
1

http://msdn.microsoft.com

Introduction to C#

Mark Sapossnek

CS 594
Computer Science Department

Metropolitan College
Boston University

Prerequisites

This module assumes that you understand the
fundamentals of

Programming
Variables, statements, functions, loops, etc.

Object-oriented programming
Classes, inheritance, polymorphism,
members, etc.
C++ or Java

Learning Objectives

C# design goals
Fundamentals of the C# language

Types, program structure, statements, operators

Be able to begin writing and debugging C#
programs

Using the .NET Framework SDK
Using Visual Studio.NET

Be able to write individual C# methods

Agenda

Hello World
Design Goals of C#
Types
Program Structure
Statements
Operators
Using Visual Studio.NET
Using the .NET Framework SDK

Hello World

using System;

class Hello {
static void Main() {

Console.WriteLine("Hello world");
Console.ReadLine(); // Hit enter to finish

}
}

Agenda

Hello World
Design Goals of C#
Types
Program Structure
Statements
Operators
Using Visual Studio.NET
Using the .NET Framework SDK

2

http://msdn.microsoft.com

Design Goals of C#
The Big Ideas

Component-orientation
Everything is an object
Robust and durable software
Preserving your investment

Design Goals of C#
Component-Orientation

C# is the first “Component-Oriented” language in
the C/C++ family
What is a component?

An independent module of reuse and deployment
Coarser-grained than objects
(objects are language-level constructs)
Includes multiple classes
Often language-independent
In general, component writer and user don’t know
each other, don’t work for the same company, and
don’t use the same language

Design Goals of C#
Component-Orientation

Component concepts are first class
Properties, methods, events
Design-time and run-time attributes
Integrated documentation using XML

Enables “one-stop programming”
No header files, IDL, etc.
Can be embedded in ASP pages

Design Goals of C#
Everything is an Object

Traditional views
C++, Java™: Primitive types are “magic” and do not
interoperate with objects
Smalltalk, Lisp: Primitive types are objects, but at
some performance cost

C# unifies with no performance cost
Deep simplicity throughout system

Improved extensibility and reusability
New primitive types: Decimal, SQL…
Collections, etc., work for all types

Design Goals of C#
Robust and Durable Software

Garbage collection
No memory leaks and stray pointers

Exceptions
Type-safety

No uninitialized variables, no unsafe casts

Versioning
Avoid common errors

E.g. if (x = y) ...

One-stop programming
Fewer moving parts

Design Goals of C#
Preserving Your Investment

C++ Heritage
Namespaces, pointers (in unsafe code),
unsigned types, etc.
Some changes, but no unnecessary sacrifices

Interoperability
What software is increasingly about
C# talks to XML, SOAP, COM, DLLs, and any
.NET Framework language

Increased productivity
Short learning curve
Millions of lines of C# code in .NET

3

http://msdn.microsoft.com

Agenda

Hello World
Design Goals of C#
Types
Program Structure
Statements
Operators
Using Visual Studio.NET
Using the .NET Framework SDK

Types
Overview

A C# program is a collection of types
Classes, structs, enums, interfaces, delegates

C# provides a set of predefined types
E.g. int, byte, char, string, object, …

You can create your own types
All data and code is defined within
a type

No global variables, no global functions

Types
Overview

Types contain:
Data members

Fields, constants, arrays
Events

Function members
Methods, operators, constructors, destructors
Properties, indexers

Other types
Classes, structs, enums, interfaces, delegates

Types
Overview

Types can be instantiated…
…and then used: call methods,
get and set properties, etc.

Can convert from one type to another
Implicitly and explicitly

Types are organized
Namespaces, files, assemblies

There are two categories of types:
value and reference
Types are arranged in a hierarchy

Types
Unified Type System

Value types
Directly contain data
Cannot be null

Reference types
Contain references to objects
May be null

int i = 123;
string s = "Hello world";

123i

s "Hello world"

Types
Unified Type System

Value types
Primitives int i; float x;
Enums enum State { Off, On }
Structs struct Point {int x,y;}

Reference types
Root object
String string
Classes class Foo: Bar, IFoo {...}
Interfaces interface IFoo: IBar {...}
Arrays string[] a = new string[10];
Delegates delegate void Empty();

4

http://msdn.microsoft.com

Types
Unified Type System

YesNoAliasing (in a scope)

May be nullAlways has valueNullability

Copy referenceCopy dataAssignment means

null0Default value

HeapStack, memberAllocated on

Memory locationActual valueVariable holds

Reference (Class)Value (Struct)

Types
Unified Type System

Benefits of value types
No heap allocation, less GC pressure
More efficient use of memory
Less reference indirection
Unified type system

No primitive/object dichotomy

Types
Conversions

Implicit conversions
Occur automatically
Guaranteed to succeed
No information (precision) loss

Explicit conversions
Require a cast
May not succeed
Information (precision) might be lost

Both implicit and explicit conversions can be
user-defined

Types
Conversions

int x = 123456;
long y = x; // implicit
short z = (short)x; // explicit

double d = 1.2345678901234;
float f = (float)d; // explicit
long l = (long)d; // explicit

Types
Unified Type System

Everything is an object
All types ultimately inherit from object
Any piece of data can be stored, transported, and
manipulated with no extra work

MemoryStream FileStream

Stream Hashtable int double

object

Types
Unified Type System

Polymorphism
The ability to perform an operation on an object
without knowing the precise type of the object

void Poly(object o) {
Console.WriteLine(o.ToString());

}
Poly(42);
Poly(“abcd”);
Poly(12.345678901234m);
Poly(new Point(23,45));

5

http://msdn.microsoft.com

Types
Unified Type System

Question: How can we treat value and reference
types polymorphically?

How does an int (value type) get converted into an
object (reference type)?

Answer: Boxing!
Only value types get boxed
Reference types do not get boxed

Types
Unified Type System

Boxing
Copies a value type into a reference type (object)
Each value type has corresponding “hidden”
reference type
Note that a reference-type copy is made of the
value type

Value types are never aliased

Value type is converted implicitly to object, a
reference type

Essentially an “up cast”

Types
Unified Type System

Unboxing
Inverse operation of boxing
Copies the value out of the box

Copies from reference type to value type

Requires an explicit conversion
May not succeed (like all explicit conversions)
Essentially a “down cast”

Types
Unified Type System

Boxing and unboxing

int i = 123;

object o = i;

int j = (int)o;

123i

o

123j
123

System.Int32

Types
Unified Type System

Benefits of boxing
Enables polymorphism across all types
Collection classes work with all types
Eliminates need for wrapper classes
Replaces OLE Automation's Variant

Lots of examples in .NET Framework
Hashtable t = new Hashtable();
t.Add(0, "zero");
t.Add(1, "one");
t.Add(2, "two");

string s = string.Format(
"Your total was {0} on {1}",
total, date);

Types
Unified Type System

Disadvantages of boxing
Performance cost

The need for boxing will decrease when the CLR
supports generics (similar to C++ templates)

6

http://msdn.microsoft.com

Types
Predefined Types

Value
Integral types
Floating point types
decimal

bool

char

Reference
object

string

Predefined Types
Value Types

All are predefined structs

boolLogical

charCharacter

float, double, decimalFloating point

byte, ushort, uint, ulongUnsigned

sbyte, short, int, longSigned

Predefined Types
Integral Types

No2System.UInt16ushort

No4System.UInt32uint

No1System.Bytebyte

Yes8System.Int64long

8

4

2

1

Size (bytes)

NoSystem.UInt64ulong

YesSystem.Int32int

YesSystem.Int16short

YesSystem.Sbytesbyte

Signed?System TypeC# Type

Predefined Types
Floating Point Types

Follows IEEE 754 specification
Supports ± 0, ± Infinity, NaN

8

4

Size (bytes)

System.Doubledouble

System.Singlefloat

System TypeC# Type

Predefined Types
decimal

128 bits
Essentially a 96 bit value scaled by a
power of 10
Decimal values represented precisely
Doesn’t support signed zeros, infinities
or NaN

16

Size (bytes)

System.Decimaldecimal

System TypeC# Type

Predefined Types
decimal

All integer types can be implicitly converted to a
decimal type
Conversions between decimal and floating types
require explicit conversion due to possible loss
of precision
s * m * 10e

s = 1 or –1

0 m 296
-28 e 0

7

http://msdn.microsoft.com

Predefined Types
Integral Literals

Integer literals can be expressed as decimal
or hexadecimal
U or u: uint or ulong
L or l: long or ulong
UL or ul: ulong

123 // Decimal
0x7B // Hexadecimal
123U // Unsigned
123ul // Unsigned long
123L // Long

Predefined Types
Real Literals

F or f: float
D or d: double
M or m: decimal

123f // Float
123D // Double
123.456m // Decimal
1.23e2f // Float
12.3E1M // Decimal

Predefined Types
bool

Represents logical values
Literal values are true and false
Cannot use 1 and 0 as boolean values

No standard conversion between other types
and bool

1 (2 for arrays)

Size (bytes)

System.Booleanbool

System TypeC# Type

Predefined Types
char

Represents a Unicode character
Literals

‘A’ // Simple character
‘\u0041’ // Unicode
‘\x0041’ // Unsigned short hexadecimal
‘\n’ // Escape sequence character

2

Size (bytes)

System.CharChar

System TypeC# Type

Predefined Types
char

Escape sequence characters (partial list)

0x000ANew line\n

0x0000Null\0

0x005CBackslash\\

0x0022Double quote\”

0x000DCarriage return\r

0x0027Single quote\’

0x0009

Value

Tab\t

MeaningChar

Predefined Types
Reference Types

stringCharacter string

objectRoot type

8

http://msdn.microsoft.com

Predefined Types
object

Root of object hierarchy
Storage (book keeping) overhead

0 bytes for value types
8 bytes for reference types

An actual reference (not the object)
uses 4 bytes

0/8 overhead

Size (bytes)

System.Objectobject

System TypeC# Type

Predefined Types
object Public Methods

public bool Equals(object)

protected void Finalize()

public int GetHashCode()

public System.Type GetType()

protected object MemberwiseClone()

public void Object()

public string ToString()

Predefined Types
string

An immutable sequence of Unicode characters
Reference type
Special syntax for literals

string s = “I am a string”;

20 minimum

Size (bytes)

System.StringString

System TypeC# Type

Predefined Types
string

Normally have to use escape characters

Verbatim string literals
Most escape sequences ignored

Except for “”

Verbatim literals can be multi-line

string s1= “\\\\server\\fileshare\\filename.cs”;

string s2 = @“\\server\fileshare\filename.cs”;

Types
User-defined Types

User-defined types

enumEnumerations

interfaceInterface

delegateFunction pointer

structValue type

classReference type

int[], string[]Arrays

Types
Enums

An enum defines a type name for a related
group of symbolic constants
Choices must be known at compile-time
Strongly typed

No implicit conversions to/from int
Can be explicitly converted
Operators: +, -, ++, --, &, |, ^, ~, …

Can specify underlying type
byte, sbyte, short, ushort, int, uint, long, ulong

9

http://msdn.microsoft.com

Types
Enums

enum Color: byte {
Red = 1,
Green = 2,
Blue = 4,
Black = 0,
White = Red | Green | Blue

}

Color c = Color.Black;
Console.WriteLine(c); // Black
Console.WriteLine(c.ToString()); // Black
Console.WriteLine(Enum.Format(typeof(Color),c,"F"));

Types
Enums

All enums derive from System.Enum
Provides methods to

determine underlying type
test if a value is supported
initialize from string constant
retrieve all values in enum
…

Types
Arrays

Arrays allow a group of elements of a specific
type to be stored in a contiguous block of
memory
Arrays are reference types
Derived from System.Array
Zero-based
Can be multidimensional

Arrays know their length(s) and rank

Bounds checking

Types
Arrays

Declare

Allocate

Initialize

Access and assign

Enumerate

int[] primes;

int[] primes = new int[9];

int[] prime = new int[] {1,2,3,5,7,11,13,17,19};
int[] prime = {1,2,3,5,7,11,13,17,19};

prime2[i] = prime[i];

foreach (int i in prime) Console.WriteLine(i);

Types
Arrays

Multidimensional arrays
Rectangular

int[,] matR = new int[2,3];

Can initialize declaratively
int[,] matR =

new int[2,3] { {1,2,3}, {4,5,6} };

Jagged
An array of arrays
int[][] matJ = new int[2][];

Must initialize procedurally

Types
Interfaces

An interface defines a contract
Includes methods, properties, indexers, events
Any class or struct implementing an interface must
support all parts of the contract

Interfaces provide polymorphism
Many classes and structs may implement
a particular interface

Contain no implementation
Must be implemented by a class or struct

10

http://msdn.microsoft.com

Types
Classes

User-defined reference type
Similar to C++, Java classes

Single class inheritance
Multiple interface inheritance

Types
Classes

Members
Constants, fields, methods, operators,
constructors, destructors
Properties, indexers, events
Static and instance members

Member access
public, protected, private, internal,
protected internal

Default is private

Instantiated with new operator

Types
Structs

Similar to classes, but
User-defined value type
Always inherits from object

Ideal for lightweight objects
int, float, double, etc., are all structs
User-defined “primitive” types

Complex, point, rectangle, color, rational

Multiple interface inheritance
Same members as class
Member access

public, internal, private

Instantiated with new operator

Types
Classes and Structs

struct SPoint { int x, y; ... }
class CPoint { int x, y; ... }

SPoint sp = new SPoint(10, 20);
CPoint cp = new CPoint(10, 20);

10

20
sp

cp

10

20

CPoint

Types
Delegates

A delegate is a reference type that defines a
method signature
When instantiated, a delegate holds one or more
methods

Essentially an object-oriented function pointer

Foundation for framework events

Agenda

Hello World
Design Goals of C#
Types
Program Structure
Statements
Operators
Using Visual Studio.NET
Using the .NET Framework SDK

11

http://msdn.microsoft.com

Program Structure
Overview

Organizing Types
Namespaces
References
Main Method
Syntax

Program Structure
Organizing Types

Physical organization
Types are defined in files
Files are compiled into
modules
Modules are grouped
into assemblies

Assembly
Module

File

Type

Program Structure
Organizing Types

Types are defined in files
A file can contain multiple types
Each type is defined in a single file

Files are compiled into modules
Module is a DLL or EXE
A module can contain multiple files

Modules are grouped into assemblies
Assembly can contain multiple modules
Assemblies and modules are often 1:1

Program Structure
Organizing Types

Types are defined in ONE place
“One-stop programming”
No header and source files to synchronize
Code is written “in-line”
Declaration and definition are one and
the same
A type must be fully defined in one file

Can’t put individual methods in different files

No declaration order dependence
No forward references required

Program Structure
Namespaces

Namespaces provide a way to
uniquely identify a type
Provides logical organization of types
Namespaces can span assemblies
Can nest namespaces
There is no relationship between namespaces
and file structure (unlike Java)
The fully qualified name of a type includes all
namespaces

Program Structure
Namespaces

namespace N1 { // N1
class C1 { // N1.C1
class C2 { // N1.C1.C2
}

}
namespace N2 { // N1.N2
class C2 { // N1.N2.C2
}

}
}

12

http://msdn.microsoft.com

Program Structure
Namespaces

The using statement lets you use types without
typing the fully qualified name
Can always use a fully qualified name

using N1;

C1 a; // The N1. is implicit
N1.C1 b; // Fully qualified name

C2 c; // Error! C2 is undefined
N1.N2.C2 d; // One of the C2 classes
C1.C2 e; // The other one

Program Structure
Namespaces

The using statement also lets you create
aliases

using C1 = N1.N2.C1;
using N2 = N1.N2;

C1 a; // Refers to N1.N2.C1
N2.C1 b; // Refers to N1.N2.C1

Program Structure
Namespaces

Best practice: Put all of your types in a unique
namespace
Have a namespace for your company, project,
product, etc.
Look at how the .NET Framework classes are
organized

Program Structure
References

In Visual Studio you specify references
for a project
Each reference identifies a specific assembly
Passed as reference (/r or /reference)
to the C# compiler

csc HelloWorld.cs /reference:System.WinForms.dll

Program Structure
Namespaces vs. References

Namespaces provide language-level naming
shortcuts

Don’t have to type a long fully qualified name over
and over

References specify which assembly to use

Program Structure
Main Method

Execution begins at the static Main() method
Can have only one method with one of
the following signatures in an assembly

static void Main()

static int Main()

static void Main(string[] args)

static int Main(string[] args)

13

http://msdn.microsoft.com

Program Structure
Syntax

Identifiers
Names for types, methods, fields, etc.
Must be whole word – no white space
Unicode characters
Begins with letter or underscore
Case sensitive
Must not clash with keyword

Unless prefixed with @

Agenda

Hello World
Design Goals of C#
Types
Program Structure
Statements
Operators
Using Visual Studio.NET
Using the .NET Framework SDK

Statements
Overview

High C++ fidelity
if, while, do require bool condition
goto can’t jump into blocks
switch statement

No fall-through

foreach statement
checked and unchecked statements
Expression
statements
must do work

void Foo() {
i == 1; // error

}

Statements
Overview

Statement lists
Block statements
Labeled statements
Declarations

Constants
Variables

Expression statements
checked, unchecked

lock

using

Conditionals
if

switch

Loop Statements
while

do

for

foreach

Jump Statements
break

continue

goto

return

throw

Exception handling
try

throw

Statements
Syntax

Statements are terminated with a
semicolon (;)
Just like C, C++ and Java
Block statements { ... } don’t need a semicolon

Statements
Syntax

Comments
// Comment a single line, C++ style

/* Comment multiple
lines,

C style
*/

14

http://msdn.microsoft.com

Statements
Statement Lists & Block Statements

Statement list: one or more statements in
sequence
Block statement: a statement list delimited by
braces { ... }

static void Main() {
F();
G();
{ // Start block
H();
; // Empty statement
I();

} // End block
}

Statements
Variables and Constants

static void Main() {
const float pi = 3.14f;
const int r = 123;
Console.WriteLine(pi * r * r);

int a;
int b = 2, c = 3;
a = 1;
Console.WriteLine(a + b + c);

}

Statements
Variables and Constants

The scope of a variable or constant runs
from the point of declaration to the end of
the enclosing block

Statements
Variables and Constants

Within the scope of a variable or constant it is an
error to declare another variable or constant with
the same name

{
int x;
{
int x; // Error: can’t hide variable x

}
}

Statements
Variables

Variables must be assigned a value before they
can be used

Explicitly or automatically
Called definite assignment

Automatic assignment occurs for static fields,
class instance fields and array elements

void Foo() {
string s;
Console.WriteLine(s); // Error

}

Statements
Labeled Statements & goto

goto can be used to transfer control within or
out of a block, but not into a nested block

static void Find(int value, int[,] values,
out int row, out int col) {

int i, j;
for (i = 0; i < values.GetLength(0); i++)

for (j = 0; j < values.GetLength(1); j++)
if (values[i, j] == value) goto found;

throw new InvalidOperationException(“Not found");
found:

row = i; col = j;
}

15

http://msdn.microsoft.com

Statements
Expression Statements

Statements must do work
Assignment, method call, ++, --, new

static void Main() {
int a, b = 2, c = 3;
a = b + c;
a++;
MyClass.Foo(a,b,c);
Console.WriteLine(a + b + c);
a == 2; // ERROR!

}

Statements
if Statement

Requires bool expression

int Test(int a, int b) {
if (a > b)
return 1;

else if (a < b)
return -1;

else
return 0;

}

Statements
switch Statement

Can branch on any predefined type
(including string) or enum

User-defined types can provide implicit conversion
to these types

Must explicitly state how to end case
With break, goto case, goto label, return,
throw or continue
Eliminates fall-through bugs
Not needed if no code supplied after the label

Statements
switch Statement

int Test(string label) {
int result;
switch(label) {
case null:
goto case “runner-up”;

case “fastest”:
case “winner”:
result = 1; break;

case “runner-up”:
result = 2; break;

default:
result = 0;

}
return result;

}

Statements
while Statement

Requires bool expression

int i = 0;
while (i < 5) {

...
i++;

}
int i = 0;
do {

...
i++;

}
while (i < 5); while (true) {

...
}

Statements
for Statement

for (int i=0; i < 5; i++) {
...

}

for (;;) {
...

}

16

http://msdn.microsoft.com

Statements
foreach Statement

Iteration of arrays

public static void Main(string[] args) {
foreach (string s in args)

Console.WriteLine(s);
}

Statements
foreach Statement

Iteration of user-defined collections
Created by implementing IEnumerable

foreach (Customer c in customers.OrderBy("name")) {
if (c.Orders.Count != 0) {

...
}

}

Statements
Jump Statements

break
Exit inner-most loop

continue
End iteration of inner-most loop

goto <label>
Transfer execution to label statement

return [<expression>]
Exit a method

throw
See exception handling

Statements
Exception Handling

Exceptions are the C# mechanism for handling
unexpected error conditions
Superior to returning status values

Can’t be ignored
Don’t have to handled at the point they occur
Can be used even where values are not returned
(e.g. accessing a property)
Standard exceptions are provided

Statements
Exception Handling

try...catch...finally statement
try block contains code that could throw an
exception
catch block handles exceptions

Can have multiple catch blocks to handle different
kinds of exceptions

finally block contains code that will always be
executed

Cannot use jump statements (e.g. goto)
to exit a finally block

Statements
Exception Handling

throw statement raises an exception
An exception is represented as an instance of
System.Exception or derived class

Contains information about the exception
Properties

Message

StackTrace

InnerException

You can rethrow an exception, or catch
one exception and throw another

17

http://msdn.microsoft.com

Statements
Exception Handling

try {
Console.WriteLine("try");
throw new Exception(“message”);

}
catch (ArgumentNullException e) {

Console.WriteLine(“caught null argument");
}
catch {

Console.WriteLine("catch");
}
finally {

Console.WriteLine("finally");
}

Statements
Synchronization

Multi-threaded applications have to protect
against concurrent access to data

Must prevent data corruption

The lock statement uses an instance to provide
mutual exclusion

Only one lock statement can have access to the
same instance
Actually uses the .NET Framework
System.Threading.Monitor class to
provide mutual exclusion

Statements
Synchronization

public class CheckingAccount {
decimal balance;
public void Deposit(decimal amount) {
lock (this) {
balance += amount;

}
}
public void Withdraw(decimal amount) {
lock (this) {
balance -= amount;

}
}

}

Statements
using Statement

C# uses automatic memory management
(garbage collection)

Eliminates most memory management problems

However, it results in non-deterministic
finalization

No guarantee as to when and if object destructors
are called

Statements
using Statement

Objects that need to be cleaned up after use
should implement the System.IDisposable
interface

One method: Dispose()

The using statement allows you to create an
instance, use it, and then ensure that Dispose
is called when done

Dispose is guaranteed to be called, as if it were in a
finally block

Statements
using Statement

public class MyResource : IDisposable {
public void MyResource() {
// Acquire valuble resource

}
public void Dispose() {
// Release valuble resource

}
public void DoSomething() {

...
}

} using (MyResource r = new MyResource()) {
r.DoSomething();

} // r.Dispose() is called

18

http://msdn.microsoft.com

Statements
checked and unchecked Statements

The checked and unchecked statements allow
you to control overflow checking for integral-type
arithmetic operations and conversions
checked forces checking
unchecked forces no checking
Can use both as block statements or
as an expression
Default is unchecked
Use the /checked compiler option to make
checked the default

Statements
Basic Input/Output Statements

Console applications
System.Console.WriteLine();

System.Console.ReadLine();

Windows applications
System.WinForms.MessageBox.Show();

string v1 = “some value”;
MyObject v2 = new MyObject();
Console.WriteLine(“First is {0}, second is {1}”,

v1, v2);

Agenda

Hello World
Design Goals of C#
Types
Program Structure
Statements
Operators
Using Visual Studio.NET
Using the .NET Framework SDK

Operators
Overview

C# provides a fixed set of operators, whose
meaning is defined for the predefined types
Some operators can be overloaded (e.g. +)
The following table summarizes the C#
operators by category

Categories are in order of decreasing precedence
Operators in each category have the same
precedence

Operators
Precedence

Grouping: (x)
Member access: x.y
Method call: f(x)
Indexing: a[x]
Post-increment: x++
Post-decrement: x—
Constructor call: new
Type retrieval: typeof
Arithmetic check on: checked
Arithmetic check off: unchecked

Primary

OperatorsCategory

Operators
Precedence

Positive value of: +
Negative value of: -
Not: !
Bitwise complement: ~
Pre-increment: ++x
Post-decrement: --x
Type cast: (T)x

Unary

Multiply: *
Divide: /
Division remainder: %

Multiplicative

OperatorsCategory

19

http://msdn.microsoft.com

Operators
Precedence

Shift bits left: <<
Shift bits right: >>

Shift

Less than: <
Greater than: >
Less than or equal to: <=
Greater than or equal to: >=
Type equality/compatibility: is
Type conversion: as

Relational

Add: +
Subtract: -

Additive

OperatorsCategory

Operators
Precedence

Equals: ==
Not equals: !=

Equality

||Logical OR

^Bitwise XOR

|Bitwise OR

&&Logical AND

&Bitwise AND

OperatorsCategory

Operators
Precedence

?:Ternary conditional

=, *=, /=, %=, +=, -=, <<=, >>=,
&=, ^=, |=Assignment

OperatorsCategory

Operators
Associativity

Assignment and ternary conditional operators
are right-associative

Operations performed right to left
x = y = z evaluates as x = (y = z)

All other binary operators are left-associative
Operations performed left to right
x + y + z evaluates as (x + y) + z

Use parentheses to control order

Agenda

Hello World
Design Goals of C#
Types
Program Structure
Statements
Operators
Using Visual Studio.NET
Using the .NET Framework SDK

Using Visual Studio.NET

Types of projects
Console Application
Windows Application
Web Application
Web Service
Windows Service
Class Library
...

20

http://msdn.microsoft.com

Using Visual Studio.NET

Windows
Solution Explorer
Class View
Properties
Output
Task List
Object Browser
Server Explorer
Toolbox

Using Visual Studio.NET

Building
Debugging

Break points

References
Saving

Agenda

Hello World
Design Goals of C#
Types
Program Structure
Statements
Operators
Using Visual Studio.NET
Using the .NET Framework SDK

Using .NET Framework SDK

Compiling from command line

csc /r:System.WinForms.dll class1.cs file1.cs

More Resources

http://msdn.microsoft.com

http://windows.oreilly.com/news/hejlsberg_0800.html

http://www.csharphelp.com/

http://www.csharp-station.com/

http://www.csharpindex.com/

http://msdn.microsoft.com/msdnmag/issues/0900/csharp/cs
harp.asp

http://www.hitmill.com/programming/dotNET/csharp.html

http://www.c-sharpcorner.com/

http://msdn.microsoft.com/library/default.asp?URL=/libr
ary/dotnet/csspec/vclrfcsharpspec_Start.htm

http://windows
http://www.c-sharpcorner.com/

