message passing model

o’
lr/“r/ /
4,

PRODUCER-CONSUMER
PROBLEM

buffer

e O

producer consumer

Two semaphores

empty (1.v.. 1)
full (i.v. 0)

void producer(void)

{
while (TRUE) {

<generate message to put in the
buffer >;

P (empty);
<put new message in the buffer>;
V' (full);

;

void consumer (void)

{
while (TRUE) {

P (full);

<take one message from the buffer> ;
V(empty);

<consume the message>;

}

buffer

=7

producer consumer

Three semaphores

empty (1.v. N)
full (1.v.

mutex (1.v.

void producer (void)

{ while (TRUE)
{< generate one message to be put into

the buffer >;

P (empty) ;
P (mutex) ;
<put the new message in the buffer>;
V (mutex) ;
V(full) ;}
}

vold consumer (void)

{while (TRUE)

{P (full);

P(mutex) ;

<take one message from the buffer>;
V(imutex) ;

V(empty) ;

<consume the message>;}

;

MESSAGE PASSING MODEL

The functions of message
passing are normally
provided .an the) fiorm [0f/a
couple of primitives:

—->send (destination, message)
2 receive (source,message)

—->0ne process sends
information in the form
of a message to another

process designated by a
destination

- A process receives
information by executing
the receive primitive,

to obtain the source of
the sending process and
the message

Design i1ssues of message
systems:

—->Addressing
—2Synchronization

Addressing

—->Direct addregsing

The send primitive includes
a specific i1dentifier for
the destination process

send (P2, message)

The receive can be handled
in one of the two ways:

- The process explicitly

design a sending process.:

receive (P1l, message)

- If 1t 1s impossible to
specify 1n advance the

source process

- 1mplicit addressing: the
source parameter specifies
a value yelded when the

receive operation has been
performed to indicate the
sender process.

Indirect addressing

Messages are not directly
sent from senders to
receivers

Messages are sent to
intermedia . shared data

structures (mailbox) that
can temporaly hold messages

The relationship between
senders and receivers can
be :

one-to-one
many-to-one
many-to-many

A one-to-one relationship
allows private communication
e set up betweeen a

0le of processes.

A many-to-one relationship
1s useful for client-server
interaction.

The mailbox 1s often
referred to as a port

client/server model

server

R

A one-to-many relationship
allows for one sender and
multiple receivers.

It 1s useful for
applications where messages

are to be broadcasted to
groups of reveiver
processes.

Message

header A

\

body {

SYNCHRONIZATION

The communication of a

message between two
processes implies some
level of synchronization

SYNCHRONIZATION

The receiver cannot receive

a message until 1t has been
sent by another process

In addition, we need to
specify what happens to a
process after a send or

receice primitive.

Message passing may be
either blocking or
nonblocking (synchronous

or asynchronous)

Blocking send: the sending
process 1s blocked until

the message 1s received
either by the receiving
process or by the mailbox.

Nonblocking send: the
sending process sends the

message and immediately
resumes operation.

Blocking receive:. the
receiver blocks until a
message 1s availlable.

Nonblocking regeives
1f there i1s no waiting
message, the process

continues executing,
abandoning the attempt to
receive.

Rendez vous betveen the
sender and the receiver:

both send and receive are
blocked by the operation

Extended rendezvous:
the sender 1s blocked until
the receiver completed the

implied action.

KERNEL OF A
PROCESS SYSTEM

—-> A small set of data
structures and functions

that provide the core
support to any concurrent
program.

- The role of a kernel
1is to provide a virtual
processor to each
process

Kernel data structures

- PCBs

= process in execution

-2 ready-process-queues

-2 semaphores and blocked-
process-queues

Kernel functions

—->Context switch management:
save and restore the PCBs
of the processes.

Kernel functions

—->Decision of the ready

orocess to which ass1gn
the CPU.

= Interrupt handling

- Operations on processes

(system calls)

—->The kernel starts
executing when
an interrupt occurs

—2External interrupts from
peripheral devices

-2 Internal interrupts or
traps triggered by the
executing process

Example

> A stack i1s associated to
any process

Example

—->Double set of general
registers R1, R2, .., Rn

and R /72 (/L//] R/n7and
two registers SP and SP’
(user and kernel)

P stack

——

Process-in- execution

PC value of the process that
executed the SVC

PS value of the process that
executed the SVC

interrupt handler address

kernel PSW

kernel stack

kernel stack

9

ol
|
on’
B’
,Y 9
69

! P’stack !

SP
.
.

Process- in -execution

II_____________

PS 1 iret address
C Kernel PSW

