
1

Advanced C#

Mark Sapossnek

CS 594
Computer Science Department

Metropolitan College
Boston University

Prerequisites

This module assumes that you understand the
fundamentals of

Programming
Variables, statements, functions, loops, etc.

Object-oriented programming
Classes, inheritance, polymorphism,
members, etc.
C++ or Java

Introduction to C#

Learning Objectives

Advanced features of the C# language
Creating custom types with interfaces, classes
and structs
Delegates and events
Miscellaneous topics

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

Objects, instances and classes
Identity

Every instance has a unique identity, regardless of
its data

Encapsulation
Data and function are packaged together
Information hiding
An object is an abstraction

User should NOT know implementation details

Review
Key Object-Oriented Concepts

Review
Key Object-Oriented Concepts

Interfaces
A well-defined contract
A set of function members

Types
An object has a type, which specifies its interfaces
and their implementations
A variable also can have a type

Inheritance
Types are arranged in a hierarchy

Base/derived, superclass/subclass

Interface vs. implementation inheritance

2

Review
Key Object-Oriented Concepts

Polymorphism
The ability to use an object without knowing its
precise type
Three main kinds of polymorphism

Inheritance
Interfaces
Late binding

Dependencies
For reuse and to facilitate development, systems
should be loosely coupled
Dependencies should be minimized

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

Interfaces

An interface defines a contract
An interface is a type
Includes methods, properties, indexers, events
Any class or struct implementing an interface must
support all parts of the contract

Interfaces provide no implementation
When a class or struct implements an interface it
must provide the implementation

Interfaces provide polymorphism
Many classes and structs may implement
a particular interface

public interface IDelete {
void Delete();

}
public class TextBox : IDelete {

public void Delete() { ... }
}
public class Car : IDelete {

public void Delete() { ... }
}

TextBox tb = new TextBox();
IDelete iDel = tb;
iDel.Delete();

Car c = new Car();
iDel = c;
iDel.Delete();

Interfaces
Example

interface IControl {
void Paint();

}

interface IListBox: IControl {
void SetItems(string[] items);

}

interface IComboBox: ITextBox, IListBox {

}

Interfaces
Multiple Inheritance

Classes and structs can inherit from
multiple interfaces
Interfaces can inherit from multiple interfaces

interface IControl {
void Delete();

}

interface IListBox: IControl {
void Delete();

}

interface IComboBox: ITextBox, IListBox {

void IControl.Delete();

void IListBox.Delete();

}

Interfaces
Explicit Interface Members

If two interfaces have the same method name,
you can explicitly specify interface + method
name to disambiguate their implementations

3

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

Classes and Structs
Similarities

Both are user-defined types
Both can implement multiple interfaces
Both can contain

Data
Fields, constants, events, arrays

Functions
Methods, properties, indexers, operators, constructors

Type definitions
Classes, structs, enums, interfaces, delegates

No user-defined parameterless
constructor

Can have user-defined
parameterless constructor

No destructorCan have a destructor

No inheritance
(inherits only from System.ValueType)

Can inherit from any
non-sealed reference type

Value typeReference type

StructClass

Classes and Structs
Differences

Members can be public,
internal or private

Members are always public

Always allocated on the stack or
as a member

Can be allocated on the heap,
on the stack or as a member
(can be used as value or reference)

User-defined value type
Same as C++ class, but all
members are public

C# StructC++ Struct

Classes and Structs
C# Structs vs. C++ Structs

Very different from C++ struct

public class Car : Vehicle {

public enum Make { GM, Honda, BMW }

Make make;

string vid;

Point location;

Car(Make m, string vid; Point loc) {

this.make = m;

this.vid = vid;

this.location = loc;

}

public void Drive() {
Console.WriteLine(“vroom”); }

}

Car c =
new Car(Car.Make.BMW,

“JF3559QT98”,
new Point(3,7));

c.Drive();

Classes and Structs
Class

public struct Point {
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int X { get { return x; }

set { x = value; } }
public int Y { get { return y; }

set { y = value; } }
}

Point p = new Point(2,5);
p.X += 100;
int px = p.X; // px = 102

Classes and Structs
Struct

4

Classes and Structs
Static vs. Instance Members

By default, members are per instance
Each instance gets its own fields
Methods apply to a specific instance

Static members are per type
Static methods can’t access instance data
No this variable in static methods

Don’t abuse static members
They are essentially object-oriented
global data and global functions

Classes and Structs
Access Modifiers

Access modifiers specify who can use a type or
a member
Access modifiers control encapsulation
Top-level types (those directly in a namespace)
can be public or internal
Class members can be public, private,
protected, internal, or
protected internal

Struct members can be public, private or
internal

to T or types derived from Tprotected

within T only (the default)private

to T or types derived from T
or to types within A

protected
internal

to types within Ainternal

to everyonepublic

Then a member defined in type
T and assembly A is accessible

If the access
modifier is

Classes and Structs
Access Modifiers

Classes and Structs
Abstract Classes

An abstract class is one that cannot
be instantiated
Intended to be used as a base class
May contain abstract and non-abstract
function members
Similar to an interface
Cannot be sealed

Classes and Structs
Sealed Classes

A sealed class is one that cannot be used as a
base class
Sealed classes can’t be abstract
All structs are implicitly sealed
Why seal a class?

To prevent unintended derivation
Code optimization

Virtual function calls can be resolved at compile-time

class Person {
string name;
public Person(string name) {
this.name = name;

}
public void Introduce(Person p) {
if (p != this)
Console.WriteLine(“Hi, I’m “ + name);

}
}

Classes and Structs
this

The this keyword is a predefined variable
available in non-static function members

Used to access data and function members
unambiguously

5

class Shape {
int x, y;
public override string ToString() {
return "x=" + x + ",y=" + y;

}
}
class Circle : Shape {

int r;
public override string ToString() {
return base.ToString() + ",r=" + r;

}
}

Classes and Structs
base

The base keyword is used to access class
members that are hidden by similarly named
members of the current class

public class MyClass {
public const string version = “1.0.0”;
public const string s1 = “abc” + “def”;
public const int i3 = 1 + 2;
public const double PI_I3 = i3 * Math.PI;
public const double s = Math.Sin(Math.PI); //ERROR
...

}

Classes and Structs
Constants

A constant is a data member that is evaluated at
compile-time and is implicitly static (per type)

e.g. Math.PI

Classes and Structs
Fields

A field is a member variable
Holds data for a class or struct
Can hold:

a class instance (a reference),
a struct instance (actual data), or
an array of class or struct instances
(an array is actually a reference)

Classes and Structs
Readonly Fields

Similar to a const, but is initialized at
run-time in its declaration or in a constructor

Once initialized, it cannot be modified

Differs from a constant
Initialized at run-time (vs. compile-time)

Don’t have to re-compile clients

Can be static or per-instance

public class MyClass {
public static readonly double d1 = Math.Sin(Math.PI);
public readonly string s1;
public MyClass(string s) { s1 = s; } }

public class Button: Control {
private string caption;
public string Caption {

get { return caption; }
set { caption = value;

Repaint(); }
}

} Button b = new Button();
b.Caption = "OK";
String s = b.Caption;

Classes and Structs
Properties

A property is a virtual field
Looks like a field, but is implemented with code

Can be
read-only,
write-only,
or read/write

public class ListBox: Control {
private string[] items;
public string this[int index] {

get { return items[index]; }
set { items[index] = value;

Repaint(); }
}

} ListBox listBox = new ListBox();
listBox[0] = "hello";
Console.WriteLine(listBox[0]);

Classes and Structs
Indexers

An indexer lets an instance behave as a
virtual array
Can be overloaded (e.g. index by int and by string)

Can be
read-only,
write-only,
or read/write

6

Classes and Structs
Methods

All code executes in a method
Constructors, destructors and operators are special
types of methods
Properties and indexers are implemented with
get/set methods

Methods have argument lists
Methods contain statements
Methods can return a value

Only if return type is not void

Classes and Structs
Method Argument Passing

By default, data is passed by value
A copy of the data is created and passed
to the method
For value types, variables cannot be modified by
a method call
For reference types, the instance can be
modified by a method call, but the variable itself
cannot be modified by a method call

void RefFunction(ref int p) {
p++;

} int x = 10;
RefFunction(ref x);
// x is now 11

Classes and Structs
Method Argument Passing

The ref modifier causes arguments to be
passed by reference
Allows a method call to modify a variable
Have to use ref modifier in method definition
and the code that calls it
Variable has to have a value before call

void OutFunction(out int p) {
p = 22;

} int x;
OutFunction(out x);
// x is now 22

Classes and Structs
Method Argument Passing

The out modifier causes arguments to be
passed out by reference
Allows a method call to initialize a variable
Have to use out modifier in method definition
and the code that calls it
Argument has to have a value before returning

void Print(int i);
void Print(string s);
void Print(char c);
void Print(float f);
int Print(float f); // Error: duplicate signature

Classes and Structs
Overloaded Methods

A type may overload methods, i.e. provide
multiple methods with the same name
Each must have a unique signature
Signature is based upon arguments only, the
return value is ignored

int Sum(params int[] intArr) {
int sum = 0;
foreach (int i in intArr)
sum += i;

return sum;
}

int sum = Sum(13,87,34);

Classes and Structs
Parameter Arrays

Methods can have a variable number of
arguments, called a parameter array
params keyword declares parameter array
Must be last argument

7

class Foo {
public void DoSomething(int i) {
...

}
} Foo f = new Foo();

f.DoSomething();

Classes and Structs
Virtual Methods

Methods may be virtual or non-virtual (default)
Non-virtual methods are not polymorphic

They cannot be overridden

Non-virtual methods cannot be abstract

Classes and Structs
Virtual Methods

Defined in a base class
Can be overridden in derived classes

Derived classes provide their own specialized
implementation

May contain a default implementation
Use abstract method if no default implementation

A form of polymorphism
Properties, indexers and events can also
be virtual

class Shape {
public virtual void Draw() { ... }

}
class Box : Shape {

public override void Draw() { ... }
}
class Sphere : Shape {

public override void Draw() { ... }
}

void HandleShape(Shape s) {
s.Draw();
...

} HandleShape(new Box());
HandleShape(new Sphere());
HandleShape(new Shape());

Classes and Structs
Virtual Methods

Classes and Structs
Abstract Methods

An abstract method is virtual and has no
implementation
Must belong to an abstract class
Intended to be implemented in a derived class

abstract class Shape {
public abstract void Draw();

}
class Box : Shape {

public override void Draw() { ... }
}
class Sphere : Shape {

public override void Draw() { ... }
}

void HandleShape(Shape s) {
s.Draw();
...

}
HandleShape(new Box());
HandleShape(new Sphere());
HandleShape(new Shape()); // Error!

Classes and Structs
Abstract Methods

Classes and Structs
Method Versioning

Must explicitly use override or new keywords
to specify versioning intent
Avoids accidental overriding
Methods are non-virtual by default
C++ and Java product fragile base classes –
cannot specify versioning intent

8

class Derived: Base { // version 1
public virtual void Foo() {

Console.WriteLine("Derived.Foo");
}

}

class Base { // version 1
}

Classes and Structs
Method Versioning

class Base { // version 2
public virtual void Foo() {

Console.WriteLine("Base.Foo");
}

}

class Derived: Base { // version 2a
new public virtual void Foo() {

Console.WriteLine("Derived.Foo");
}

}

class Derived: Base { // version 2b
public override void Foo() {

base.Foo();
Console.WriteLine("Derived.Foo");

}
}

Classes and Structs
Constructors

Instance constructors are special methods that
are called when a class or struct is instantiated
Performs custom initialization
Can be overloaded
If a class doesn’t define any constructors, an
implicit parameterless constructor is created
Cannot create a parameterless constructor for
a struct

All fields initialized to zero/null

class B {
private int h;
public B() { }
public B(int h) { this.h = h; }

}
class D : B {

private int i;
public D() : this(24) { }
public D(int i) { this.i = i; }
public D(int h, int i) : base(h) { this.i = i; }

}

Classes and Structs
Constructor Initializers

One constructor can call another with a
constructor initializer
Can call this(...) or base(...)
Default constructor initializer is base()

Classes and Structs
Static Constructors

A static constructor lets you create initialization
code that is called once for the class
Guaranteed to be executed before the first
instance of a class or struct is created and
before any static member of the class or struct is
accessed
No other guarantees on execution order
Only one static constructor per type
Must be parameterless

class Foo {
~Foo() {

Console.WriteLine(“Destroyed {0}”, this);
}

}

Classes and Structs
Destructors

A destructor is a method that is called before an
instance is garbage collected
Used to clean up any resources held by the
instance, do bookkeeping, etc.
Only classes, not structs can have destructors

Classes and Structs
Destructors

Unlike C++, C# destructors are non-deterministic
They are not guaranteed to be called at a
specific time
They are guaranteed to be called before
shutdown
Use the using statement and the
IDisposable interface to achieve deterministic
finalization

9

class Car {
string vid;
public static bool operator ==(Car x, Car y) {
return x.vid == y.vid;

}
}

Classes and Structs
Operator Overloading

User-defined operators
Must be a static method

Classes and Structs
Operator Overloading

--++falsetrue

~!-+

Overloadable unary operators

Overloadable binary operators

>=

!=

~

<=><>><<

==^|&%

!/*-+

Classes and Structs
Operator Overloading

No overloading for member access, method
invocation, assignment operators, nor these
operators: sizeof, new, is, as, typeof,
checked, unchecked, &&, ||, and ?:
The && and || operators are automatically
evaluated from & and |
Overloading a binary operator (e.g. *) implicitly
overloads the corresponding assignment
operator (e.g. *=)

Classes and Structs
Operator Overloading

struct Vector {
int x, y;
public Vector(x, y) { this.x = x; this.y = y; }
public static Vector operator +(Vector a, Vector b) {
return Vector(a.x + b.x, a.y + b.y);

}
...

}

class Note {
int value;
// Convert to hertz – no loss of precision
public static implicit operator double(Note x) {
return ...;

}
// Convert to nearest note
public static explicit operator Note(double x) {
return ...;

}
}

Note n = (Note)442.578;
double d = n;

Classes and Structs
Conversion Operators

User-defined explicit and implicit conversions

Classes and Structs
Implementing Interfaces

Classes and structs can implement multiple
interfaces
A class or struct that inherits from an interface
must implement all function members defined in
that interface

10

public interface IDelete {
void Delete();

}
public class TextBox : IDelete {

public void Delete() { ... }
}
public class Car : IDelete {

public void Delete() { ... }
}

TextBox tb = new TextBox();
IDelete iDel = tb;
iDel.Delete();

Car c = new Car();
iDel = c;
iDel.Delete();

Classes and Structs
Implementing Interfaces

public interface IDelete {
void Delete();

}
public interface IFoo {

void Delete();
}
public class TextBox : IDelete, IFoo {

public void IDelete.Delete() { ... }
public void IFoo.Delete() { ... }

}

Classes and Structs
Implementing Interfaces

Explicit interface implementation
Handles name collisions

Classes and Structs
Nested Types

Declared within the scope of another type
Nesting a type provides three benefits:

Nested type can access all the members of its
enclosing type, regardless of access modifer
Nested type can be hidden from other types
Accessing a nested type from outside the enclosing
type requires specifying the type name

Nested types can be declared new to hide
inherited types
Unlike Java inner classes, nested types imply no
relationship between instances

Classes and Structs
is Operator

The is operator is used to dynamically test if the
run-time type of an object is compatible with a
given type

static void DoSomething(object o) {
if (o is Car)
((Car)o).Drive();

}

Don’t abuse the is operator: it is preferable to
design an appropriate type hierarchy with
polymorphic methods

Classes and Structs
as Operator

The as operator tries to convert a variable to a
specified type; if no such conversion is possible
the result is null

static void DoSomething(object o) {
Car c = o as Car;
if (c != null) c.Drive();

}

More efficient than using is operator: test and
convert in one operation
Same design warning as with the is operator

Classes and Structs
typeof Operator

The typeof operator returns the System.Type
object for a specified type
Can then use reflection to dynamically obtain
information about the type

Console.WriteLine(typeof(int).FullName);
Console.WriteLine(typeof(System.Int).Name);
Console.WriteLine(typeof(float).Module);
Console.WriteLine(typeof(double).IsPublic);
Console.WriteLine(typeof(Car).MemberType);

11

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

Delegates
Overview

A delegate is a reference type that defines a
method signature

A delegate instance holds one or more methods
Essentially an “object-oriented function pointer”

Methods can be static or non-static

Methods can return a value

Provides polymorphism for individual functions

Foundation for event handling

Delegates
Overview

delegate double Del(double x); // Declare

static void DemoDelegates() {
Del delInst = new Del(Math.Sin); // Instantiate
double x = delInst(1.0); // Invoke

}

Delegates
Multicast Delegates

A delegate can hold and invoke multiple
methods

Multicast delegates must contain only methods that
return void, else there is a run-time exception

Each delegate has an invocation list
Methods are invoked sequentially, in the order added

The += and -= operators are used to add and
remove delegates, respectively
+= and -= operators are thread-safe

Delegates
Multicast Delegates

delegate void SomeEvent(int x, int y);
static void Foo1(int x, int y) {

Console.WriteLine("Foo1");
}
static void Foo2(int x, int y) {

Console.WriteLine("Foo2");
}
public static void Main() {

SomeEvent func = new SomeEvent(Foo1);
func += new SomeEvent(Foo2);
func(1,2); // Foo1 and Foo2 are called
func -= new SomeEvent(Foo1);
func(2,3); // Only Foo2 is called

}

Delegates
and Interfaces

Could always use interfaces instead of delegates
Interfaces are more powerful

Multiple methods
Inheritance

Delegates are more elegant for event handlers
Less code
Can easily implement multiple event handlers on one
class/struct

12

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

Events
Overview

Event handling is a style of programming where
one object notifies another that something of
interest has occurred

A publish-subscribe programming model

Events allow you to tie your own code into the
functioning of an independently created
component
Events are a type of “callback” mechanism

Events
Overview

Events are well suited for user-interfaces
The user does something (clicks a button, moves a
mouse, changes a value, etc.) and the program
reacts in response

Many other uses, e.g.
Time-based events
Asynchronous operation completed
Email message has arrived
A web session has begun

Events
Overview

C# has native support for events
Based upon delegates
An event is essentially a field holding a delegate
However, public users of the class can only
register delegates

They can only call += and -=
They can’t invoke the event’s delegate

Multicast delegates allow multiple objects to
register with the same event

Events
Example: Component-Side

Define the event signature as a delegate

Define the event and firing logic

public delegate void EventHandler(object sender,
EventArgs e);

public class Button {
public event EventHandler Click;

protected void OnClick(EventArgs e) {
// This is called when button is clicked
if (Click != null) Click(this, e);

}
}

Events
Example: User-Side

Define and register an event handler

public class MyForm: Form {
Button okButton;

static void OkClicked(object sender, EventArgs e) {
ShowMessage("You pressed the OK button");

}

public MyForm() {
okButton = new Button(...);
okButton.Caption = "OK";
okButton.Click += new EventHandler(OkClicked);

}
}

13

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

Attributes
Overview

It’s often necessary to associate information
(metadata) with types and members, e.g.

Documentation URL for a class
Transaction context for a method
XML persistence mapping
COM ProgID for a class

Attributes allow you to decorate a code element
(assembly, module, type, member, return value
and parameter) with additional information

Attributes
Overview

[HelpUrl(“http://SomeUrl/APIDocs/SomeClass”)]
class SomeClass {

[Obsolete(“Use SomeNewMethod instead”)]
public void SomeOldMethod() {
...

}

public string Test([SomeAttr()] string param1) {
...

}
}

Attributes
Overview

Attributes are superior to the alternatives
Modifying the source language
Using external files, e.g., .IDL, .DEF

Attributes are extensible
Attributes allow to you add information not supported
by C# itself
Not limited to predefined information

Built into the .NET Framework, so they work
across all .NET languages

Stored in assembly metadata

Attributes
Overview

COM Prog IDProgId

Transactional characteristics of a classTransaction

Compiler will complain if target is usedObsolete

Allows a class or struct to be serializedSerializable

Should a property or event be displayed in
the property window

Browsable

DescriptionAttribute Name

Some predefined .NET Framework attributes

Attributes
Overview

Attributes can be
Attached to types and members
Examined at run-time using reflection

Completely extensible
Simply a class that inherits from System.Attribute

Type-safe
Arguments checked at compile-time

Extensive use in .NET Framework
XML, Web Services, security, serialization,
component model, COM and P/Invoke interop,
code configuration…

http://SomeUrl/APIDocs/SomeClass�

14

Attributes
Querying Attributes

[HelpUrl("http://SomeUrl/MyClass")]
class Class1 {}
[HelpUrl("http://SomeUrl/MyClass"),
HelpUrl("http://SomeUrl/MyClass”, Tag=“ctor”)]

class Class2 {}

Type type = typeof(MyClass);
foreach (object attr in type.GetCustomAttributes()) {

if (attr is HelpUrlAttribute) {
HelpUrlAttribute ha = (HelpUrlAttribute) attr;
myBrowser.Navigate(ha.Url);

}
}

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

C# provides preprocessor directives that serve a
number of functions
Unlike C++, there is not a separate preprocessor

The “preprocessor” name is preserved only for
consistency with C++

C++ preprocessor features removed include:
#include: Not really needed with one-stop
programming; removal results in faster compilation
Macro version of #define: removed for clarity

Preprocessor Directives
Overview

Preprocessor Directives
Overview

Delimit outline regions#region, #end

Specify line number#line

Issue errors and warnings#error, #warning

Conditionally skip sections of code#if, #elif, #else, #endif

Define and undefine conditional symbols#define, #undef

DescriptionDirective

#define Debug
public class Debug {

[Conditional("Debug")]
public static void Assert(bool cond, String s) {
if (!cond) {
throw new AssertionException(s);

}
}
void DoSomething() {
...
// If Debug is not defined, the next line is
// not even called
Assert((x == y), “X should equal Y”);
...

}
}

Preprocessor Directives
Conditional Compilation

Preprocessor Directives
Assertions

By the way, assertions are an incredible way to
improve the quality of your code
An assertion is essentially a unit test built right
into your code
You should have assertions to test
preconditions, postconditions and invariants
Assertions are only enabled in debug builds
Your code is QA’d every time it runs
Must read: “Writing Solid Code”, by Steve
Maguire, Microsoft Press, ISBN 1-55615-551-4

http://SomeUrl/MyClass"
http://SomeUrl/MyClass"
http://SomeUrl/MyClass�

15

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

XML Comments
Overview

Programmers don’t like to document code, so we need a
way to make it easy for them to produce quality,
up-to-date documentation
C# lets you embed XML comments that document types,
members, parameters, etc.

Denoted with triple slash: ///

XML document is generated when code is compiled with
/doc argument
Comes with predefined XML schema, but you can add
your own tags too

Some are verified, e.g. parameters, exceptions, types

XML Comments
Overview

Formatting hints<list>, <item>, ...

Use of a parameter<paramref>

Cross references<see>, <seealso>

Sample code<example>, <c>, <code>

Property<value>

Exceptions thrown from method<exception>

Permission requirements<permission>

Method return value<returns>

Method parameter<param>

Type or member<summary>, <remarks>

DescriptionXML Tag class XmlElement {
/// <summary>
/// Returns the attribute with the given name and
/// namespace</summary>
/// <param name="name">
/// The name of the attribute</param>
/// <param name="ns">
/// The namespace of the attribute, or null if
/// the attribute has no namespace</param>
/// <return>
/// The attribute value, or null if the attribute
/// does not exist</return>
/// <seealso cref="GetAttr(string)"/>
///
public string GetAttr(string name, string ns) {

...
}

}

XML Comments
Overview

Agenda

Review Object-Oriented Concepts
Interfaces
Classes and Structs
Delegates
Events
Attributes
Preprocessor Directives
XML Comments
Unsafe Code

Unsafe Code
Overview

Developers sometime need total control
Performance extremes
Dealing with existing binary structures
Existing code
Advanced COM support, DLL import

C# allows you to mark code as unsafe, allowing
Pointer types, pointer arithmetic
->, * operators
Unsafe casts
No garbage collection

16

unsafe void Foo() {
char* buf = stackalloc char[256];
for (char* p = buf; p < buf + 256; p++) *p = 0;
...

}

Unsafe Code
Overview

Lets you embed native C/C++ code
Basically “inline C”
Must ensure the GC doesn’t move your data

Use fixed statement to pin data
Use stackalloc operator so memory is allocated
on stack, and need not be pinned

class FileStream: Stream {
int handle;

public unsafe int Read(byte[] buffer, int index,
int count) {

int n = 0;
fixed (byte* p = buffer) {
ReadFile(handle, p + index, count, &n, null);

}
return n;

}

[dllimport("kernel32", SetLastError=true)]
static extern unsafe bool ReadFile(int hFile,
void* lpBuffer, int nBytesToRead,
int* nBytesRead, Overlapped* lpOverlapped);

}

Unsafe Code
Overview

Unsafe Code
C# and Pointers

Power comes at a price!
Unsafe means unverifiable code
Stricter security requirements

Before the code can run
Downloading code

More Resources

http://msdn.microsoft.com

http://windows.oreilly.com/news/hejlsberg_0800.html

http://www.csharphelp.com/

http://www.csharp-station.com/

http://www.csharpindex.com/

http://msdn.microsoft.com/msdnmag/issues/0900/csharp/cs
harp.asp

http://www.hitmill.com/programming/dotNET/csharp.html

http://www.c-sharpcorner.com/

http://msdn.microsoft.com/library/default.asp?URL=/libr
ary/dotnet/csspec/vclrfcsharpspec_Start.htm

http://windows
http://www.c-sharpcorner.com/

