
DEADLOCK

Contents

 Principles of deadlock

 Deadlock prevention

 Deadlock detection

Deadlock

A set of processes is deadlocked if each
process in the set is waiting for an event
that only another process in the set can
cause.

R2

P1 P2

R1

Examples of resources:
processors,I/O devices,
main and secondary memory,
files, emaphores…(reusable
resources)

request
 (the process can
be blocked)
use
release

Utilization protocol

P1
P(mutex1);
<R1>;
P(mutex2);
<R2>;

V(mutex2);
<release of R2>;
V(mutex1);
<release of R1>;

P2
P(mutex2);
<R2>;
P(mutex1);
<R1>;
V(mutex1);
<release of R1>;
V (mutex2);
<release of R2>;

A deadlock situation
derives from a race
condition occurred to
some involved processes

R1, R2, … , Rm:
 a set of resource types

Conditions for deadlock

P1, P2, … , Pn:
 a set of processes

A deadlock situation can
arise if the following
four conditions hold at
the same time:

mutual exclusion

hold-and-wait

no preemption

circular wait

All four conditions must
hold for deadlock to occur

System resource
allocation graph

vertices:
P=(P1,P2,..,Pn)
R=(R1,R2,..,Rm)

edges:
request edge Pi  Rj
assignment edge Rj  Pi

R2 R3

P1 P2 P3

R1

If the graph does not
contains cycles, then no
process is deadlocked

If the graph contain one
cycle, then a deadlock
may exist

If each resource type
has exactly one instance,
then a cycle implies that
one deadlock has occurred

Each process involved in
the cycle is deadlocked

(a cycle in the graph is a
necessary and sufficient
condition for the
existence of a deadlock)

If each resource type has
several instances, then one
cycle does not necessary
imply that a deadlock
occurred (the cycle is a
necessary but not
sufficient condition)

P3

P1 P2

R1

R2

Methods for handling
deadlock

We can use a protocol to
ensure hat the system
will never enter a
deadlock state (deadlock
prevention)

We can allow the system
to enter a deadlock
state and then recover
(detection and recovery)

We can ignore the problem,
and pretend that deadlocks
never occur in the system

It is up to the
application developer
to write programs that
handle deadlocks

Deadlock prevention

Deadlock prevention is a
set of methods for
ensuring that at least
one of the necessary
conditions can never occur

mutual exclusion

It is not possible to
prevent deadlocks by
denying the mutual
exclusion condition

hold-and- wait

That condition may be
prevented by requiring
that each process must
release all the resources
currently allocated
before it can request any
additional resources.

no preemption

If a process that it is
holding same resources
request another resource
that cannot be immediately
allocated to it, then all
resources currently being
held are preempted

circular wait
The condition can be
prevented by defining a
total ordering of all
resource types and by
requiring that each
process requests
resources in an
increasing order

We associate an index
with each resource type

Then Ri precedes Rj in
the ordering if i<j

Two processes A and B,
are deadlocked if A has
acquired Ri and requests
Rj, and B has acquired Rj
and requests Ri

That condition is
impossible because it
implies i<j and j<i

Deadlock avoidance

Deadlock-prevention
algorithms prevent
deadlocks by constraining
the strategy on how
requests can be made

Possible side effects of
preventing deadlocks by
these methods are an
inefficient utilization
of resources and an
inefficient process
execution

With deadlock avoidance,
a decision is made
dynamically whether current
resource allocation
requests, if granted,
would potentially lead to
deadlock

The resource allocation
state is defined by the
number of allocated and
available resources and
the maximum demands of
processes

A safe state is one in
which there is at least
one process execution
sequence such that all
processes can be run to
completion (safe sequence)

Banker’s algorithm

When a process makes a
request for a set of
resources

assume that the request is
granted, update the system
state accordingly, and
then determine if the
result is still a safe
state.

If so, grant the request,
if not, block the process
until it is safe
to grant the request

R1

P2

t1 t2 t3 t4

t5

t6

t7

t8

R2

safe
state

safe
state

safe
state

unreachable
region

A

R1

R2

P1

safe
state

safe
state

unsafe
region

Deadlock detection

It requires:

an algorithm that examines
the state of the system
to determine whether a
deadlock has occurred

an algorithm to recover
from the deadlock

Recovery

Possible approaches:

Abort all deadlocked
processes

Back up each deadlocked
process to some
previously defined check
points, and restart all
processes form those
checkpoints

3.Successively abort
deadlocked processes
until deadlock not
longer exists

4.Successively preempt
resources until deadlock
not longer exists

For 3 and 4 the selection
criteria could be one
of the following. Choose
the process with the:

 Least amount of
consumed processor time

 Least amount of
produced output

 Most estimated
remaining time

 Least total resources
allocated so far

 Lowest priority

