Key distribution and certification

- In the case of public key encryption model the authenticity
of the public key of each partner in the communication is
ensured by a Certification Authority (CA)

* In the case of symmetric key encryption the authenticity of
the common key is ensured by a Key Distribution Center
(KDC)

* Problem solution: trusting autority.

Kerberos

 The Kerberos protocol is designed to provide reliable
authentication over open and insecure networks where
communications between the hosts belonging to it may
be intercepted .

 The technique was developed at MIT in the 1980. It
represents an authentication service based on the

symmetric key encryption and on a Key Distribution
Center (KDC) which is a trusted third part.

« KDC consists of two parts logically separeted
Authentication Server (AS) and Ticket Granting
Server (TGS).

« AS is responsible for handling a login request from a
user. The AS maintains a database of secret keys; each
entity on the network — whether a client or a server —
shares a secret key known only to itself and to the AS.
Knowledge of this key serves to prove the entity's
identity.

« Setting up secure channels is handled by TGS. TGS
hands out special messages, known as tickets, that are
used to convince a server that the client is really who he
claims to be.

« Aticket is an unforgeable, non replayable, authenticated
object. It is an encrypted data structure naming a user
and a service that the user is allowed to obtain. It also
contain a time value and some control information.

« The following is an intuitive description. The client (Alice)
authenticates itself to the Authentication Server and
receives a ticket. (All tickets are time-stamped.)

« It then contacts the Ticket Granting Server, and using
the ticket it demonstrates its identity and asks for a
service. If the client is eligible for the service, then the
Ticket Granting Server sends another ticket to the client.

« The client then contacts the Service Server, and using
this ticket it proves that it has been approved to receive
the service.

Single Sigh On &
Software Libero
Key Distribution Center (KDC)

A £

Authentication Ticket Granting
Server (AS) Server (TGS)

S o

Single Sigh On &

Software Libero
Key Distribution Center (KDC)

v
¥
(\0
G Authentication Ticket Granting
N o Server (AS) Server (TGS)

Single Sigh On &

Software Libero
Key Distribution Center (KDC)

R Authentication Ticket Granting
Server (AS) Server (TGS)

Single Sigh On &

Software Libero
Key Distribution Center (KDC)

01\0 Authentication Ticket Granting
Server (AS) Server (TGS)

Single Sigh On &

Software Libero
Key Distribution Center (KDC)

L Authentication Ticket Granting
Server (AS) Server (TGS)

Single Sigh On &

Software Libero
Key Distribution Center (KDC)

L Authentication Ticket Granting
Server (AS) Server (TGS)

4. Ecco il Service Ticket

5. Autenticami, ho il Service Ticket

Single Sigh On &

Software Libero
Key Distribution Center (KDC)

,a,&\o Authentication Ticket Granting
XR'| Server (AS) Server (TGS)

3. TGT, voglio un Service TicJet

4. Ecco il Service Ticket

5. Autenticami, ho il Service Ticket

- —
/ | " - 6. Ciao Alice, parliamo ﬂ

Single Sigh On &

Software Libero
Key Distribution Center (KDC)

,a,&\o Authentication Ticket Granting
XR'| Server (AS) Server (TGS)

3. TGT, voglio un Service TicJet

4. Ecco il Service Ticket

5. Autenticami, ho il Service Ticket

> —
| :| | 6. Ciao Alice, parliamo ﬂ
i ﬁ 5

AS = Authentication Server
SS = Service Server

TGS = Ticket-Granting Server
TGT = Ticket-Granting Ticket

User Client-based Logon

1) A user client sends the user identity to AS when the
user logs on.

2) The AS verify that the user is authorized. The AS

generates the secret key,Ka, by hashing the password of
the user found at the database.

Client Authentication

AS sends back to the client a messages encrypted with Ka
(the secret key of the client/user) containing:

- Ks, for use in communication with Ticket Granting
Server (Client/TGS Session Key).

- Ktgs(A,Ks) Ticket-Granting Ticket, which includes the
client ID (A), the client/TGS session key (KS), encrypted
using the secret key Ktgs , shared between AS and TGS

- When the message from AS has been received the
Alice’s client asks to Alice the password . The password is
used to generate Ka. If using Ka the message can be
decrypted, then the user is authenticated by AS and Alice
obtains the KS key and the ticket Ktgs(A,Ks).

* The client deletes the Alice’s password. So, the
password is present in the client only a few millisecond.

* Note that the passwords are stored at the Kerberos
server, not at the client, and that the passwords did not
have to be passed across the network, even in
encrypted form (security advantage).

3)Once the client receives the messages, it decrypts the
message to obtain Ks, the Client/TGS Session Key. This
session key is used for further communications with the
TGS. (Note: The client cannot decrypt Ktgs(A,Ks) , as it
is encrypted using TGS's secret key.)

Client Service Authorization

1) When requesting services, the client sends the following
two messages to the TGS:

— Message C: Composed of Ktgs(A,Ks), and the ID of
the requested server, Bob.

— Message D: Authenticator (which is composed of the
client ID and the timestamp), encrypted using the
Client/TGS Session Key, Ks(A,T)

2) Upon receiving messages C and D, the TGS retrieves
Ktgs(A,Ks) out of message C. It decrypts Ktgs(A,Ks)
using Ktgs, the TGS secret key. This gives it Ks the
“client/ TGS session Key”. Using this key, the TGS
decrypts message D (Authenticator) and sends the
following two messages to the client:

message E: client-to-server-ticket (wich includes the
client ID and Kab, Client/Server Session Key) encrypted
using Kb, the server secret key.

message F: Kab, Client/Server Session Key encrypted
with Ks, the Client/TGS Session Key

Client Service Request

1) Upon receiving messages E and F from TGS, the client
has enough information to authenticate itself to the Bob.

The client connects to the SS and sends the following
two messages:

- message E from the previous step (the client-to-server-
ticket, encrypted using Kb, Bob secret key)

- message G: a new authenticator, wich incluses the
client ID, time stamp and is encrypted using Kab, the
client/server session key.

2) Bob decrypts the ticket using Kb, its own secret Key, to
retrieve Kab. Using Kab, Bob decrypts the Autenticator
and sends the following message to the client to confirm
its true identity and willingness to serve the client:

Message H: the time stamp found in client'sAuthenticator
plus 1, encrypted using Kab.

3) the client decrypts the confirmation using Kab, and
checks whether the timestamp is correctly updated. If
so,then the client can trust the server and can start
Issuing service requests to the server.

4) the server provides the requested services to the client.

Authentication servers

The servers offering services may belong to different
domains, each of them with own AS and TGS.

If a client wishes to access a server belonging to a
different domain it is necessary to require to the local
TGS a ticket that is accepted by the remote TGS.

In order to achieve this result, the remote TGS must be
registered on the local TGS as a local server.

In this way, the local TGS can give to Alice a valid ticket
for the remote TGS and Alice is able to obtain a ticket for
the remote server.

Kerberos was carefully designed to withstand attacks in
distributed environment.

No password communicated on the network
Cryptographic protection (against spoofing).

Limited period of validity. Each ticket is issued for a
limited period of time. The ticket contains a time stamp
with wich a receiving server determines the ticket
validity.(long attacks, such brute force cryptanalysis, are

usually neutralized because the attacker does not have
time to complete the attack).

Time stamps to prevent reply attacks. Kerberos
requires reliable access to a universal clock. Each user
request to a server is stamped with the time of the
request. This time is compared to the current time. The
request is accepted only if the time is reasonably close
to the current time

DRAWBACKS

 Single point of failure: Il requires continous availability
of the central server. When the Kerberos server is
down,no one can log on (multiple Kerberos servers).

*Kerberos requires the clocks of the involved hosts to be
synchronized. The tickets have a time availability period
and if the host clock is not synchronized with the Kerberos
server clock, the authentication will fail with the Kerberos
server clock.

*Since all authentication is controlled by a centralized
KDC, compromise of this authentication infrastructure will
allow an attacker to impersonate any user.

