
Threads-Process Interaction



CONTENTS

 Threads
 Process interaction



THREADS



Address space
of a process

 Process image (program,
data, stack, PCB)

 Allocated resources:
(open files, main
memory, I/O devices,…)



 Process properties:
distinguished address
spaces (Unix)

 The operations on
processes and context
switch are rather time
consuming (overhead)



The concept of a process
embodies two requirements:

Resource ownership
Resources can be allocated
to processes, e.g., memory,
I/O devices…



Scheduling/execution
A process has an execution
state, a priority, and
processes are the entities
scheduled by the O.S.



the unit of dispatching
is usually referred to as
a thread or lighthweight
process



the unit of resource
ownership is usually still
referred to as a process
or a task



Multithreading:
the ability of an O.S.
to support multiple threads
within a single process



All the threads of a
process share in the same
process address space and
have access to the same
data



 A thread execution state
(running, ready,..)

 A saved thread context,
when not in execution

Any thread has several
associated entities:



One process
one thread

One process
multiple threads

Multiple processes
one thread
per process

Multiple processes
multiple threads

per process



THREADS BENEFITS:
It takes less time

to create and terminate
a thread than a process

to switch between two
threads within the same
process



Threads enhance efficiency
in communication,
because threads within
the same process share
memory and files



THREAD IMPLEMENTATION

Thread management is in
charge of the application
and the kernel is not
aware of thread existence

User-level threads



A thread library
is typically used, wich
is a package of routines
for thread management

THREAD IMPLEMENTATION
User-level threads



 creating and destroying
threads

 passing messages and
data betweeen threads

The thread library
contains code for:



 scheduling thread
execution and saving
and restoring thread
context

The thread library
contains code for:



When a thread executes
a system call, all
the threads within that
process are blocked

Disavantages
of user-level threads



A multithreaded
application cannot
take advantage
of multiprocessing

Disavantages
of user-level threads



Kernel-level threads
(NT, Linux)

 The whole thread
management is made by
the O.S.



 There is no thread
management code in the
application area, but
only a simple API to
address to the kernel
thread facility

Kernel-level threads
(NT, Linux)



The main disavantage
of the this approach
is that the switch between
two threads within
the same process requires
a mode switch to the kernel



A multithreaded
application can take
advantage
of multiprocessing



PROCESS INTERACTION



CONCURRENT PROCESSES

Set of processes which
execute simultaneously



Two processes are
concurrent if the first
operation of one of them
begins before the last
operation of the other

CONCURRENT PROCESSES



P1
P2

P1
P2

P1
P2

P1
P2

t
overlapping interleaving

t

CONCURRENT PROCESSES



Independent processes:
a set of processes
is indipendent if each
process of the set cannot
affect or be affected
by the others processes

CONCURRENT PROCESSES



Cooperating processes:
a set of processes
is cooperating if each
of them can affect or be
affected by any other
process



 The result of the
cooperation depends
from race conditions
of the processes

 The behaviour of a set
of cooperating processes
is not reproducible



PROCESS INTERACTION

Competition:behavior
exibited in the use of common
resources that cannot be used
simultaneously (because
of mutual exclusion)



Cooperation: execution
of a common activity
obtained by the exchange
of information
(via communication)

PROCESS INTERACTION



MUTUAL EXCLUSION

process A

The file
can be
inserted
in the
position 7

file A

file B

file C

file D

3

4

5

6

7
...

full

empty

A and B
intend
to insert
a file in
the table

process B



MUTUAL EXCLUSION

process A

file A

file B

file C

file D

3

4

5

6

7
... empty

process B

1 Following
the reading
of the value
7 by A, A is
suspended



MUTUAL EXCLUSION

process A

file A

file B

file C

file D

3

4

5

6

7
... empty

process B

2 B reads
the value 7,
inserts the
file E and
increases
the value of
the variable
empty to 8

8

file E



MUTUAL EXCLUSION

process A

file A

file B

file C

file D

3

4

5

6

7

empty
process B

8

file xxx

3 A resumes its
execution and
inserts the
file xxx in 7
(the previous
value
is deleted)



COMMUNICATION

bufferP1 P2

produce message

enter message consume message

remove message



Correct sequence
of operations:
enter - remove – enter -
remove- …

Incorrect sequence
of operations: remove –
remove – enter - …

COMMUNICATION



In the previous examples,
in order to obtain a
correct system behaviour,
...

SYNCHRONIZATION



... it is necessary to
impose timing constraints
to the execution of the
process operations

SYNCHRONIZATION



Competition: only one
process at a time
must access to a common
resource (indirect or
implicit synchronization)

SYNCHRONIZATION
constraints



Cooperation: the order
of operations observed
by producers and consumers
on the buffer must follow
a fixed policy, ...

SYNCHRONIZATION
constraints



... such as an alternation
schedule (direct or explicit
synchronization)

SYNCHRONIZATION
constraints



PROCESS INTERACTION
MODELS

 global environment
model

 message passing model



The process system may
be considered as a set
of processes and resources
(objects)

GLOBAL ENVIRONMENT
MODEL



O3

O1

O2

O4

P1
P2

P3

O2, O3 common res.
competition

cooperation

O1, O4 private res.

GLOBAL ENVIRONMENT
MODEL



The process system
may be considered as a
set of processes, ...

Messagge passing model



... each of them working
in a local environment,
i.e., not directly
accessibile by other
processes

Messagge passing model



P1 P2

Pn

channel

Messagge passing model



Any type of interactions
among processes
(communication,
synchronization) requires
a message exchange



Resources are typically
not directly accessibles
to processes

Any resource is associated
to a specific server process



BUFFERBUFFER

PP

producer

CC

consumer



The producer cannot enter
a message in the buffer,
if the buffer is full

The consumer cannot remove
a message from the buffer,
if the buffer is empty



d = num. of entered messages
e = num. of removed messages
N = size of the buffer

O ≤ d-e ≤ N


