
The Socket Interface

• Client and server use the transport protocol to
communicate.

• When it interacts with protocol, an application
must specify :whether it is a server or a client (that
is, wether it will wait passively or actively initiate
communication)

• In addition, the sender must specify the data to be
sent, and the receiver must specify where
incoming data should be placed

1

• The interface used by an application is known as
an Application Program Interface (API).

• An API defines a set of operations that an
application can perform when interacting with
protocol software and details such as arguments
required.

• Usually an API contains a separate procedure for
each logical function

2

• The protocols specify the general operations that
should be provided, and allow each O.S. to define
the specific API an application use to perform the
operation.

• The socket API is a standard. They are available
for many O.S. (e.g. Microsoft’s windows system,
various Unix systems).

• The socket API originated as part of the BSD
Unix O.S.

3

4

Socket and Socket Library

• In BSD UNIX and in the systems derived from it, socket functions are
part of the O.S. itself.

• In different O.S., instead to modifying their basic O.S. vendors created
a socket library that provides the socket API. That is, the vendor
created a library of procedures that each have the same name and
arguments as one of the socket functions.

• A socket library can provide applications with a socket API on a
computer system that does not provide native sockets. When an
application calls one of the socket procedures the control passes to a
library routine that makes one or more calls to the underlyng operating
system to implement the socket function.

5

Socket properties

• Communication domain.
PF-INET :internet domain
PF-UNIX :Unix O.S. domain

• Semantic characteristics of the communication.
reliability, one to one communication, one to many communication .

• Local and remote addresses representation
A generic format is used to represent the addresses to be assigned to the sockets

6

Socket type

Type: indicates the communication properties.

connection-oriented (virtual channel utilization)
connection-less (no virtual channel)

Socket stream
- Connection oriented
- one-to-one simmetric communication
- connection creation before the beginning of
 communication
- connection termination at the end of communication

Socket datagram
- Connectionless
- one-to- many asimmetric communication

7

message 2

proc
A

proc
B

message 1

communication domain

Socket
stream

virtual
channel

8

Data structure associated to a socket

• In the Internet domain (PF-INET) to each socket is assigned an address
constituded by:

the IP address of the node in which is running the process owner
of the socket.
the number of the port to which the socket is associated .

• in order to communicate with others processes each process must:

to create a socket. Each socket is locally represented by a file
descriptor.
to specify the socket address at wich the server will accept

contacts

9

In the case of PF-INET domain the socket address is represented by the
following structure :

struct sockaddr-in {
sa-family-t sin-family; /*family of the address*/
in-port-t sin-port; /*port number*/
struct-in-addr sin-addr; /*IP address of the node*/
char sin.zero [8] /*not used (set to zero)*/
}

where the type of sin_addr, which represents the node address, is
represented in the following way:

struct in_addr { uint32_t s_addr};

10

The non primitive data types used in the previous definitions are
described in the following. Are also indicated the header files in which
they are declared.

Type Description Header file
sa_family_t Type associated to the domain <sys/types.h>
in_port_t Type associeted to the port <netinet/in.h>

(16 bit unsigned int)
uint32_t 32 bit unsigned int <sys/types.h>
sockaddr Type associated to the socket

address <sys/socket.h>
sockaddr_in Specific type associated to a socket

 address in the internet domain (IP v.4) <sys/socket.h>

11

Socket

Process A

socket

port

node: IP address

Process B

socket

node: IP address

Internet
(TCP/IP) port

The communication channel between the process A and the process B
is defined by
<protocol; IP local address; local port; IP remote address; remote port >

12

Socket data structure

A socket is created into a communication domain(Internet
or Unix domains)

.

family: PF_INET
service: SOCK_STREAM
local IP: 137.204.57.33
remote IP:
local port: 12345
remote port:
pgid:
....................

socket data structure Domain - Protocol Family: Internet
(or AF_INET, Address Family Internet)

socket type: STREAM or DATAGRAM

socket local address (the address format
results from the socket communication domain)

Set of processes associated to the socket

13

Address format

 UNIX domain : the address format is the format of a file
name (pathname).

 AF_INET domain:Internet address
 IP address of the node (32 bit); port number (16 bit)

_

_

14

socket creation

sd = socket (domain, type, protocol);

 The socket procedure creates a socket and returns an integer descriptor

 domain specifies the communication domain (es. AF_INET)

 type specifies the type of communication the socket will use (es.
SOCK_STREAM o SOCK_DGRAM)

 protocol specifies a particular transport protocol used with the socket

In the communication channel the procedure specifies the used protocol
 <protocol; IP local address; local port; IP remote address; remote port
>

15

bind procedure

When created, a socket has neither a local address nor a remote address

error = bind (sd, localaddr, addrlen);

 A process uses the the bind procedure to supply the local address at
wich the process will wait for contacts.

 sd is the descriptor of the socket that has been created, but not
previously bound.

 localaddr is a structure that specifies the local address to be assigned to
the socket.

 addrlen is an integer tha specifies the length of the address.

In the communication channel the procedure specifies :
 <protocol; IP local address; local port ; IP remote address; remote port>

16

connection-oriented communication
(socket STREAM or TCP)

client and server: asimmetric communication

 1) server and client must creat creare each one a socket and specify
their address (socket and bind procedures)

 2) a virtual channel must be created betweeen the two sockets

 3) communication

 4) socket shutdown

17

error = listen (sd , dim);
int error , sd , dim;

 .
 sd is the descriptor of a socket that has been created and bound to a local address.

 dim specifies a length for the socket’s request queue.

 The O.S.builds a separate request queue for each socket. Initially the queue is
empty.

 As requests arrive from clients, each is placed in the queue; when the server asks
to retrieve an incoming request from the socket, the system returns the next
request from the queue.

 If the queue is full when a request arrives, the system rejects the request.

listen procedure
(Server)

After creation the socket is placed in passive mode so it can be used to
wait for contacts from clients.

18

error = connect (sd, saddress, saddresslen) ;

 - sd is the descriptor of a socket on the client computer to use for
the connection.

 - saddress is a sockaddress structure that specifies the server
address and port number

 - saddresslen specifies the length of the server’s address measured
in bytes

 - the client process may be suspended as a consequence of a call of
connect

connect procedure
(Client)

Clients use procedure connect to establish connection with a specific server

In the communication channel the procedure specifies :
 <protocol; IP local address; local port ; IP remote address; remote
port>

19

int = accept (sd , caddress, caddreslen);

sd is the descriptor of a socket the server has created and bound to a specific port.
caddress is the address of a structure of type sockaddress.
caddresslen is a pointer to an integer.

-If a request is present in the queue, accept estracts from it the first request and creates a
new socket for the connection and returns the descriptor of the new socket to the caller

- If the queue is empty the server process is suspended.

accept procedure
(Server)

A server that use a connection-oriented transport must call procedure accept to accept
a connection request

20

connection oriented communication

Client
process

socket
client

client
port

node: IP address

Server
process

Server socket
(sd)

listen() +
accept()

node: IP address

new socket

network (TCP/IP) server
port

21

virtual channel creation

csd=socket
(…)

connect(csd.

asc=socket(
..)

bind(asc.)

Listen(asc
)

ssd=accept(asc
.

csd

asc

ssd

communication
ì> comunication

Connecti
on
request

virtual
channel

crea

crea

 crea

client process





22

Read and write with sockets

Socket API was originally designed to be part of UNIX, which uses read
and write fot I/O. Consequently, sockets also allow applications to use
read and write to transfer data.

Read and write do not have arguments tha permit the caller to specify a
destination. (one to one communication schema). It is sufficient to
specify only the socket descriptor associated to the local socket.

Read and write have three arguments: a socket descriptor, the location
of a buffer in memory used to store data and the length of the memory
buffer.
A server can send a message to a client in the following way:

int asc, sd;
char msg[6] = “Ciao!”;
<creazione socket ed apertura del canale>
write (sd,msg,6)

23

Client process

int csd;
char msg[6];
< socket creation and channel definition>;
read (ssd,msg,6);

The sockets are blocking: if the read is executed when no messages are
present in the channel,the process is suspended.

In TCP protocol messages are not separated. The channel contents is
consided as a non structured sequence of bytes.

Agreement between the two processes on the characteristics of the
messages (for ins., prefixed constant lenght).

24

Close procedure

The close procedure tells the system to terminate the use of a socket. It has the form:

close(socket)

. Closing the socket immediately terminates its use . The descriptor is released,
preventing the process from sending and receiving more data.

If the socket is using a connection oriented transport protocol, close
terminates the connection before closing the socket.

25

• At the end of a communication session, the connection can be closed using
the procedure:

 shutdown (socket, mode)

sd is the socket descripror associated to the channel terminal.
mode defines the closure modalities.

• It is possible to close the channel only in a direction (value 0 for the
reception, value 1 for the trasmission) or in both directions (value 2).

• If both directions are closed the sd socket is deleted.

26

Client process
include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
struct sockaddr_in *D, *server;
char msg[2000];
int sd, l;
int main()
{

sd=socket(AF_INET,SOCK_STREAM,0);
<server address initialization>
/* establish connection*/
connect(sd,&server,l);

<msg message creation>;

write(sd, msg,2000); /* message sending*/
read(sd,ris, 2000); /* answer receiving */
shutdown (sd,2); /* connection closing*/

}

27

Server process
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
struct sockaddr_in *M, *my;
char msg[BUFFERSIZE], ris[2000];
int asc, l,sd, addrlen ;
int main()
{

asc=socket(AF_INET,SOCK_STREAM,0);
<address initialitation>
l=sizeof(struct sockaddr_in);
bind (asc,&my,l); /* address assigning*/
listen(asc, 100); /*request queue creating */
sd=accept(asc, M, &addrlen); /* channel opening*/
read (sd, msg, 2000); /* message receiving*.
< creation of ris answer>
write (sd, ris, 2000); /* answer sending*/ }

28

Socket datagram
As the communication is connection-less, the procedures called by a
process are create and bind.

Procedures sendto e recvfrom are used by processes to send and receive
messages.

 sendto(sd, data, length, flags,destaddress, addresslen)

sd is the descriptor of a socket to use
data is the address in memory of the data to be send;
length is an integer that specifies the number of bytes of data
flags contains bits that request special options about the message
transport;
destaddress specifies the address of a destination;
addresslength is the length of the address

29

 recvfrom(sd, buffer,length,flags,sndraddr,saddrln)

sd is the descriptor of a socket from wich data is to be received
buffer is the address in memory in which the incoming message should be
placed;
length specifies the size of the buffer;
flags allow the caller to control details about the message transport.
sndraddr and saddrln are used to record the sender’s address

30

• The recvfrom can block the process, if the message is not
available;

• Differently from the case of connection oriented communication
the communication procedures require specific parameters to
identify the addresses of the partnes in the communication.

• to send a message it is necessary to specify the address of the
receiver; to receive a message it is necessary that the recvfrom
provides the address of the sending process.

• to close a datagram socket it is possible to utilize the system call
shutdown, or the system call close

31

Connection-less communication
(socket DATAGRAM)

socket()

bind()

recvfrom()

<request wait>

<processing>

sendto()

close()

Client Process

Server Process

1

2

socket()

sendto()

recvfrom()
<answer wait>

close()

32

Client
include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
struct sockaddr_in *D, *my;
char msg[2000], ris[BUFFERSIZE];
int sd, l, addrlen;
main()
{

sd=socket(AF_INET,SOCK_DGRAM,0);
<my address initialization>
l=sizeof(struct sockaddr_in);
bind (sd,&my,l);
/* message sending to the server : */
sendto (sd, msg, 2000, 0, D,l);
/* answer receiving
recvfrom (sd, ris, BUFFERSIZE,0, D, &addrlen);
...
close(sd);

}

33

server
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
struct sockaddr_in *M, *my;
char msg[BUFFERSIZE], ris[2000];
int sd, l, addrlen;
main() {

sd=socket(AF_INET,SOCK_DGRAM,0);
< my address initialization >
l=sizeof(struct sockaddr_in);
bind (sd,&mio,l);
addrlen =l;
/* message receiving:*/
recvfrom (sd, msg, BUFFERSIZE,0, M, &addrlen);
< answer ris evaluation>
/*answer sending:/
sendto (sd, ris, 2000, 0, M, addrlen);
 ...
close(sd); }

34

Socket properties

• STREAM sockets require a connection
 DATAGRAM sockets are connectionless

• Reliability problems : STREAM sockets are based on TCP and the
are reliable. DATAGRAM sockets are based on UDP and then they
are not reliable.

• Performance: STREAM sockets are more expensive with
reference to the DATAGRAM sockets.

35

Quale tipo di Socket? Quale livello di trasporto, UDP o TCP?

Connection oriented:

•reliability is fundamental
• a correct sequency of messages is important
•at-most-once semantic

:
Connectionless:

• broadcast/multicast
• performance is relevant
• there are not sequency of messages problems
• may-be semantic

36

Example: remote execution of comands

• Remote execution of simple comands sent by a client to a server and local
display of the output of the executed comands.

•The client must require the creation of the connection and then send a message
including the comand

•The clien waits the answer, constituted by the output of the executed comand
Each byte received is represented on the standard output

37

client process :
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
main(int argc, char **argv)
{

int sock, retval, i;
 char mess[10], ris[1000];

struct sockaddr_in rem_ind; /* remote socket address */
/* address server */

 rem_ind.sin_family = PF_INET; /*domain*/
 /* for example: if the node internet address is
 137.204.57.115:*/

rem_ind.sin_addr.s_addr=inet_addr("137.204.57.115");
rem_ind.sin_port = 22375; /* server port number */

38

/* message creation*/
 strcpy(mess, argv[1]);

/* socket creation */
 sock=socket(PF_INET, SOCK_STREAM, 0);

connect(sock, &rem_ind, sizeof(struct sockaddr_in));
 write(sock,mess, 10); /* message sending*/
 while (i=read(sock,ris, 1)>0) /*response receiving */
 write(1,ris,i); /* writing on std. output */
 shutdown(sock,2); /* closing connection*/
}

39

Processo server
• Each server process has typically a cyclic structure. A particular
connection request is managed for each cycle.

• The server process may manage the requests following a sequential or
concurrent modality. In the example the server is sequentially managed.

 Before to begin the service, the server creates the socket that will receive
the client requests. The bind procedure is called in order to supply the local
address at wich the process will wait for contacts.
 The listen procedure is called to associate to the socket a queue in which the
connection requests will be inserted.

• For each request, after the procedure accept has been called, a new process
will be create . The process will receive from the channel the name of the
service to execute and the communication socket will be redirected on the
standard output. Then, the comand will be executed by a system call of the
exec family. At the end of the comand execution the server process will
close the socket and will begin the execution of new requests.

40

Processo server:*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
main()
{

char comand [20];
int newsock, sock, son, status, i;

 struct sockaddr_in my_ind;
/* listening socket creation */

 sock=socket(PF_INET, SOCK_STREAM, 0);
 /* socket address : */
 my_ind.sin_family=PF_INET;
 my_ind.sin_addr.s_addr = INADDR_ANY;
 my_ind.sin_port=22375;

41

/* Binding:*/
 if(bind(sock, &my_ind, sizeof(struct sockaddr_in))<0)
 {

perror("bind");
exit(1);

}
/* sock will receive the connection requests */

 listen(sock, 5); /*connection requests creation*/
 for (;;)/* service cycle */
 { /* extraction of a new request from the queue
newsock=accept(sock,(struct sockaddr_in *) 0, 0);
 if ((son=fork())==0)
 { /* son */
 close(sock);
 read(newsock, comand, 10); /* comand receiving*/
 /* output ridirection output on the socket */

close(1);
 dup(newsock);

42

/* comand esecution */
 if((i=execlp(comand, comand, (char)0))<0)
 { write(1,"error", 7);
 exit(-1);
 }
 } /* son*
 else /*father*/
 { wait(&status); /* waiting son */
 shutdown(newsock, 1); /* closing socket: */
 close(newsock);
 }
 }
 close(sock);
}

43

TCP
buffer,

variables

Process

Socket

Controlled
by operating
system

Controlled by
the application
manager

TCP
buffer,

variables

Process

Socket

Controlled by the
application
manager

Internet

Host or server Host or server

Controlled by
operating
system

44

three-way handshake

client
socket

welcome socket

connection
socket

byte
byte

tempo

Client process Server process

