THE CONCEPT OF OBJECT

An object may be defined as a service
center equipped with a visible part
(interface) and an hidden part

Operation A o

Operation B @—

OperationC ¢

Visible part
(INTERFACE)

Service
center

Hidden
part



THE CONCEPT OF OBJECT

An object offers to other objects

(clients) a set of activities (operations)
without making known / accessible its
Internal organization

Operation A Service
*~ center
Operation B @—
Hidden
OperationC ¢~ part
Visible part

(INTERFACE)



THE CONCEPT OF OBJECT

Each client can create (instantiate)
many objects, as needed, from a sort
of "model" of the object (class)

Operation A o_

Visible part
(INTERFACE)

Service
center
Operation B @—
Hidden
OperationC ¢~ part




SYSTEMS OF OBJECTS

Architecture of an object-based system:

* aset of objects that interact with one
each other

« without knowing anything of their
Internal representations

* message exchange Q__
Interaction model

——)>



OBJECT: BASIC IDEA

* Integrates data and elaboration
(behavior)

 promotes both top-down and bottom-
up design and development
approaches

« captures the fundamental principles of
proper structuring of the software

* Introduces very rich interactions
oriented to complexity management



OBJECT PROPERTIES

 An object has state, operation(s) and
identity

« Structure and operation of similar
objects are defined In their common
class of which they are instances

 The terms instance and object may
be used interchangenbly




THE CONCEPT OF CLASS

* The class describes the internal

Str

ucture and the behavior of an

obejct

« Obhjects belonging to the same class

have:

ne same internal (state) representation
ne same operations

ne same function



THE CONCEPT OF CLASS

A CLASS combines the properties of:

* software component: it can have Its
own data / operations

 module: It encapsulates data and
functions, implementing proper
protection mechanisms

* abstract data type: It acts as a
"shape" to create new objects



THE JAVA LANGUAGE

e It is afully object-oriented language: apart
primitive types (int, float, ...),there are

only classes and objects

e It highly inspires to C++, but has been
designed without any backward
compatibility requirement w.r.t. C (even
though is is similar...)

e A program is a set of classes
e even the main is defined inside a class!



JAVA APPROACH

BYTE-CODE
Y m

JAVA Interpreter
Code — Compiler Generator

JAVAC

Compiler

Byte Code

‘ Hardware I




JAVA CLASSES

A Java class Is an entity sintactically similar
t0 a struct

* but, contains not only data...

* ... but also functions that operate over
those data

 And specifies the protection level
— pubblic: visible from other classes
— private: visible only inside the class



JAVA CLASSES

A Java class is an entity with a “double
nature”:

* It Is a software component, that may have
Its own data and operations, properly
protected

* but it contains also the definition of an
abstract data type, that is a “shape” to
create new objects, that also have proper
protection mechanisms



JAVA CLASSES

 The part of a class that realizes the concept of
software component is called static part

— contains all data and functions that characterize the
class as an autonomous software component

 The other part of the class, that contains the
definition of an Abstract Data Type (ADT)
("schema for objects"), is the non-static part

— contains data and functions that characterize the
objects that will be built later using this "schema"



THE CONCEPT OF CLASS

A class is a software component:

It can have its data (STATIC) and

Its operations (STATIC)

~

—

ADT Definition

A class contains also the
definition of ADT, usable as a
"blueprint” to create then new

objects (NON static part)

~

/




THE CONCEPT OF CLASS

* If there is only the STATIC part:
— the class operates only as a software component
— It contains data and functions, as a module
— In addition, it is possible to define appropriate
protection levels
— typical use case: function libraries

* If there is only the NON STATIC part:

— it defines only an ADT

— It specifies the internal structure of a data type,
as structs (in C)

— In addition, it is possible to specify also the
functions that operate over those data




JAVA PROGRAMS

A Java program is a set of
classes and objects

 The classes are static
components, that exist
already at the beginning
of the program




JAVA PROGRAMS

A Java program is a set of
classes and objects

 The classes are static
components, that exist
already at the beginning
of the program

 The objects instead are
dynamic components,

that are dynamically
created when needed at
runtime



THE SIMPLEST PROGRAM

« The simplest Java program is constituted by

a single class acting as single software
component

It has only the static part \.

« At least, it has to define
a single (static) function: the main



THE MAIN IN JAVA

The main in Java is a public function with the
following fixed interface:

public static void
main (String args|[]) {

« Must be declared public, static, void
« Must not have return value (it is void)

« Must always have line command arguments, even if they
are not used, as a String array (the first is not the

program name)




JAVA PRIMITIVE DATA TYPES

 characters
— char (2 byte) UNICODE coding

— It corresponds to ASCII for the first 127 characters
— and to ANSI / ASCII for the first 255 characters

— char constants also expressed as ' \u2122"'

* Integers (signed)

—byte (1 byte) -128 ... +127

— short(2 byte) -32768 ... +32767

—int (4 byte) -2.147.483.648 ... 2.147.483.647
— long (8 byte) -9 1018 ... +9 1018

NB: long constants end with the letter L



JAVA PRIMITIVE DATA TYPES
* real (IEEE-754)

- float (4 byte) -10% ... +1038
(6-7 significant digits)
— double (8 byte) - 10328 |, + 10308
(14-15 significant digits)
* boolean
—boolean (1 bit) falsee true

— Independent type totally decoupled from
Integers: it Is not possible to turn boolean into
Integers and viceversa, not even with a cast

— all relational and logical expressions return as
a result aboolean, and no more an int
(as it was in C)!



OBJECTS
EXAMPLE: THE COUNTER

e This class does not contain its own data or

functions (static)

* It supplies only the definition of an ADT that

will be used then to instantiate objects

public class Countiiﬁi::5§%£
private int val;
public void reset() { val = 0

public void inc () { val++; }
public int getValue() ({

return val;
} Operations
} (behavior)

}

suoljelado pue
rlep 10J 10NJ11SUOD

aonsinbul| anbiun



OBJECTS

he field val is private: it can be

getValue), and not by any other!

XI__A_I_ILD_I L-_A_A_l_l_h_l:l:l:lx
accessed only by operations defined
t within the same class (reset, inc,

/

}

It grants encapsulation
Publicm

private int val; -

public void reset() { val = 0

public void inc()

{ val++;

public int getValue() ({

}

return val;

}

Operations
(behavior)

|

}

suoljelado pue
rlep 10J 10NJ11SUOD

aonsinbul| anbiun



JAVA OBJECTS

The OBJECTS are “dynamic” components:
are created “on-the-fly”, when they are used,
through the new operator

They are created as an copy and similar to a
class (non-static part), that describes its
properties

Over them, it is possible to invoke the public
operations exposed by the class

It IS not needed to take care of object
destruction: Java has a garbage collector!



OBJECT CREATION

To create an object:

« first areference is defined, its type is the
name of the class that acts as model

* then it creates dynamically the object
through the operator new (similar to C malloc)

Example:
Counter c; // reference definition

c = new Counter|() ; // object creation



JAVA OBJECTS

Use: “message passing” style

* not a function with the object as parameter...
« ...but rather an object over which methods are
Invoked

For instance, If ¢ IS a Counter, a client can
write:

c.reset () ;
c.inc(); c.inc();
int x = c.getValue();



COMPLETE EXAMPLE

public class Examplel ({

public static void main(String v[]) {

Counter ¢ = new Counter() ;

c.reset () ;
c.inc(); c.inc();
System.out.println(c.getValue()) ;
}
}

 The main creates a new object Counter...
e ...and then uses it by name, with dot notation...
« ...without the need to dereference it explicitly!



EXAMPLE: DEVELOPMENT

 The two classes must be written in two
separate files, called, respectively:

— Examplel. java (it contains the class Examplel)
— Counter.java (it contains the class Counter)

 That Is necessary because both classes are
public: in a . jawva file there can be one only

public class
— but there can be other, non public, ones

» To compile: [Note: the order does not matter

javac Examplel.java Counter. java



EXAMPLE: DEVELOPMENT

 The two classes must be written in two
separate files, called, respectively:

— Examplel. java (contiene la classe Esempiol)

(Al order e
Also separately, but in order:

* javac Counter. java 5
javac Esempiol. java ne
The class Counter must already exist when
the class Esempiol is compiled Y

 To compile:
javac Examplel.java Counter. java



EXAMPLE: EXECUTION

« The compilation of those two files
generates two files . class, called,

respectively:

— Examplel.class
— Counter.class

 Torun the program it is sufficient to
Invoke the interpreter (§awva) with the name

of the (public) class that contains the main
java Examplel



ERROR MANAGEMENT

« Often there are “critical” instructions,
that under certain conditions may
produce errors

 The classical approach consists in
Inserting controls (if... else..) trying to a
priori intercept critical situations

« But this management way Is ofter
unsatisfactory

e it iS not easy to foresee all the situations
that may produce errors

e “managing” the error ofter means only to
print a message on the screen



EXCEPTIONS

Java introduces the concept of exception

* |Instead of trying to foresee error
situations, it tries to execute the operation
In a_controlled code block

 If the error situation occurs, the operation
raises an exception

* the exception is caught by the code block
where the operation has been executed...

* ... and can be managed in the most
appropriate way




EXCEPTIONS

try {
/* critical operation that may
raise exceptions */

}
catch (Exception e) {
/* exception management */

}

If the operation raises different types of exceptions in
response to different types of error, more catch
blocks may follow the same try block



WHAT IS AN EXCEPTION in JAVA

 An exception is an object, instance of
java.lang.Throwable or one of its

subclasses.

« The two most common subclasses are
java.lang.Exception and
java.lang.Error

 The word “exception”, however, often
refers to both of them



WHAT IS AN EXCEPTION

« An Error Indicates problems related to

class loading and function of the Java
virtual machine (es. not enough memory),
and is considered not recoverable:

hence it should be not caught

 An Exception, instead, indicates
recoverable situations, at least in principle

(end of file, array index out of bounds, input
errors, etc.):

It should be caught and managed



JAVA ARRAY

« Java arrays are objects, instances of a special
class defined by [ ]

e Hence, the reference iIs defined (as for any object)...

int[] wv; int vi[];
Counter|[] w; Counter wl];

e ...and then the object is dynamically created:

v = new int[3];

w = new Counter|[8];



JAVA ARRAY

« Java arrays are objects, instances of a special

It Is a reference, hence it does not have to
« | Specify any dimension! )
int[] wv; int vi[];
Counter|[] w; Counter wl];

* | The position of [] is either after the name, as in C, or [
after the type (not available in C)

w = new Counter|[8];

[The dimension is specified at the creation (“new” execution) }




JAVA ARRAY
Attention!! Each array element:

* IS a variable, If the array elements are of
primitive type (int, £float, char, ...)

v = new int[3];

(—— -

* |s areference to a (future) object, if the array

elements are (references to) objects
w = new Counter|[3];

&—

2

2

]

2

]

N

All inizialized
to null

|




JAVA ARRAY

Hence, In the first case, primitive value arrays,
each array element is a normal variable,
“already usable” as is:

v = new int[3];
v[0] = 1; v[1l] = 34;

Vv

(——



APPENDIX:

STRUCTURED
PROGRAMMING



STRUCTURED
PROGRAMMING

 Goal: make easier to read programs (hence
also their modification and maintenance).

« Suppression of unconditional jumps (go to) In
the control flow.

 The executive part of a program can be seen
as a (complex) command obtained from the
elementary instructions, using certain rules of
composition (control structures).



CONTROL STRUCTURES

Key concepts:
e concatenation and composition CODE BLOCK

« conditional instruction SELECTION
— branches the control flow based on the true/false value
of a boolean expression (“choice condition”)
* repetition and iteration CICLE
— executes repetitively an instruction until a certain
boolean expression is true (“iteration condition”)




<

}

(CODE) BLOCK

block> ::= { t
| <statements and definitions> ] i
{ <instructions>} 2
The visibility scope of block symbols is N
restricted to the block itself v
In

after a block the semicolon is not
v

needed (but it terminates simple
Instructions)




CONDITIONAL INSTRUCTIONS

<selection> ::=
<choice> | <multiple-choice>

* the second is not essential, and we will not see it.



SIMPLE CHOICE INSTRUCTION

<choice> ::= 1if (<cond>) <instructionl>
[ else <instruction2> ]

true false
condition

instructionl instruction?2

»
V“

The condition is evaluated when the “if’ is executed.




SIMPLE CHOICE INSTRUCTION

<choice> ::

|

if (<cond>) <instructionl>
[ else <instruction2> ]

instructionl

true N false
condition

instruction?2

The else part is optional:
If omitted, when the condition
Is false the control flow

continues with the instruction
that follows the i f



EXAMPLE of if INSTRUCTION

e <instruction1> and <instruction2> are, each one, single
Instructions

« Ifitis necessary to specify more instructions, it is
necessary to use a block

if (n > 0) { /* block beginning */
a=>b + 5;
c = a;

} /* block end */



ITERATION INSTRUCTIONS

<iteration> ::=
<while> | <for> | <do-while>

* Iteration instructions:
e have one only entry point and one only exit point in
the program flow
e hence, they can be interpreted as a single action in
sequential computation



<while> ::

while INSTRUCTION

while (Kcondition>) <instruction>

. false
condition

true

instr

uction

* The instruction is repeated until
the condition is/remains true

e If the condition is false, the
iteration Is not executed
(not even one time)

* In general, it is not known (in
advance) how many times the
Instruction will be repeated



while INSTRUCTION

<while> ::=
while (<condition>) <instruction>

Before or afterwards, directly or
indirectly, the instruction has to modify

[ } false the condition: otherwise, the iteration
condition

n
»

will last forever!
INFINITE CYCLE

true

\ 4
instruction l

Hence, typically the instruction
IS a block, within which some of the
variables that appear in the condition
IS modified (to avoid infinite cycling)




for INSTRUCTION

 |tis an evolution of the while instruction aimed
to avoid some frequent mistakes:

e lack of variable initialization

e lack of variable modification phase within the cycle
(endless cycle loop risk)

« In general, it is used when it is well-known how
many times the cycle has to be executed.



for INSTRUCTION

<for> ::=
for( <init-expr>;<cond>;<modif-expr>)
<instruction>

|
EEETEEEE

false

(‘

While <
structure
true




for INSTRUCTION

<for> ::=

for( <init-expr>;<cond>;<modif-expr>)

<instruction>

>
A 4

false

Initialization expression:
<init-expr>
evaluated one and one only time
before the iteration begins.

Condition: <cond>

evaluated for each iteration, to decide Iif
prosecuting (as in while).
If missing it is assumed true by default!

Modification expression: <modif-expr>

evaluated for each iteration, after
the instruction has been executed.



