http:/msdn.microsoft.com

Introduction to C#

Mark Sapossnek

CS 594
Computer Science Department
Metropolitan College
Boston University

Prerequisites

¢ This module assumes that you understand the
fundamentals of
= Programming
o Variables, statements, functions, loops, etc.
= Object-oriented programming

o Classes, inheritance, polymorphism,
members, etc.
e C++ or Java

Learning Objectives

+ C# design goals
+ Fundamentals of the C# language
= Types, program structure, statements, operators
+ Be able to begin writing and debugging C#
programs
= Using the .NET Framework SDK
= Using Visual Studio.NET
+ Be able to write individual C# methods

Agenda
+ Hello World
+ Design Goals of C#
* Types

+ Program Structure

+ Statements

+ Operators

¢ Using Visual Studio.NET

¢ Using the .NET Framework SDK

Hello World

usi ng System

class Hello {
static void Main( ) {
Consol e. WiteLine("Hello world");
Consol e. ReadLine(); // Hit enter to finish
}

}

Agenda
+ Hello World
+ Design Goals of C#
* Types

+ Program Structure

+ Statements

¢ Operators

+ Using Visual Studio.NET

¢ Using the .NET Framework SDK

Microsoft



http:/msdn.microsoft.com

Design Goals of C#
The Big Ideas

+ Component-orientation

+ Everything is an object
Robust and durable software
* Preserving your investment

*

Design Goals of C#

Component-Orientation

+ C# is the first “Component-Oriented” language in
the C/C++ family

+ What is a component?
= An independent module of reuse and deployment

= Coarser-grained than objects
(objects are language-level constructs)

= Includes multiple classes
» Often language-independent

= In general, component writer and user don’t know
each other, don’t work for the same company, and
don't use the same language

Design Goals of C#

Component-Orientation

+ Component concepts are first class
= Properties, methods, events
= Design-time and run-time attributes
» Integrated documentation using XML
+ Enables “one-stop programming”
= No header files, IDL, etc.
= Can be embedded in ASP pages

Design Goals of C#
Everything is an Object

+ Traditional views

» C++, Java™: Primitive types are “magic” and do not
interoperate with objects

= Smalltalk, Lisp: Primitive types are objects, but at
some performance cost

+ C# unifies with no performance cost
= Deep simplicity throughout system

+ Improved extensibility and reusability
= New primitive types: Decimal, SQL...
» Collections, etc., work for all types

Design Goals of C#

Robust and Durable Software

* Garbage collection
= No memory leaks and stray pointers
* Exceptions
* Type-safety
= No uninitialized variables, no unsafe casts
* Versioning
+ Avoid common errors
« Eg.if(x=Yy) ..
+ One-stop programming
= Fewer moving parts

Design Goals of C#

Preserving Your Investment

¢ C++ Heritage
» Namespaces, pointers (in unsafe code),
unsigned types, etc.
= Some changes, but no unnecessary sacrifices
+ Interoperability
= What software is increasingly about
» C# talks to XML, SOAP, COM, DLLs, and any
.NET Framework language
+ Increased productivity
= Short learning curve
= Millions of lines of C# code in .NET

Microsoft




http:/msdn.microsoft.com

Agenda
+ Hello World
* Design Goals of C#
+ Types

+ Program Structure

+ Statements

+ Operators

¢ Using Visual Studio.NET

¢ Using the .NET Framework SDK

Types

Overview

+ A C# program is a collection of types

= Classes, structs, enums, interfaces, delegates
+ C# provides a set of predefined types

=« E.g.int,byte, char,string,object, ...
+ You can create your own types
+ All data and code is defined within

atype

= No global variables, no global functions

Types

Overview

+ Types contain:

= Data members
o Fields, constants, arrays
e Events

= Function members
e Methods, operators, constructors, destructors
e Properties, indexers

= Other types
o Classes, structs, enums, interfaces, delegates

Types

Overview

+ Types can be instantiated...

» ...and then used: call methods,
get and set properties, etc.

+ Can convert from one type to another
= Implicitly and explicitly

+ Types are organized
= Namespaces, files, assemblies

+ There are two categories of types:
value and reference

+ Types are arranged in a hierarchy

Types
Unified Type System

+ Value types
= Directly contain data
= Cannot be null
+ Reference types
= Contain references to objects
= May be null

int i = 123; i 123

string s = "Hello world"; s ‘ “Hello world"

Types
Unified Type System

+ Value types

= Primitives int i; float x;
=« Enums enum State { OFf, On }
= Structs struct Point {int x,y;}
+ Reference types
= Root obj ect
= String string
= Classes class Foo: Bar, IFoo {...}
= Interfaces interface | Foo: IBar {...}
= Arrays string[] a = new string[10];

» Delegates del egate void Enpty();

Microsoft




http:/msdn.microsoft.com

Types
Unified Type System

Types
Unified Type System

+ Benefits of value types

Value (Struct) Reference (Class) = No heap allocation, less GC pressure
Variable holds Actual value Memory location » More efficient U_Se (_)f mfamory
= Less reference indirection
Allocated on Stack, member Heap .
= Unified type system
Nullability Always has value May be null o No primitive/object dichotomy
Default value 0 null
Aliasing (in a scope) No Yes
Assignment means Copy data Copy reference
| E—| | | E—|
I I I I
1 \
Types Types
Conversions Conversions
+ Implicit conversions
= Occur automatically
. Gugranteed. to succgepl int x = 123456
= No information (precision) loss long y = x; Il inplicit
- EXpliCit conversions short z = (short)x; Il explicit
= Require a cast double d = 1.2345678901234;
= May not succeed float f = (float)d; /'l explicit
= Information (precision) might be lost long I = (long)d; /1 explicit
+ Both implicit and explicit conversions can be
user-defined
| E—| | E—|

Types
Unified Type System

+ Everything is an object
= All types ultimately inherit from object

= Any piece of data can be stored, transported, and
manipulated with no extra work

‘ Str;am ‘ ‘ Hash‘table ‘ ‘ ir‘lt ‘ ‘ dou‘ble

‘MemoryStreamH FileStream ‘

Types
Unified Type System

¢ Polymorphism
= The ability to perform an operation on an object
without knowing the precise type of the object

void Pol y(object o) {
Consol e. WiteLine(o.ToString());

}

Pol y(42);

Pol y(*“abcd”);

Pol y(12. 345678901234 ;
Pol y(new Poi nt (23, 45));

Microsoft




http:/msdn.microsoft.com

Types Types

Unified Type System Unified Type System
* Question: How can we treat value and reference * Boxing
types polymorphically? = Copies a value type into a reference type (obj ect )
= How does an int (value type) get converted into an = Each value type has corresponding “hidden”
object (reference type)? reference type

Note that a reference-type copy is made of the
value type

o Value types are never aliased
Value type is converted implicitly to obj ect , a
reference type

o Essentially an “up cast”

* Answer: Boxing!
= Only value types get boxed
» Reference types do not get boxed

Types Types
Unified Type System Unified Type System

* Unboxing + Boxing and unboxing
= Inverse operation of boxing

= Copies the value out of the box
e Copies from reference type to value type

= Requires an explicit conversion int i = 123; P12
e May not succeed (like all explicit conversions) . .
b t =i 0—‘—. o——# System.Int32
o Essentially a “down cast” obyect o b ° ‘ 3 Y
int j = (int)o; j 123
| E—| | E—|

Types Types

Unified Type System Unified Type System
+ Benefits of boxing + Disadvantages of boxing
= Enables polymorphism across all types = Performance cost
= Collection classes work with all types + The need for boxing will decrease when the CLR
= Eliminates need for wrapper classes supports generics (similar to C++ templates)

= Replaces OLE Automation's Variant
+ Lots of examples in .NET Framework
Hashtabl e t = new Hashtabl e();

t.Add(0, "zero");

t.Add(1, "one"); strin — -
" Wyl g s = string. Format (

L Add(2, "twor); "Your total was {0} on {1}",

total, date);

Microsoft



http:/msdn.microsoft.com

- -
[ [
Types Predefined Types
Predefined Types Value Types
* Value + All are predefined structs
= Integral types
" (Ijloa‘tinglpoint types Signed sbyte, short, int, long
= QJecl ma
= bool Unsigned byte, ushort, uint, ulong
=« char Character char
* Reference Floating point float, double, decimal
= obj ect )
= string Logical bool
| E—| | | E—|
T 1 T 1
Predefined Types Predefined Types
Integral Types Floating Point Types
C# Type System Type | Size (bytes) | Signed? + Follows IEEE 754 specification
shyte System Shyt e 1 Yes ¢ Supports + 0, * Infinity, NaN
short System I nt 16 2 Yes
int System | nt 32 4 Yes
| ong System | nt 64 8 Yes C# Type System Type Size (bytes)
byte System Byte 1 No fl oat System Singl e 4
ushort System Ul nt 16 2 No doubl e Syst em Doubl e 8
ui nt Syst em Ul nt 32 4 No
ul ong System Ul nt 64 8 No
| E—| | | E—|
T 1 T 1
Predefined Types Predefined Types
deci mal deci mal
+ 128 bits + All integer types can be implicitly converted to a
+ Essentially a 96 bit value scaled by a decimal type
power of 10 + Conversions between decimal and floating types
+» Decimal values represented precisely require explicit conversion due to possible loss
+ Doesn’t support signed zeros, infinities of precision
or NaN ¢ s*m*10e
= S=1or-1
C# Type System Type Size (bytes) » 0=m=<29%
x -28<e<0
deci mal Syst em Deci nal 16
| E—| | | E—|

Microsoft



http:/msdn.microsoft.com

Predefined Types

Integral Literals

+ Integer literals can be expressed as decimal
or hexadecimal

¢ U or u: uint or ulong
L or I: long or ulong

*

* UL or ul: ulong
123 /1 Deci mal
0x7B /| Hexadeci mal
123U /'l Unsi gned
123ul /1 Unsigned | ong
123L /1 Long

Predefined Types

Real Literals

+ F or f: float
+ D or d: double
+ M or m: decimal

123f /1 Fl oat

123D /1 Doubl e

123. 456m /1 Deci nal

1. 23e2f /1 Fl oat

12. 3E1IM /1 Deci mal

Predefined Types

bool

+ Represents logical values
+ Literal values are true and false

Predefined Types

char

+ Represents a Unicode character
+ Literals

+ Cannot use 1 and 0 as boolean values = A /I Simple character
= No standard conversion between other types = 0041’ /I'Unicode
and bool = \x0041’ /I Unsigned short hexadecimal
= \n’ /I Escape sequence character
C# Type System Type Size (bytes) C# Type System Type | Size (bytes)
bool Syst em Bool ean 1 (2 for arrays) Char Syst em Char 2
| E—| | E—|
I I
i 1
Predefined Types Predefined Types
char Reference Types
+ Escape sequence characters (partial list)
Char Meaning Value
\’ Single quote 0x0027 Root type obj ect
\ Double quote 0x0022
Character string string
\\ Backslash 0x005C
\0 Null 0x0000
\n New line 0x000A
\r Carriage return 0x000D
\t Tab 0x0009
| E—| | E—|

Microsoft




http:/msdn.microsoft.com

Predefined Types Predefined Types
obj ect obj ect Public Methods
+ Root of object hierarchy ¢ public bool Equal s(object)
+ Storage (book keeping) overhead ¢ protected void Finalize()
= 0 bytes for value types ¢ public int GetHashCode()
= 8 bytes for reference types + public System Type GetType()
* An actual reference (not the object) s protected object Memberwi sed one()

uses 4 bytes « public void Object ()

C# Type System Type Size (bytes) * public string ToString()
obj ect Syst em Obj ect 0/8 overhead
] ]
1 1
Predefined Types Predefined Types
string string
+ An immutable sequence of Unicode characters + Normally have to use escape characters
+ Reference type ‘stri ng s1= “\\\\server\\fileshare\\fil enane.cs";
* Special syntax for literals
wstring s =“l ama string”; + Verbatim string literals
» Most escape sequences ignored
C# Type System Type Size (bytes) * Exceptfor N
String System String 20 minimum = Verbatim literals can be multi-line
string s2 = @\\server\fileshare\filenane.cs”;
] ]
I I I I
1 1
Types Types
User-defined Types Enums
+ User-defined types + An enum defines a type name for a related
group of symbolic constants
Enumerations enum + Choices must be known at compile-time
Arrays int[], string[] S Strongly typed
Interface interface = No implicit conversions to/from int
Reference type cl ass = Can be explicitly converted
= Operators: +, -, ++, -, &, |, *, ~, ...
Value type struet + Can specify underlying type
Function pointer del egate = byte, sbyte, short, ushort, int, uint, long, ulong
] ]
I I I I

Microsoft



http:/msdn.microsoft.com

Types Types

Enums Enums

+ All enums derive from Syst em Enum

enum Col or: byte { = Provides methods to
E}egen z % o determine underlying type
Blue = 4, o test if a value is supported
Bl ack = 0, o initialize from string constant
) White = Red | Green | Blue « retrieve all values in enum

e ...
Col or ¢ = Col or. Bl ack;

Consol e. WitelLine(c); /1 Black
Consol e. WiteLine(c.ToString()); /1 Black
Consol e. Wit eLi ne( Enum For nat (typeof (Color),c,"F"));

Types Types

Arrays Arrays

+ Arrays allow a group of elements of a specific + Declare

type to be stored in a contiguous block of [int[] prines;

memory ¢ Allocate
* Arrays are reference types [int[] primes = new int[o];
+ Derived f Svst Ar + Initialize

erived from Syst em ray int[] prinme = newint[] {1,2,3,5,7,11,13,17,19};

* Zero-based int[] prime = {1,2,3,5,7,11,13, 17, 19};
+ Can be multidimensional + Access and assign

« Arrays know their length(s) and rank [prime2i] = prime[i];

+ Enumerate

*

Bounds checking

‘foreach (int i in prime) Console.WiteLine(i);

1 1
[ [
Types Types
Arrays Interfaces
+ Multidimensional arrays + An interface defines a contract
y
= Rectangular » Includes methods, properties, indexers, events
eint[,] mtR = newint[2,3]; = Any class or struct implementing an interface must
 Can initialize declaratively support all parts of the contract
eint[,] mtR = . .
newint[2,3] { {1,2,3}, {4,586} }; + Interfaces provide polymorphism
« Jagged = Many classes and structs may implement
« An array of arrays a particular interface
eint[][] matd = newint[2][]; + Contain no implementation
* Mustinitialize procedurally = Must be implemented by a class or struct
| E—| | | E—|
I I I

Microsoft



http:/msdn.microsoft.com

Types

Classes

+ User-defined reference type
= Similar to C++, Java classes

+ Single class inheritance
+ Multiple interface inheritance

Types

Classes

+ Members

= Constants, fields, methods, operators,
constructors, destructors

= Properties, indexers, events
» Static and instance members
+ Member access

= public,protected,private,internal,
protectedinternal
o Defaultis private

+ Instantiated with new operator

| E—| | E—| |
i \
Types Types
Structs Classes and Structs
+ Similar to classes, but struct SPoint { int x, y; ... }
= User-defined value type class CPoint { int x, y; ... }
= Always inherits from object ) )
« Ideal for lightweight objects SPoint sp = new SPoi nt (10, 20);
= int,float,doubl e, etc., are all structs GPoint cp = new GPoint (10, 20);
= User-defined “primitive” types 10
e Complex, point, rectangle, color, rational sp
+ Multiple interface inheritance 20
+ Same members as class ‘ ‘ ,
cp > » CPoint
+ Member access | \
= public,internal,private 10
+ Instantiated with new operator 20
[ ]
I I I I
i \
Types
yp Agenda
Delegates
+ A delegate is a reference type that defines a + Hello World
method signature + Design Goals of C#
+ When instantiated, a delegate holds one or more * Types
methods- ) ) ] ] ¢ Program Structure
= Essentially an object-oriented function pointer
) + Statements
+ Foundation for framework events
¢ Operators
+ Using Visual Studio.NET
¢ Using the .NET Framework SDK
| E—| | E—| |
I I I I

Microsoft

10



http:/msdn.microsoft.com

Program Structure
Overview

+ Organizing Types
+ Namespaces

+ References

* Main Method

* Syntax

Program Structure
Organizing Types

+ Physical organization
= Types are defined in files
= Files are compiled into

modules Assembly

= Modules are grouped Module

into assemblies -
File

Program Structure
Organizing Types

+ Types are defined in files
= A file can contain multiple types
= Each type is defined in a single file

+ Files are compiled into modules
= Module is a DLL or EXE
= A module can contain multiple files

* Modules are grouped into assemblies
= Assembly can contain multiple modules
= Assemblies and modules are often 1:1

Program Structure
Organizing Types

+ Types are defined in ONE place
= “One-stop programming”
= No header and source files to synchronize
= Code is written “in-line”

= Declaration and definition are one and
the same

= A type must be fully defined in one file
e Can't put individual methods in different files
+ No declaration order dependence
= No forward references required

Program Structure
Namespaces

+ Namespaces provide a way to
uniquely identify a type

+ Provides logical organization of types

+ Namespaces can span assemblies

¢ Can nest namespaces

* There is no relationship between namespaces
and file structure (unlike Java)

+ The fully qualified name of a type includes all
namespaces

Program Structure

Namespaces
nanespace N1 { /1 NL
class Cl1 { /1 NL.C1
class C2 { /1 NL.Cl.C2
) }
nanmespace N2 { /1 NL.N2
class C2 { /1 NL.N2.C2
}
}
}

Microsoft

11



http:/msdn.microsoft.com

Program Structure
Namespaces

* The using statement lets you use types without
typing the fully qualified name

+ Can always use a fully qualified name

usi ng Ni1;

Cl a; /1 The N1. is inplicit
N1. C1 b; /1 Fully qualified name
C2 c; /1l Error! C2 is undefined
N1. N2. C2 d; // One of the C2 cl asses
Cl.C2 e; /1 The other one

Program Structure
Namespaces

¢ The usi ng statement also lets you create
aliases

using Cl = N1.N2.C1;

using N2 = N1.N2;

Cl a; /1 Refers to N1.N2.Cl
N2. C1 b; /1 Refers to NL.N2.Cl

Program Structure
Namespaces

+ Best practice: Put all of your types in a unique
namespace

+ Have a namespace for your company, project,
product, etc.

+ Look at how the .NET Framework classes are
organized

Program Structure
References

+ In Visual Studio you specify references
for a project

+ Each reference identifies a specific assembly

+ Passed as reference (/ r or/ ref erence)
to the C# compiler

csc Hel lowrld.cs /reference: System W nForns. dl | ‘

Program Structure
Namespaces vs. References

+ Namespaces provide language-level naming
shortcuts

= Don't have to type a long fully qualified name over
and over

+ References specify which assembly to use

Program Structure
Main Method

+ Execution begins at the static Mai n() method
¢ Can have only one method with one of

the following signatures in an assembly

=« static void Min()

= static int Min()

=« static void Main(string[] args)

a static int Main(string[] args)

Microsoft

12



http:/msdn.microsoft.com

Program Structure
Syntax

+ |dentifiers
= Names for types, methods, fields, etc.
= Must be whole word — no white space
= Unicode characters
= Begins with letter or underscore
= Case sensitive

= Must not clash with keyword
e Unless prefixed with @

Agenda
+ Hello World
+ Design Goals of C#
+ Types

¢ Program Structure

+ Statements

+ Operators

¢ Using Visual Studio.NET

¢ Using the .NET Framework SDK

Statements
Overview

High C++ fidelity
i f,whil e, do require bool condition
got o can't jump into blocks

swi t ch statement
= No fall-through

* ¢ o o

Overview
+ Statement lists ¢ Loop Statements
+ Block statements - ‘sh'le
+ Labeled statements - fgr
; .
O o - foreach
.
- Variables + Jump Statements
= break

+ Expression statements

semicolon (; )
* Just like C, C++ and Java
+ Block statements { ... } don't need a semicolon

= continue
+ f or each statement « checked, unchecked - goto
* checked and unchecked statements . lu(s).crk]g Copen
H . L] row
* EXprESSIOH void Foo() { ¢ COI’?dItIOﬂEﬂS + Exception handling
statements i == 1 Il error =it . . try
must do work } - swite « throw
— T
Statements Statements
Syntax Syntax
+ Statements are terminated with a + Comments

=« // Comment a single line, C++ style
« /* Comment multiple
l'i nes,
C style
*/

Microsoft

13



http:/msdn.microsoft.com

Statements

Statement Lists & Block Statements

+ Statement list: one or more statements in

Statements
Variables and Constants

Variables and Constants

+ The scope of a variable or constant runs
from the point of declaration to the end of
the enclosing block

sequence static void Main() {
+ Block statement: a statement list delimited by const float pi = 3.14f;
braCeS{ } const int r = ;|.23§ )
static void Main() { Consol e. WiteLine(pi * r * r);
G(); int a;
{ /1 Start bl ock int b=2 c¢=3;
HO); a =1
i()_ /1 Enpty statenent Consol e. WiteLine(a + b + c);
y " 1/ End block }
}
I — I —
— T
Statements Statements

Variables and Constants

+ Within the scope of a variable or constant it is an
error to declare another variable or constant with
the same name

{
int x;
{
int x; // Error: can’t hide variable x
}
}

Statements
Variables

+ Variables must be assigned a value before they
can be used
= Explicitly or automatically
= Called definite assignment

+ Automatic assignment occurs for static fields,
class instance fields and array elements

Statements
Labeled Statements & got o

+ got o can be used to transfer control within or
out of a block, but not into a nested block

void Foo() {
string s;
Consol e. Wi teLine(s); /'l Error
}
| E—|

static void Find(int value, int[,] values,
out int row, out int col) {
int i, j;
for (i = 0; i < values.GetLength(0); i++)
for (j = 0; j < values.CGetLength(1); j++)
if (values[i, j] == value) goto found;
throw new I nval i dOper ati onExcepti on(“Not found");
f ound:
row =i; col =j;

}

Microsoft

14



http:/msdn.microsoft.com

Statements
Expression Statements

+ Statements must do work

Statements
i f Statement

+ Requires bool expression

= Assignment, method call, ++, - - , new
int Test(int a, int b) {
static void Min() { if (a>Db)
int a, b=2 ¢=3; return 1;
a=b+c elseif (a<b)
at+: return -1,
M/d ass. Foo(a, b, c); el se
Console. WiteLine(a + b + c); return 0;
a == 2 /1 ERROR! }
}
S — I — |
— \
Statements Statements
Swi t ch Statement swi t ch Statement
+ Can branch on any predefined type int tTest(S:{i_ ng label) {
(including st ri ng) or enum swi toh(l abel)
= User-defined types can provide implicit conversion case null:
to these types goto case “runner-up”;
. case “fastest”:
+ Must explicitly state how to end case case “winner”:
= With br eak, got o case, goto | abel,return, Ca;zsﬁ”rzn;erliub[?ak?
throwor conti nue result = 2: Eréak;
= Eliminates fall-through bugs defaul t:
= Not needed if no code supplied after the label ) result = 0;
return result;
— \
Statements Statements
whi | e Statement f or Statement
+ Requires bool expression
inti=o for (int i=0; i <5; i++) {
while (i <5) { }
for (;;) {
AL int i =0;
} do { }
e
}
while (i < 5); while (true) {
.
I  — ]
I I I

Microsoft

15



http:/msdn.microsoft.com

Statements
f or each Statement

+ lteration of arrays

Statements
f or each Statement

+ |teration of user-defined collections
+ Created by implementing | Enuner abl e

public static void Main(string[] args) {
foreach (string s in args)
Consol e. Wi teLine(s);

foreach (Customer c¢ in custoners.OrderBy("name")) {
if (c.Oders.Count !'=0) {

}
}

| E—| | E—|
T 1 \
Statements Statements
Jump Statements Exception Handling
¢ break + Exceptions are the C# mechanism for handling
= Exit inner-most loop unexpected error conditions
¢ continue * Superior to returning status values
= End iteration of inner-most loop « Can't be ignored
¢ goto <l abel > = Don't have to handled at the point they occur
= Transfer execution to I?bEI statement = Can be used even where values are not returned
¢ return [ <expression>] (e.g. accessing a property)
= Exit a method = Standard exceptions are provided
¢ throw
= See exception handling
| E—| | E—|
I I I

Statements
Exception Handling

etry...catch...finally statement

* t ry block contains code that could throw an
exception

+ cat ch block handles exceptions
= Can have multiple catch blocks to handle different

kinds of exceptions

+ final |y block contains code that will always be

executed

= Cannot use jump statements (e.g. got 0)
to exit a finally block

Statements
Exception Handling

+ t hr ow statement raises an exception

+ An exception is represented as an instance of
Syst em Excepti on or derived class
= Contains information about the exception
= Properties
e Message
e StackTrace
e | nner Excepti on
+ You can rethrow an exception, or catch
one exception and throw another

Microsoft

16



http:/msdn.microsoft.com

Statements
Exception Handling

try {
Consol e. WiteLine("try");
throw new Exception(“nmessage”);
}
catch (Argunent Nul | Exception e) {
Consol e. Wi teLine(“caught null argunent");
}
catch {
Consol e. WiteLine("catch");
}
finally {
Consol e. WiteLine("finally");
}

Statements
Synchronization

+ Multi-threaded applications have to protect
against concurrent access to data
= Must prevent data corruption

+ The | ock statement uses an instance to provide
mutual exclusion

= Only one | ock statement can have access to the
same instance

= Actually uses the .NET Framework
Syst em Thr eadi ng. Moni t or class to
provide mutual exclusion

Statements
Synchronization

Statements
usi ng Statement

bublic cl ass Checki ngAccount { + C# uses automa_tlc memory management
deci mal bal ance; (garbage collection)
p“F'o'cﬁ ‘(’:"hidsgje?os"(dec' el amount) { « Eliminates most memory management problems
bal ance += anount ; + However, it results in non-deterministic
) } finalization
public void Wthdraw decimal anount) { = No guarantee as to when and if object destructors
lock (this) { are called
bal ance -= anount;
}
}
}
I — I —
I I I I
1 1
Statements Statements
usi ng Statement usi ng Statement
+ Objects that need to be cleaned up after use
: . public class M/Resource : |Disposable {
_should implement the Syst em | Di sposabl e publ i ¢ voi d MyResour ce() {
interface /1 Acquire val ubl e resource
. - Di }
One r_nethOd' D spose() public void Dispose() {
+ The usi ng statement allows you to create an I Rel ease val ubl e resource
i i i }
:gsg:ﬁlecg,vy;:nltag:g then ensure that Di spose bubl i ¢ voi d DoSonet hi ng() {
. D| spose is guaranteed to be called, as if it were in a ) } using (MyResource r = new MyResource()) {
finally block r. DoSonet hi ng();
} /1 r.Dispose() is called
I — I —

Microsoft

17



http:/msdn.microsoft.com

Statements
checked and unchecked Statements

* The checked and unchecked statements allow
you to control overflow checking for integral-type
arithmetic operations and conversions

+ checked forces checking
+ unchecked forces no checking

+ Can use both as block statements or
as an expression

¢ Defaultis unchecked
* Use the / checked compiler option to make

Statements
Basic Input/Output Statements

+ Console applications
= System Consol e. Wi telLine();
= Syst em Consol e. ReadLi ne();
+ Windows applications
= Syst em W nFor ns. MessageBox. Show() ;

string vl = “some val ue”;
M/Qbj ect v2 = new MyQbj ect();
Console. WiteLine(“First is {0}, second is {1}",

1, 2);
checked the default Vi, va)
| E—| | E—|
— \
Agenda Operators
Overview
+ Hello World + C# provides a fixed set of operators, whose
+ Design Goals of C# meaning is defined for the predefined types
+ Types + Some operators can be overloaded (e.g. +)
+ Program Structure + The following table summarizes the C#
« Statements operators by category
= Categories are in order of decreasing precedence
+ Operators )
i ] ) = Operators in each category have the same
¢ Using Visual Studio.NET precedence
¢ Using the .NET Framework SDK
| E—| | ——
I I I
— \
Operators Operators
Precedence Precedence
Category Operators Category Operators
Grouping: (x) Positive value of: +
Member access: x.y Negative value of: -
Method call: f(x) Not: !
Indexing: a[x] Unary Bitwise complement: ~
) Post-increment: x++ Pre-increment: ++x
Primary Post-decrement: x— Post-decrement: --x
Constructor call: new Type cast: (T)x
Tylpe retrieval: typeof Multiply: *
Ar!thmet!c check on: checked Multiplicative Divide: /
Arithmetic check off: unchecked Division remainder: %

Microsoft

18



http:/msdn.microsoft.com

Ternary conditional | ?:

- \
[
Operators Operators
Precedence Precedence
Category Operators Category Operators
N Add: + ' Equals: ==
Additive Subtract: - Equality Not equals: !=
. Shift bits left: << Bitwise AND &
Shift Shift bits right: >>
Bitwise XOR n
Less than: <
Greater than: > Bitwise OR |
Relational Less than or equal to: <=
Greater than or equal to: >= Logical AND &&
Type equality/compatibility: is
Type conversion: as Logical OR Il
| E—|
i \
Operators Operators
Precedence Associativity
+ Assignment and ternary conditional operators
are right-associative
. i i ight to |
Category Operators Operations performed right to left

» X =y = z evaluatesas x = (y = z)
+ All other binary operators are left-associative

+ Program Structure

+ Statements

¢ Operators

+ Using Visual Studio.NET
Using the .NET Framework SDK

*

Assignment Z,:*=A,:l=|,:%=, +=, -3, <<=, >>=, = Operations performed left to right
— =X +y + z evaluatesas (x +y) + z
+ Use parentheses to control order
T I
Agenda Using Visual Studio.NET

+ Hello World + Types of projects

+ Design Goals of C# = Console Application
+ Types = Windows Application

= Web Application
= Web Service

= Windows Service
» Class Library

Microsoft

19



http:/msdn.microsoft.com

Using Visual Studio.NET

* Windows

Solution Explorer
Class View
Properties

= Output

Task List

= Object Browser
Server Explorer
= Toolbox

Using Visual Studio.NET

Building
+ Debugging

» Break points
References
* Saving

*

*

Agenda

*

Hello World

Design Goals of C#

+ Types

+ Program Structure

Statements

Operators

Using Visual Studio.NET

Using the .NET Framework SDK

*

*

*

*

*

Using .NET Framework SDK

+ Compiling from command line

‘ csc /r:SystemWnForns.dl |l classl.cs filel.cs

More Resources

http://nmsdn. m crosoft.com

ht t p: // ww. cshar phel p. comf
http:// ww. cshar p- st ati on. cont
ht t p: // ww. cshar pi ndex. coml

http:// msdn. m crosoft. com mednnmag/ i ssues/ 0900/ csharp/ cs
har p. asp

http://ww. hitm || .con progranmm ng/ dot NET/ csharp. ht m

LR R R R R

-

http://nmsdn. m crosoft.conflibrary/defaul t.asp?URL=/Iibr
ary/ dot net/ csspec/ vcl rfcsharpspec_Start. htm

-

Microsoft

20


http://windows
http://www.c-sharpcorner.com/

