
Luca Foschini

Università degli Studi di Bologna

Facoltà di Ingegneria

C/S applications using Java Sockets

Principles, Models, and Applications 

for Distributed Systems M



SOCKET for COMMUNICATION

Need for a standard to connect distributed devices

distinct, different, highly heterogeneous

We will use sockets as a communication standard.

Sockets permit to access communication mechanisms offered by the 

operating system.

socket represents the local host (endpoint) in a bi-directional

communication channel across network (from/to other hosts).

Client and Server applications running on distinct devices can 

communicate using two different types of communication with 

different costs and quality guarantees.

Sockets originated in Unix BSD 4.2

Java Sockets – 2



COMMUNICATION TYPES

• connection-oriented: there is a stable connection between 

Client and Server (state maintained only at endpoints, e.g.: Web)

STREAM socket

• connectionless: there is no connection, each message is 

dispatched independently from others (e.g.: mail system)

DATAGRAM socket

INTERNET SOCKET classes:

Connection-oriented using TCP Internet protocol

• Socket class, Client side

• ServerSocket class, Server side

connectionless using UDP Internet protocol

• DatagramSocket class for both Client and Server

Java Sockets – 3



Java classes hierarchy

The java.net networking 

package contains all classes 

needed to use sockets in Java.

Every Java Virtual Machine 

(JVM) release noticeable 

extended its classes and 

interfaces.

Its philosophy and mechanism 

do not change.

4



NAME SYSTEM

We need a name system to identify each element

A distributed application comprises processes distinct by their locality 

that exchange messages to communicate and cooperate to achieve 

coordinated results

First problem: mutual process identification (Client and Server) 

across network

Each process must be associated to a GLOBAL NAME

unique, unambiguos, and simple

Node “name” + process “name” on that node

Process end points (sockets) typically are local w.r.t. the process itself

This first problem is solved by low protocol layers (transport and 

network). For Internet sockets, transport names (TCP, UDP) and 

network (IP).

Java Sockets – 5



SOCKET NAMES

A transport endpoint is uniquely identified by:

• an IP address (4 bytes / 32 bit)  IP level

• a port (16 bit integer)  TCP and UDP abstracion

GLOBAL NAME usage

Messages sent to a specific port of a specific machine (they do not directly 

reach a process)

To reach a resource, we need a LOCAL NAME (socket)

The process (one or more) binds to a port to receive (and send) messages

This double name system allows to identify a specific process 

without knowing its local process identifier (PID)

(IP network layer, PORT transport layer)

An end point for a communication flow is made of an IP and a port

Java Sockets – 6



SOCKET NAMES

Java Sockets – 7

Node: IP address

Client
Process

Node: IP address

Server 
Process

Network

(TCP/IP)

Client socket

Client port

Server socket

listen()
Connected 

socket –

read() and 

write()

Unique

server port



GLOBAL SOCKET NAMES

IP numbers  IP address: e.g. 137.204.57.186

Port numbers  port, 4 hex digits: XXXXh (dec. 1 - 65535)

often represented as a single decimal number, e.g. 153, 2054

Port function is to identify a service

Port numbers lower than 1024 are reserved (well-known port)

services offered by processes bound to those ports are standard

For example, Web is identified by port 80, i.e. the server process of a 

web site binds to port 80, from which it receives request for html pages.

Other well known TCP ports, server side:

port 21 ftp, 

port 23 telnet, 

port 25 mail,…
Java Sockets – 8



SEQUENTIAL SERVER

Server that manages a single request at a time

Connectionless sequential server (UDP)

Stateless services

Failure management

not relevant

Connected sequentail server (TCP)

Reliable services

Limited state 

Overhead due to

connection control

Java Sockets – 9

Actions

Server
Process

Controller

C1

Cn
#serverport

Single queue

Answers to

client port

Actions

Server
Process

Controller

C1

Cn #serverport

Unique initial queue

Answers to

Client port

C1
Single established connection

#portc1 

#portac1 #serverport



PARALLEL SERVER

Concurrent server with multiple requests at a time (multi-process)

Uses multiple processes, a master server spawns an internal process

for each service

Have to guarantee that the cost due to process spawn does not exceed 

the gain of having a dedicated 

process

Solution that uses processes 

created beforehand to manage 

fast service requests.

Fixed initial number of 

processes, other created 

on-demand and kept running 

up to a certain time-span.
Java Sockets – 10

Actions

Active Client processes
Server Processes

Server
Process

Controller

C1

Cn

C1

Cn

Ci

#port1 

#portn

#port1 

#portn

Different ports

#serverport

process
spawn



CONCURRENT SERVER

Concurrent server with multiple requests at a time (single-process)

Hard to realize in Java, with a single process that provides different 

services.

Solution using a single

process server that

manages many requests

at the same time

Java Sockets – 11

Actions

Active Client Processes

Single Server Process

Server
Process

Controller

C1

Cn

C1

Cn

Ci

#port1 

#portn

connection

#server port

initial
requests

connection

Server
Process

Controller



DATAGRAM SOCKET:

C-to-Java primitives mapping

Datagrams are simple messages that allow Client/Server 

interactions.

Java Sockets – 12

Server Process

socket()

bind()

recvfrom()

sendto()

close()

Client Process

socket()

sendto()

recvfrom()
<wait for 

response>

close()

<wait for request>

<Evaluation>

Java merges 

these  steps
bind()



DATAGRAM SOCKET

DATAGRAM sockets enable message exchange between two 

threads without establishing a connection

It is unreliable and lossy (in case of network problem) and delivery may 

be out-of-order (due to UDP protocol specification)

Same DATAGRAM socket class for both Client and Server

java.net.DatagramSocket

public final class DatagramSocket extends Object

One constructors is (other ones available, see Javadocs…  ):

DatagramSocket( InetAddress localAddress, 

int localPort)throws SocketException;

DatagramSocket constructor builds a UDP socket and locally 

binds it to the specified IP address and port: the socket is ready 

to send and receive packets.

Java Sockets – 13



DATAGRAM SOCKET

MESSAGE EXCHANGE using sockets, based on rudimental 

communication mechanisms: send and receive user packets

On a sock instance of DatagramSocket one can:

void send(DatagramPacket p);

void receive(DatagramPacket p);

These methods are real communication functions: the former 

sends a message (datagram), the latter blocks until it receives the 

first available datagram.

send function assures only that the message is dispatched to the kernel, 

which will arrange the real send (asynchronous w.r.t. receive)

receive function, which delegates real reception to the kernel, blocks the 

receiver until it gets data (synchronous with the receiver)

A single datagram unblocks the receive function.

Java Sockets – 14



DATAGRAM SOCKET: SEND and RECEIVE

send and receive functions need an initialized socket and a support 

structure:

sock.send(DatagramPacket p);

sock.receive(DatagramPacket p);

used as input by receive and as output by send.

There are many other support classes

For instance, DatagramPacket and other constants

e.g. integers for port numbers, constants for IP names, integer as IP 

addresses and as String as domain names

InetAddress

Many constructors throw specific exceptions:

SocketException, SecurityException, …

Java Sockets – 15



COMMUNICATION MODEL

Before exchanging messages, datagram socket must be correctly 

created and need to know each other

Sender must insert the receiver address inside the message

Messages need information at different levels:

Application    message (and its size) 

Control          destination node and port of the receiving socket

No delivery guarantees due to support protocol (UDP and IP).
Java Sockets – 16

Send socket

Sender IP Name

Socket

PortX

Receive socket

Receiver IP Name

Socket

PortY



SUPPORT CLASSES

DatagramPacket class

Class to build a datagram that specify what to send (data) and to 

whom (control).

Data  specifies a byte array to write/read

Control  port value (int) and InetAddress

InetAddress class that represents IP addresses. It provides public 

static methods only:

public static InetAddress getByName (String hostname);

Determines the InetAddress for a given host (passing null returns local 

loopback address)
public static InetAddress[] getAllByName(String hostname);

Given the name of a host, returns an array of its IP addresses (when the 

same logic name corresponds to more than one IP address)
public static InetAddress getLocalHost();

Returns InetAddress for the local machine. Java Sockets – 17



DATA for DATAGRAMPACKET

DatagramPacket contains user level application data

DatagramPacket( byte [] buf, // data as byte array

int offset, // start offset

int length, // data length

InetAddress address, int port); // IP address and 

port

There are other constructors and utility functions, for example:

InetAddress getAddress()   get associated IP address

void setAddress(InetAddress addr)change IP address

int getPort(), get associated port number

void setPort(int port) set associated port number

byte[] getData(), extract data

void setData(byte[] buf), … put data
Java Sockets – 18



DATAGRAMPACKET

DatagramPacket is a complete container that helps developers

It has different usages when it is being sent or received:

sock.send (DatagramPacketp)

– when sending, we must reserve some space where the user can write 

desired data and some space to record control data relative to the 

receiver (chosen by the sender)

Only after this set up step, we send the packet...

sock.receive (DatagramPacketp)

– when receiving, we must set up needed structures to receive both user 

and control data

Only after reception, we can work on the packet and extract desired 

data 

A packet can be re-used.

Java Sockets – 19



COMMUNICATION SCHEMA

Create socket

DatagramSocket socket = new DatagramSocket();

Sender:

Prepare data and send

byte[] buf = {'C','i','a','o'};

InetAddress addr = InetAddress.getByName("137.204.59.72");

int port = 1900;

DatagramPacket packet = new 

DatagramPacket(buf, buf.length, addr, port);

socket.send(packet); // send packet

Other send or receive operations.
Java Sockets – 20



COMMUNICATION: RECEIVE

Create socket: 

DatagramSocket socket = new DatagramSocket(1900);

Receiver: prepare, wait, receive

int recport; InetAddress recaddress;

byte[] buf = new byte[200]; byte [] req;

DatagramPacket packet = new 

DatagramPacket(buf, buf.length, recaddress, recport);

packet.setData(buf); // attach res as application data area of the packet

socket.receive(packet); // receive packet (synchronous wait)

// extract application and control data from datagram

recport = packet.getPort();

recaddress = packet.getAddress();

req = packet.getData();

// use data Java Sockets – 21



COMMUNICATION: RECEIVE AND SEND

Note that upon receiving a UDP packet, the resulting DatagramPacket 

instance is associated with the remote host that sent it.

Thus, if a process receives a DatagramPacket and wants to reply to 

the sender, it can change the application data of the packet and send 

it without setting again control data: the destination host (set 

automatically by the operating system) will be the host already 

associated with the packet.

socket.receive(packet); // the received packet is

// already associated to 

// the sender

byte[] replyData = {'r', 'e', 'p','l', 'y'};

packet.setData(replyData);

socket.send(packet);
Java Sockets – 22



ByteArrayOutputStream and ByteArrayInputStream

Working directly with a byte array (byte[]) is time-consuming and error 

prone (one should set bytes one by one). Java provides 
ByteArrayOutputStream and ByteArrayInputStream as utility 

classes to write/read data from a byte array. 
Data(Output/Input)Stream can wrap 

ByteArray(Output/Input)Stream to ease writing/reading Java 

object on a byte array.

How to write primitive Java types on a byte array stream:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

DataOutputStream dos = new DataOutputStream(baos); 

dos.writeInt(42); // wrap as data stream, and use it

dos.writeUTF("Test string"); // write some data (String)

dos.flush(); dos.close(); // !!! flush and close

byte[] buf = baos.toByteArray(); // buf contains written data

More info about DataInput/OutputStream in a few slides… Java Sockets – 23



ByteArrayOutputStream and ByteArrayInputStream

How to read data from a byte stream:

byte[] buf = baos.toByteArray();

ByteArrayInputStream bais = new ByteArrayInputStream(buf);

DataInputStream dis = new DataInputStream(bais);

int value = dis.readInt(); // read an int

String text = dis.readUTF(); // read a string

dis.close(); // !!! close stream

Note that read and write operations must be symmetrical: (for example) 

trying to read a String while the array contains an integer will raise an 

exception or cause undefined behaviour.

Java Sockets – 24



DATAGRAM SOCKET OPTIONS

Socket options allow to finely tune sockets behaviour. 

receive is blocking (synchronous wait)

SetSoTimeout (int timeout) throws …

This options defines a timeout in msec, after which the 

function terminates and throws an exception

If timeout is set to 0, it is disabled (i.e. timeout is equal to 

infinity)

There are many other (advanced) options.

Java Sockets – 25



STREAM SOCKET

A STREAM socket is an end point of a virtual communication 

channel, established before any data exchange

at-most once semantic

Communication point-to-point between Client and Server, bi-directional, 

reliable, data (byte) delivered in order at most once (FIFO, like Unix 

pipes)

If data is lost???    We can’t say much…  

Connection between Client process and Server process is 

unambiguously identified by a unique quadruplet and a protocol

<Client IP address; Client port; Server IP address; Server port>

STREAM sockets use TCP (+ IP) as communication protocol

• TCP is the transport protocol and provides the port abstraction;

• IP is the network protocol and provides identifiers for each node 

Stream communication between Client and Server needs a connection 

setup and is asymmetric.
Java Sockets – 26



Stream sockets create a reliable communication flow between a Server 

and a Client.

Java Sockets – 27

Client Server

socket()

bind()

listen()

accept()

recv()/read()

send()/write()

close()/shutdown()

socket()

bind() (optional)

connect()

recv()/read()

send()/write()

close()/shutdown()

Java 

(ServerSocket) 

merges these 3 

steps

Java (Socket) 

merges these 
steps (bind() 

is optional)

Asymmetric

Symmetric

Active role
Passive role

STREAM SOCKET:

C-to-Java primitives mapping



STREAM SOCKET

Java uses two different socket types for different roles: one for both 

Client and Server processes and one only for Server process.

Different classes for Client and Server

java.net.Socket and java.net.ServerSocket

Whenever possible, Java hides implementation details, for 

example by wrapping many setup steps in constructors.
Java Sockets – 28

Client Application

Socket

Client Application

Socket

Server Application

Socket

Socket

Server 

Socket

Connection request



STREAM SOCKET: CLIENT

Socket class represents an “active”, connected stream socket (TCP) 

between a Client and a Server

Socket constructors build the socket, bind it to a local port, and connect it to 

a port on a remote host running the server.

The resulting connection is bi-directional (full duplex)

Creating a socket causes atomically its connection to the server 

(which must exist).
(Unix API are more complex and complete, see: socket, bind, connect).

Java Sockets – 29

Client Application

Socket

Server Application

Server 

Socket

IP Name

Port



STREAM CLIENT: CONSTRUCTORS

public Socket(InetAddress remoteHost, int remotePort)

throws IOException;

Builds a client socket stream and connects it to the specified host on the 

specified port (Unix equivalent: socket, bind, connect)

public Socket (String remoteHost, int remotePort)throws… 

Builds a client socket stream and connects it to the specified port of the 
host whose logic name is remoteHost

public Socket(InetAddress remoteHost, int remotePort, 

InetAddress localHost, int localPort)throws IOException;

Builds a client socket stream, binds it to a local port (if localPort is 0, it 

is chosen automatically) and connects it to a port of the remote host. 

Building a socket atomically causes socket connection to the server 

(or throws an exception).

Java Sockets – 30



CLIENT STREAM: MANAGEMENT

OPEN implicit by the constructor

creating successfully a stream socket implies establishing a bi-

directional byte-oriented communication flow (stream) between two 

processes and requires resources allocation at the two end points.

CLOSE needed to free system resources

Connections are resources: defining and building them is not for 

free; they must be managed, kept alive, and then freed

Usually: keep only needed connections, close unneeded 

connections, limit multiple connections

close() method closes the socket and disconnects Client from 

Server
public synchronized void close() throws SocketException;

Java Sockets – 31



CLIENT STREAM: SUPPORT

To get additional information about socket

public InetAddress getInetAddress(); // remote

Returns remote host’s IP address

public InetAddress getLocalAddress(); // local

Returns local IP address

public int getPort(); // remote port

Returns remote port

public int getLocalPort(); // local

Returns local port

Example:

int port = socket.getPort();

Additional information about a socket are available runtime.

Java Sockets – 32



STREAM: SUPPORT RESOURCES

After building a connection we can send and receive data. 

Read/write from/to socket (IN/OUT)

Java Sockets – 33

Server Application

Server 

Socket

IP Name

Port

Client Application

Socket

IP Name

Port

IN/OUT



JAVA COMMUNICATION STREAM

Read and write from/to a socket after getting stream resources from 

the socket

public InputStream getInputStream()

public OutputStream getOutputStream()

These methods return a stream object to wrap the communication 
channel (InputStream and OutputStream classes)

A stream can only send/receive raw bytes,

without any additional formatting information

TCP delivers bytes ordered and without duplicates (a byte is available on 

the receiving site only if all preceding bytes already arrived); bytes are 

delivered at most once

If there is an error? No error information…

A different Java stream can wrap a stream socket to provide high 
level formatting functions (e.g. DataInputStream)

Java Sockets – 34



DataOutputStream and DataInputStream 

DataOutputStream and DataInputStream provide methods 

to send and receive primitive Java types.

Typical usage: define a Client/Server protocols based on Java

(exchanging Java object instances): in this class we use them to 

create Java C/S applications (e.g. to exchange int and Strings…)

Main methods to write/read primitive data:

UTF Unified Transformation Format (for strings…)

DataOutputStream DataInputStream

String void writeUTF(String str) String readUTF()

char void writeChar(int v) char readChar()

int void writeInt(int v) int readInt()

float void writeFloat(float v) float readFloat()

... ... ...

Java Sockets – 35



FileOutputStream and FileInputStream

Java uses streams to abstract file access: FileOutputStream and 

FileInputStream, which are specializations respectively of OutputStream

and InputStream (generic Output and Input streams)
FileOutputStream inherits from OutputStream:
void write(int b) throws IOException

Writes the specified byte to this file output stream.
void write(byte[] b) throws IOException

Writes b.length bytes from the specified byte array to this file output stream.

FileInputStream inherits from InputStream:
int read() throws IOException

Reads a byte. Returns the next byte of data, or -1 if the end of the file is 

reached.
int read(byte[] b) throws IOException

Reads up to b.length bytes of data from this input stream into an array of bytes. 

Returns the total number of bytes read into the buffer, or -1  if the end of file 

is reached.

If needed, a DataOutputStream can wrap a FileOutputStream and 

a DataInputStream can wrap a FileInputStream. Java Sockets – 36



FileOutputStream and FileInputStream: example

FileOutputStream fos = new FileOutputStream("result.txt");

// open the file result.dat in the current directory

byte[] buf = {'t', 'e', 's', 't', '1', '2', '3'}; // test data

fos.write(buf); // write the byte array to the fle

fos.flush(); // !!! Flush writings

fos.close(); // !!! close the file

FileInputStream fis = new FileInputStream("result.txt");

byte[] buf2 = new byte[3]; // buffer to read data from file

int numread;

while ((numread = fis.read(buf2)) > 0)

// repeat reads until we reach EOF

{

for (int i = 0; i < numread; i++)

System.out.println(buf2[i] + " ");

// print each byte read from the file as an integer value

}

fis.close(); // !!! Close the file Java Sockets – 37



STREAM SERVER: ARCHITECTURE

Server side we use the class java.net.ServerSocket, a 

ServerSocket is a special socket that can only accept connection 

requests from many Clients 

• many pending requests at the same time and

• many ready connections at the same time

Need to define the length of the queue of incoming connection that wait to 

be accepted by the server.

Java ServerSocket constructor wraps many simpler steps visible when 
using UNIX sockets, like socket, bind, listen.

Connection established when the Server process allows it (accept) 

accept (server side) returns a common Socket object valid for 

the connection request just accepted.

Java Sockets – 38



SERVERSOCKET: CONSTRUCTORS

Socket server side:

public ServerSocket(int localPort)

throws IOException, BindException;

Constructs a socket listening on the specified port

public ServerSocket(int localPort,int count)

Constructs a socket listening on the specified port having a connection 
queue of length count

Server is “passive”: it creates a connection queue and waits for 

clients

Server becomes active when it explicitly accepts a connection.

Queued connection requests are not accepted automatically, server uses 

a specific API to express its will to accept a connection.

Java Sockets – 39



SERVERSOCKET: ACCEPT

Server waits for connection requests calling accept()

public Socket accept() throws IOException;

accept blocks the Server until at least one connection request is 

pending

accept returns a Socket instance which allows communication 

between Client and Server

For new incoming connection requests, accept creates a new 

socket for the transport connection already created with the 

Client: the new Socket returned by accept is the real stream

accept blocks the caller, until a new connection request arrives

• If there are no pending connection requests, the server blocks

• If there is at least one pending connection request, accept unblocks and 

creates the connection (connection request is removed from incoming 

connection requests queue)
Java Sockets – 40



STREAM SERVER: SUPPORT

Data transmission is done the same way by both Client and Server

Connection endpoints are completely homogeneous

(property derived from TCP)

Information about already connected socket:

public InetAddress getInetAddress(); // remote

Remote  address

public InetAddress getLocalAddress(); // local

Local end point address

public int getPort(); // remote port

Remote end point port

public int getLocalPort(); // local

Local end point address
Java Sockets – 41



PARALLEL SERVER

A parallel server, …

After accepting a connection, the server spawns a new activity (Thread) 

that manages the service, inherits the new connection, and closes it at the 

end of operations

The main server immediately waits for new connection requests.

PARALLEL

MULTIPROCESS

CONNECTED

SERVER

Java Sockets – 42

accept (); <wait on ServerSocket>

<spawn thread>

<father continues>

< provide service
using Socket>

New

Thread

Server
thread
(father)



Example C/S STREAM PROTOCOL

Remote CoPy (RCP) is a distributed Client/Server application that 

copies a file from C to S

Design both the Client and Server applications.

Client application must be started as:

rcp_client servernode serverport filename destfilename

servernode and serverport identify the Server, filename is the filename of a file 

existent and readable in the Client filesystem.

The Client process must send the file filename to the Server, that must write it into 

the current directory as destfilename.

Connection oriented: Client wants to transfer a lot of data, each byte 

must be received in order and at-most-once.

The Client/Server connection is used for both coordination and data 

transfer.

Java Sockets – 43



Example: RCP CLIENT / 1

RCP Client – code snippets...   UTF: standard text representation format 

(use of write/readUTF to write and read Strings)

try {

rcpSocket = new Socket(host, port);

outSocket = new DataOutputStream(rcpSocket.getOutputStream());

inSocket = new DataInputStream(rcpSocket.getInputStream());

outSocket.writeUTF(destFilename);

String resp = inSocket.readUTF();

System.out.println(resp);

if (response.equalsIgnoreCase("MSGSrv: waitingForFile")) {

// send file

Java Sockets – 44



Example: RCP CLIENT / 2

sourceFile = new FileInputStream(localFName);

byte[] buf = new byte[1000]; // buffer to read a fixed portion

// of the file

int numbytes;

while ((numbytes = sourceFile.read(buf)) > 0) {

// read up to buf.length bytes and put the number

// of read bytes in numbytes

// Repeat reading until we consume the whole file

outSocket.write(buf, 0, numbytes); // send read bytes

}

rcpSocket.close(); // close socket

catch (IOException e) { ... }

Java Sockets – 45



RCP: SEQUENTIAL SERVER / 1

try { // ...

ss = new ServerSocket(serverPort, 5);

System.out.println("Listening on port " + ss.getLocalPort());

while (true) {  // endless loop

Socket s = ss.accept();  // wait for a connection

System.out.println("Connection "+ s);

inSock = new DataInputStream(s.getInputStream());

outSock = new DataOutputStream(s.getOutputStream());

String filename = inSock.readUTF();

System.out.println("Recevied file request: " + filename);

outSock.writeUTF("MSGSrv: waitingForFile");

Java Sockets – 46



RCP: SEQUENTIAL SERVER / 2

FileOutputStream fileOut = new FileOutputStream(filename);

byte[] buf = new byte[200];

int numbytes;

while ((numbytes = inSock.read(buf)) > 0) // same as before

fileOut.write(buf, 0, numbytes);

s.close();

fileOut.flush(); fileOut.close(); // ! flush output file and 

close it

} catch (IOException e) { ... }

Java Sockets – 47



RCP: PARALLEL SERVER

… try {…

rcpSocket = new ServerSocket(port);

System.out.println("Listening port:"+rcpSocket.getLocalPort());

while(true)

{ rcpSocketConn = rcpSocket.accept();

serviceThread = new ServiceRcp (rcpSocketConn);

serviceThread.start();

} } 

catch (IOException e) {System.err.println(e);}

Create a new process for each accepted connection.

Calling close on a socket closes it (if many threads have a reference to the 

same socket and any of them calls close, the socket is closed for all of them)

???  How many opened socket per process?

Java Sockets – 48



RCP: SERVER THREAD / 1

public class ServiceRcp extends Thread { ...

ServiceRcp(Socket incoming){rcpSocketSrv = incoming;}

public void run() { 

System.out.println("thread #" + Thread.currentThread());

System.out.println("Connection: " + rcpSocketSrv);

try 

{outSocket= new DataOutputStream 

(rcpSocketSrv.getOutputStream());

inSocket = new DataInputStream(rcpSocketSrv.getInputStream());

fileName = inSocket.readUTF();

String filename = inSock.readUTF();

Java Sockets – 49



RCP: SERVER THREAD / 2

System.out.println("Recevied file request: " + filename);

outSock.writeUTF("MSGSrv: waitingForFile");

fileOut = new FileOutputStream(filename);

byte[] buf = new byte[200];

int numbytes;

while ((numbytes = inSock.read(buf)) > 0) { // same as before

fileOut.write(buf, 0, numbytes); }

/* free resources*/

rcpSocketSrv.close();

fileOut.flush();

fileOut.close(); // ! flush output file and close it

} catch (IOException e) { ... }

System.out.println("End of service #" + 

Thread.currentThread());

} catch (IOException e) 

{ System.err.println(e); exit(1);} … Java Sockets – 50



SOCKET CLOSE

A Java socket requires application level resources, in addition it 

requires other operating system level resources, which are 
allocated to it until the application calls socket.close()

It is crucial to close socket to let the system know that it can free 

the resource associated to the socket itself

After closing a socket, some resources remain allocated for some 

time (depending on importance of pending operations, the input buffer is 

not saved)

For closed connected sockets, the output buffer is saved to keep 

sending data to peers

A peer can detect a closed socket thanks to exception, functions and 

events, that are notified if it tries to read or write data from/to the socket

Any peer can close the socket.

Socket close impacts the peer.

Java Sockets – 51



GRACEFUL SOCKET CLOSE

Closing a socket means closing two communication flows

Each peer is more responsible for one of the two flows: the 

read operations of the other peer depend on its output stream.

There are methods to close only a flow of a connection: 
shutdownInput() and shutdownOutput();

Usually Java applications use shutdownOutput()

If a peer shuts down its output flow, the output buffer is 

saved in memory to send remaining data to the other peer, 

the input memory depends on the actions of the other peer.

Java Sockets – 52



SOCKET OPTIONS

Socket options allow to fine tune sockets behaviour 

Socket options for stream sockets:

SetSoLinger (boolean on, int linger)

After closing a socket, the system tries to deliver packets still in the 
output queue. This options discards such packets after linger

seconds.

SetTcpNoDelay (boolean on) throws ...

Output data is sent as soon as possible, without buffering

SetKeepAlive (boolean on) throws...

Enables and disables the keepalive option

All supported options are declared in the SocketOptions

interface, with provides both get and set methods.

Java Sockets – 53


