase within the cycle

(endless cycle loop risk)

 In general, it is used when it is well-known how

many times the cycle has to be executed.

for INSTRUCTION

<for> ::=

for(<init-expr>;<cond>;<modif-expr>)

<instruction>

condition

true

false

 instruction

initialization-expr

modif-expr

While

structure

for INSTRUCTION

Initialization expression:

<init-expr>

evaluated one and one only time

before the iteration begins.

Condition: <cond>

evaluated for each iteration, to decide if

prosecuting (as in while).

If missing it is assumed true by default!

Modification expression: <modif-expr>

evaluated for each iteration, after

the instruction has been executed.

condition

true

false

 instruction

initialization-expr

modif-expr

<for> ::=

for(<init-expr>;<cond>;<modif-expr>)

<instruction>

for INSTRUCTION

