
Laboratorio di Ingegneria del Software
L-AL-A

Interfaccia utenteInterfaccia utente

System.Windows.Forms

� The System.Windows.Forms namespace contains

classes for creating Windows-based applications

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

classes for creating Windows-based applications

� The classes can be grouped into the following

categories:

– Form, Control, and UserControl

– Controls

– Components

Common Dialog Boxes

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.2

– Common Dialog Boxes

System.Windows.Forms

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.3

Elements of a
Windows Application

Message Pump

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

Windows/Dialog Boxes
Form

Menus
MenuItem
MainMenu

ContextMenu

ZZZ…

Idle Processing

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.4

Message Handling /
Application Lifetime
System.Windows.Forms.

Application

ContextMenu

Controls
Button
ComboBox

ListBox
TextBox
DataGrid
Etc…

Spy++

HelloWorld
Windows Application

using System;

using System.Windows.Forms;

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

namespace HelloWorld

{

static class Program

{

[STAThread] // COM threading model

static void Main()

{

Application.EnableVisualStyles();

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.5

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new HelloWorldForm());

}

}

}

HelloWorld
Windows Application

namespace HelloWorld

{

public partial class HelloWorldForm : Form

L
a

b
o

ra
to

rio
 d

i
In

g
e

g
n

e
ria

S

o
ftw

a
re

 L
-A

public partial class HelloWorldForm : Form

{

public HelloWorldForm()

{

InitializeComponent();

}

protected override void OnPaint(PaintEventArgs e)

{

In
g

e
g

n
e
ria

 d
e

l

7.6

{

base.OnPaint(e);

e.Graphics.DrawString("Hello World!",

new Font("Arial",36), Brushes.Blue, 10, 100);

}

}

}

Sostituire con Label

Creating
Windows Applications

� Typical windows-application design
– One or more classes derived from System.Windows.Form

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

One or more classes derived from System.Windows.Form

� Derived classes

– Affect instance appearance and behavior by setting
properties

– Create objects to implement GUI controls

� Buttons, text boxes, menus, timers, custom controls, etc.

– Add controls to their UI

Implement methods to handle GUI events

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.7

– Implement methods to handle GUI events

� Buttons clicks, menu selections, mouse movements, timer events,
etc.

� Default behavior implemented by base classes

Creating
Windows Applications

� Typical windows-application threading

– A single thread dedicated to UI

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

– A single thread dedicated to UI

� Runs the message pump

� Can do other things, but blocks only briefly (or never)

– Background threads used for lengthy non-UI functionality

� Typical windows-applications development

– Design UI with VisualStudio .NET

� Possible to do anything directly via code

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.8

� Possible to do anything directly via code

– Also use classes in System.Drawing namespace

System.Drawing namespace

� Full of types used heavily in windows applications

� Implements basic graphic objects

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

� Implements basic graphic objects
– Classes: Graphics, Font, Brush, Pen, Icon, Bitmap, ...

– Instance Creators: Brushes, Pens, SystemBrushes,

SystemColors, SystemIcons, Cursors

– Structures: Point, Size, Rectangle, Color, ...

� System.Drawing.Graphics

– Important class that represents a drawing surface

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.9

– Important class that represents a drawing surface

– Can be in-memory, form-based, or HDC-based

– Used by forms applications to draw and paint on controls

� DrawString(), DrawImage(), FillEllipse(),

FillRectangle(), ...

System.Windows.Forms.Application

� Non-instantiable class with public static methods and

properties

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

properties

� Used to handle windows-application infrastructure

– Message pump methods

� Run(Form form)

� Exit() - Informs all message pumps that they must terminate,

and then closes all application forms after the messages have
been processed

– Application level events

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.10

– Application level events

� Idle, ApplicationExit

Controls

� A control is a component that provides (or enables)

user-interface (UI) capabilities

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

user-interface (UI) capabilities

� The .NET Framework provides two base classes for

controls:
– System.Windows.Forms.Control

� for client-side Windows Forms controls

– System.Web.UI.Control

� for ASP.NET server controls

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.11

� All controls in the .NET Framework class library derive

directly or indirectly from these two classes

Controls

� The System.Windows.Forms namespace provides a
variety of control classes that allow you to create rich

L
a

b
o

ra
to

rio
 d

i
In

g
e

g
n

e
ria

S

o
ftw

a
re

 L
-A

variety of control classes that allow you to create rich
user interfaces

� Some controls are designed for data entry
– TextBox, ComboBox, …

� Other controls display application data
– Label, ListView, …

� The namespace also provides controls for invoking

In
g

e
g

n
e
ria

 d
e

l

7.12

� The namespace also provides controls for invoking
commands within the application
– Button, ToolBar, …

System.Windows.Forms.Control

� Base-class for all controls/forms in managed code
– Provides the base functionality for all controls that are

displayed on a Form

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

displayed on a Form

– Derives from Component

– Wraps an underlying OS window handle

� Implements many
– Properties for modifying settings of an instance

� Size, BackColor, ContextMenu, ...

– Methods for performing actions on an instance

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.13

– Methods for performing actions on an instance
� Show(), Hide(), Invalidate(), ...

– Events for “external” registration for event notification
� Click, DragDrop, ControlAdded, ...

� Instances of Control can contain child controls

System.Windows.Forms.Control

� Derived classes override and specialize functionality
– Specialized methods, properties, and events

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

� TextBox – PasswordChar, Undo(), Copy()

� Button – Image, PerformClick()

– The Form class is derived from Control

� To create a custom control that is a composite of
other controls, use the UserControl class

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.14

System.Windows.Forms.Form

� A specialized derivation of Control used to

implement a top-level window or dialog

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

implement a top-level window or dialog

� Gains much of its functionality from base classes

� Specialized to

– Contain a main menu

– Contain a title-bar, system menu, minimize/maximize

– Implement MDI - Multiple Document Interface

– Manage dialog buttons

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.15

– Manage dialog buttons

– ...

� Your applications derive from Form to create

– Windows

– Dialog boxes

Using Forms

� Create a Form-derived class

class BlueForm : Form
{

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

{
public BlueForm()
{ BackColor = Color.Blue; }

}

1. Start message loop and display form

Application.Run(new BlueForm());

2. Show the derived form (modeless)

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.16

2. Show the derived form (modeless)

Form form = new BlueForm(); // Display on current
form.Show(); // thread’s message loop

3. Show the derived form as a dialog (modal)

Form form = new BlueForm(); // Display on current
form.ShowDialog(); // thread’s message loop

Using Forms

� In the type’s constructor
– Set properties

Create child controls

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

– Create child controls
� Use the Controls property to add controls to the form

– Setup the form’s menu

� Override virtual methods for handling GUI
– OnClosing(), OnPaint(), OnMouseMove(), ...

– Do not override when default functionality is ok (usually the
case)

– When overriding a virtual method, usually call the base-

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.17

– When overriding a virtual method, usually call the base-
implementation of the method

protected override void OnPaint(PaintEventArgs e)
{
base.OnPaint(e);
// Do some work

}

Multiple Document Interface

� Nel costruttore della MainForm:
– IsMdiContainer = true;

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

– IsMdiContainer = true;

� Per aggiungere una ChildForm:
– Form childForm = new ChildForm();
childForm.MdiParent = mainForm;
childForm.Show();

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.18

Using Controls

� Create the control

Button ctrl = new Button(); // Create a button

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

� Set properties

ctrl.Text = "A Button"; // set its text
ctrl.Location = new Point(10, 10); // and location

� Add the control to your forms Controls collection

myForm.Controls.Add(ctrl); // Add the control to form

� Define event handler

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.19

� Define event handler

private void ButtonClicked(object sender, EventArgs e)
{ MessageBox.Show("The button was clicked!"); }

� Register for event notification

// Register ButtonClicked as an event handler
ctrl.Click += new EventHandler(ButtonClicked);

Common Dialog Boxes

� Common dialog boxes can be used to give your application a
consistent user interface when performing tasks such as opening
and saving files, manipulating the font or text color, or printing

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

and saving files, manipulating the font or text color, or printing

– The OpenFileDialog and SaveFileDialog classes provide the

functionality to display a dialog box that allows the user to browse to

and enter the name of a file to open or save

– The FontDialog class displays a dialog box to change elements of

the Font object used by your application

– The PageSetupDialog, PrintPreviewDialog, and

PrintDialog classes display dialog boxes that allow the user to

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.20

PrintDialog classes display dialog boxes that allow the user to

control aspects of printing documents

� In addition, the System.Windows.Forms namespace provides

the MessageBox class for displaying a message box that can

display and retrieve data from the user

Components

� In programming, the term component is generally used for an
object that is reusable and can interact with other objects

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

� A .NET Framework Component satisfies those general

requirements and additionally provides features such as

– Control over unmanaged resources

– Design-time support

� A component can be used in a rapid application development

(RAD) environment

� A component can be added to the toolbox of Visual Studio .NET,

can be dragged and dropped onto a form, and can be

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.21

can be dragged and dropped onto a form, and can be

manipulated on a design surface

� Note that base design-time support is built into the .NET

Framework; a component developer does not have to do any

additional work to take advantage of the base design-time

functionality

Components

� The System.Windows.Forms namespace provides

classes that do not derive from the Control class but

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

classes that do not derive from the Control class but

still provide visual features to a Windows-based

application

� The ToolTip and ErrorProvider classes provide

information to the user

� The Menu, MenuItem, and ContextMenu classes

provide the ability display menus to the user to invoke

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.22

provide the ability display menus to the user to invoke

commands within an application

� The Help and HelpProvider classes enable you to

display help information to the user of your applications

Working with Menu’s

� MainMenu, ContextMenu, and MenuItem are derived from
Menu

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

� Menu includes a collection of MenuItem’s

Menu

Parent1

*

Menu.MenuItemCollection

1 MenuItems1

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.23

MainMenu ContextMenu MenuItem

*

1

Item []

*

Working with Menu’s

� Create a MainMenu (or ContextMenu)

MainMenu mainMenu = new MainMenu();

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

MainMenu mainMenu = new MainMenu();

� Add MenuItems to the MainMenu

MenuItem menuItem1 = new MenuItem("&File");

mainMenu.MenuItems.Add(menuItem1);

� Add sub-MenuItems

MenuItem menuItem2 = new MenuItem("E&xit");

menuItem1.MenuItems.Add(menuItem2);

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.24

menuItem1.MenuItems.Add(menuItem2);

� Set Form’s Menu property to the instance of the MainMenu

myForm.Menu = mainMenu;

Working with Menu’s

� Define event handlers

private void ExitHandler(object sender, EventArgs e)

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l
S

o
ftw

a
re

 L
-A

private void ExitHandler(object sender, EventArgs e)

{

Close();

}

� Register event handlers

menuItem2.Click += new EventHandler(ExitHandler);

L
a

b
o

ra
to

rio
 d

i In
g

e
g

n
e
ria

 d
e

l

7.25

