
Global Environment Model

MUTUAL EXCLUSION PROBLEM

The operations used
by processes to access
to common resources
(critical sections) must
be mutually exclusive
in time

A
B

t

 No assumptions should
be made about relative
process speed

 A, B critical sections

Example

 During their execution
P1 and P2 access a common
variable count(i.v.=O)
and increment it by 1

Example

 When P1 and P2 terminate
their executions count
must be incremented by 2
count=2

Note that the increment
of count, when P1 execute
it, may be implemented
in machine language as:

reg1 = count
reg1 = reg1 +1
count = reg1

Where reg1 is a local CPU
register used by P1

Similarly the increment
of count, when P2 executes
it, may be implemented
in machine language as:

reg2 = count
reg2 = reg2 +1
count = reg2

where reg2 is a local CPU
register used by P2

The concurrent execution
of the statement

++count

is equivalent to
a sequential execution
where the statements
can be interleaved in any
arbitrary order

TO: reg1=count (reg1=O) (P1)
T1: reg2=count (reg2=O) (P2)
T2: reg2=reg2+1 (reg2=1) (P2)
T3: count=reg2 (count=1) (P2)
T4: reg1=reg1+1 (reg1=1) (P1)
T5: count=reg1 (count=1) (P1)

RACE CONDITION:

Several processes
concurrently access and
manipulate the same data

RACE CONDITION:

The outcome of the
execution depends on the
particular order in wich
the access takes place

To prevent race conditions,
we need to assure that only
one process at a time can
be operating on the same
variable count

To grant that invariant,
we need some form
of process synchronization

SOLUTION TO THE MUTUAL
EXCLUSION PROBLEM

P1
while (busy ==1);

busy =1

< critical section A>;

busy =O;

busy = 1 the resource is busy
busy = O the resource is free

P2
while (busy ==1);

busy =1

< critical section B>;

busy =O;

TO: P1 executes while and busy=O
T1: P2 executes while and busy=O
T2: P1 set busy=1 and accesses to A
T3: P2 set busy=1 and accesses to B

Both processes have
simultaneous access
to their critical section

TSL (Test and Set Lock)

Instruction that reads
and modifies the contents
of a memory word in an
indivisible way

The CPU, while executing
the TSL instruction, locks
the memory bus to prohibit
other CPUs from accessing
memory until the
instruction is completed

TSL R, x:

It reads the content
of x into the register
R and then stores
a non zero value
at that memory address

The operations of reading
a word and storing into
it are garantee
to be indivisible by the
hardware level

TSL R, x:

lock(x):

lock(x) , unlock(x):

(copy x to register
and set x=1)

TSL register, x

CMP register,O

(if non zero the
cycle is restarted)
(return to caller;
critical region
entered)

(was x zero?)

JNE lock

RET

unlock(x):

(store a O in x)MOVE x, O

(return to caller)RET

P1

lock(x);
<sezione critica A>;
unlock (x);

Soluzione con lock(x)
e unlock(x):

P2

lock(x);
<sezione critica B>;
unlock (x) ;

Soluzione con lock(x)
e unlock(x):

SOLUTION PROPERTIES

 busy waiting

 multiprocessor
systems

 “very shorts”
critical sections

x

R

P1 P2

PR1 PRn

integer non negative
variable, initialized
to a nonnegative value

s.value

SEMAPHORES

A semaphor s is a

s is associated with a
waiting list, in wich
are linked the PCBs
of processes blocked on s.

s.queue

s

A semaphore s is
accessed only via two
standard operations

 P (s)

 V (s)

P(s) If s.value>O the
process continues its
execution, if s.value=O
the process is blocked
in the s.queue

V(s) A process in the
s.queue is waked and
extracted; its state is
modified from blocked
to ready

void P(s)

{

if (s.value==O)

<the process is blocked and its
PCB is inserted in the s.queue>;

else s.value= s.value-1;

}

void V(s)

{

if (< there is at least one
process in s.queue>)

<the PCB of the first of these
processes is taken out from
s.queue and its state is
modified from blocked to ready>;

else s.value = s.value + 1;

}

As a consequence of
the execution of a V(s)
the state of the process
does not change

The decision of wich
process is to be extracted
from the s.queue is taken
with a FIFO policy

P (mutex)
<sezione critica>
V (mutex)

MUTUAL EXCLUSION

mutex: semaphore associated
to the shared resource
(i. v. mutex=1)

P1 P2
P(mutex) P(mutex)

<A>

V (mutex) V (mutex)

P3

P (mutex)
<C>

V (mutex)

P and V must be
indivisible operations

The modification of the
value of the semaphore and
the possible blocking or
waking up of a process must
be indivisible operations

(mutex.value, mutex.queue)

P,V: critical sections

with reference to the
data structure
represented by mutex

Disabling interrupts
(when P,V are executing
on the same processor)

INDIVISIBILITY OF P
AND V BY

Using lock(x), unlock(x)(
when P,V are executing
on different processors)

INDIVISIBILITY OF P
AND V BY

lock(x);
P (mutex);
unlock(x);

<sezione critica>;
lock(x);
V (mutex);
unlock(x);

indivisible P,V

x

R

P1 P2

PR1 PRn

mutex

