
message passing model

buffer

producer consumer

PRODUCER-CONSUMER
PROBLEM

Two semaphores

empty (i.v. 1)

full (i.v. O)

{

while (TRUE) {

<generate message to put in the
buffer >;

P (empty);

<put new message in the buffer>;

V (full);

 }

}

 void producer(void)

{

while (TRUE) {

P (full);

<take one message from the buffer> ;

V(empty);

<consume the message>;

 }

}

 void consumer(void)

buffer

producer consumer

Three semaphores

empty (i.v. N)

full (i.v. O)

mutex (i.v. 1)

{ while (TRUE)

{< generate one message to be put into

 the buffer >;

P (empty);

P (mutex);

<put the new message in the buffer>;

V (mutex);

V(full);}

}

void producer (void)

{while (TRUE)

{P (full);

P(mutex);

<take one message from the buffer>;

V(mutex);

V(empty);

<consume the message>;}

}

void consumer(void)

MESSAGE PASSING MODEL

send (destination, message)

The functions of message
passing are normally
provided in the form of a
couple of primitives:

receive (source,message)

One process sends
information in the form
of a message to another
process designated by a
destination

 A process receives
information by executing
the receive primitive,
to obtain the source of
the sending process and
the message

Design issues of message
systems:

Addressing

Synchronization

Addressing

Direct addressing

The send primitive includes
a specific identifier for
the destination process

send (P2, message)

The receive can be handled
in one of the two ways:

 The process explicitly
design a sending process:

receive (P1, message)

 If it is impossible to
specify in advance the
source process

 implicit addressing: the
source parameter specifies
a value yelded when the
receive operation has been
performed to indicate the
sender process.

Indirect addressing

Messages are not directly
sent from senders to
receivers

Messages are sent to
intermedia shared data
structures (mailbox) that
can temporaly hold messages

The relationship between
senders and receivers can
be:

one-to-one
many-to-one
many-to-many

A one-to-one relationship
allows private communication
to be set up betweeen a
couple of processes.

A many-to-one relationship
is useful for client-server
interaction.

The mailbox is often
referred to as a port

client/server model

server

client

port

P1

R

Pn

A one-to-many relationship
allows for one sender and
multiple receivers.

It is useful for
applications where messages
are to be broadcasted to
groups of reveiver
processes.

Message

header

body

origin
e

message type

destination ID

source ID

message length

 control information

message contents

SYNCHRONIZATION

The communication of a
message between two
processes implies some
level of synchronization

The receiver cannot receive
a message until it has been
sent by another process

SYNCHRONIZATION

In addition, we need to
specify what happens to a
process after a send or
receice primitive.

Message passing may be
either blocking or
nonblocking (synchronous
or asynchronous)

Blocking send: the sending
process is blocked until
the message is received
either by the receiving
process or by the mailbox.

Nonblocking send: the
sending process sends the
message and immediately
resumes operation.

Blocking receive: the
receiver blocks until a
message is available.

Nonblocking receive:
if there is no waiting
message, the process
continues executing,
abandoning the attempt to
receive.

Rendez vous betveen the
sender and the receiver:
both send and receive are
blocked by the operation

Extended rendezvous:
the sender is blocked until
the receiver completed the
implied action.

KERNEL OF A
PROCESS SYSTEM

 A small set of data
structures and functions
that provide the core
support to any concurrent
program.

 The role of a kernel
is to provide a virtual
processor to each
process

 PCBs

 process_in_execution

 ready-process-queues

 semaphores and blocked-
process-queues

Kernel data structures

Context switch management:
save and restore the PCBs
of the processes.

Kernel functions

Decision of the ready
process to which assign
the CPU.

Kernel functions

 Interrupt handling

 Operations on processes
(system calls)

The kernel starts
executing when
an interrupt occurs

External interrupts from
peripheral devices

 Internal interrupts or
traps triggered by the
executing process

 A stack is associated to
any process

Example

Double set of general
registers R1, R2, …, Rn
and R’1, R’2, …, R’n and
two registers SP and SP’
(user and kernel)

Example

α1

α n

β

P PCB

kernel stack

R1

Rn

SP

PC
PSζ

γ

δ

SP’

R1’

Rn’

η
g PC value of the process that
 executed the SVC

Process-in- execution

 P stack

d PS value of the process that
 executed the SVC
ε interrupt handler address
z kernel PSW

α1’

α n’

β’

P PCB
kernel stack

R1

Rn

SP

PC

PSζ

γ ’

δ ’

SP’

R1’

Rn’

P stack

P’ PCB

P’stack

α1

α n
β
γ
δ

α1’

α n’
β’
γ ’
δ’

η

η iret address
ζ Kernel PSW

Process- in -execution

