RAPPRESENTAZIONE DELL'INFORMAZIONE

- Internamente a un elaboratore, ogni informazione è rappresentata tramite sequenze di bit (cifre binarie)
- Una sequenza di bit non dice "che cosa" essa rappresenta

Ad esempio, 01000001 può rappresentare:

- > l'intero 65, il carattere 'A', il boolean 'vero', ...
- > ... il valore di un segnale musicale,
- > ... il colore di un pixel sullo schermo...

Rapida Nota sulla Rappresentazione dei Caratteri

Ad esempio, un tipo fondamentale di dato da rappresentare è costituito dai *singoli caratteri*

Idea base: associare *a ciascun carattere un numero intero (codice)* in modo convenzionale

Codice standard ASCII (1968)

ASCII definisce univocamente i primi 128 caratteri (7 bit – vedi tabella nel lucido seguente)

I caratteri con codice superiore a 127 possono variare secondo la particolare codifica adottata (dipendenza da linguaggio naturale: ISO 8859-1 per alfabeto latino1, ...)

Visto che i caratteri hanno un codice intero, essi possono essere considerati un insieme ordinato (ad esempio: 'g' > 'O' perché 103 > 79)

Tabella ASCII standard

Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
00000000	0	Null	00100000	32	Spc	01000000	64	(a)	01100000	96	*
00000001	1	Start of heading	00100001	33	1	01000001	65	Ā	01100001	97	a
00000010	2	Start of text	00100010	34	>>	01000010	66	В	01100010	98	ь
00000011	3	End of text	00100011	35	#	01000011	67	C	01100011	99	С
00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
00000101	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	е
00000110	6	Acknowledge	00100110	38	&	01000110	70	F	01100110	102	f
00000111	7	Audible bell	00100111	39	,	01000111	71	G	01100111	103	g
00001000	8	Backspace	00101000	40	(01001000	72	Н	01101000	104	h
00001001	9	Horizontal tab	00101001	41)	01001001	73	Ι	01101001	105	i
00001010	10	Line feed	00101010	42	*	01001010	74	J	01101010	106	j
00001011	11	Vertical tab	00101011	43	+	01001011	75	K	01101011	107	\mathbf{k}
00001100	12	Form Feed	00101100	44	٠,	01001100	76	L	01101100	108	1
00001101	13	Carriage return	00101101	45	_	01001101	77	\mathbf{M}	01101101	109	m
00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	n
00001111	15	Shift in	00101111	47	1	01001111	79	0	01101111	111	0
00010000	16	Data link escape	00110000	48	0	01010000	80	P	01110000	112	p
00010001	17	Device control 1	00110001	49	1	01010001	81	Q	01110001	113	q
00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	$\hat{\mathbf{r}}$
00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	S
00010100	20	Device control 4	00110100	52	4	01010100	84	T	01110100	116	t
00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	U	01110101	117	u
00010110	22	Synchronous idle	00110110	54	6	01010110	86	V	01110110	118	v
00010111	23	End trans, block	00110111	55	7	01010111	87	W	01110111	119	w
00011000	24	Cancel	00111000	56	8	01011000	88	X	01111000	120	x
00011001	25	End of medium	00111001	57	9	01011001	89	Y	01111001	121	y
00011010	26	Substitution	00111010	58		01011010	90	Z	01111010	122	z
00011011	27	Escape	00111011	59	;	01011011	91	ſ	01111011	123	-{
00011100	28	File separator	00111100	60	· <	01011100	92	Ň	01111100	124	ì
00011101	29		00111101	61	=	01011101	93	1	01111101	125	3
00011110	30	Record Separator	00111110	62	>	01011110	94	Á	01111110	126	~
00011111	31	Unit separator	00111111	63	?	01011111	95		01111111	127	Del

INFORMAZIONI NUMERICHE

Originariamente la *rappresentazione binaria* è stata utilizzata per la *codifica dei numeri e dei caratteri*

Oggi si digitalizzano comunemente anche suoni, immagini, video e altre informazioni (informazioni multimediali)

La rappresentazione delle *informazioni numeriche* è ovviamente di particolare rilevanza

A titolo di esempio, nel corso ci concentreremo sulla rappresentazione dei *numeri interi (senza o con segno)*

Dominio: $N = \{..., -2, -1, 0, 1, 2, ...\}$

NUMERI NATURALI (interi senza segno)

Dominio: $N = \{ 0,1,2,3, ... \}$

Rappresentabili con diverse notazioni

- non posizionali
 - ad esempio la notazione romana:
 I, II, III, IV, V, IX, X, XI...
 - Risulta difficile l'utilizzo di regole generali per il calcolo

posizionale

- **>** 1, 2, .. 10, 11, ... 200, ...
- Risulta semplice l'individuazione di regole generali per il calcolo

- Concetto di base di rappresentazione B
- Rappresentazione del numero come sequenza di simboli (cifre) appartenenti a un alfabeto di <u>B simboli distinti</u>
- ogni simbolo rappresenta un valore compreso fra 0 e B-1

Esempio di rappresentazione su N cifre:

$$d_{n-1} \dots d_2 d_1 d_0$$

- Il valore di un numero espresso in questa notazione è ricavabile
 - a partire dal valore rappresentato da ogni simbolo
 - pesandolo in base alla posizione che occupa nella sequenza

In formula:

$$v = \sum_{k=0}^{n-1} d_k B^k$$

- ♦ B = base
- ♦ ogni cifra d_k rappresenta un valore fra 0 e B-1

Esempio (base B=4):

1 2 1 3
$$d_3 d_2 d_1 d_0$$

Valore =
$$1 * B^3 + 2 * B^2 + 1 * B^1 + 3 * B^0 = centotre$$

Quindi, una sequenza di cifre non è interpretabile se non si precisa <u>la base</u> in cui è espressa

Esempi:

Stringa	Base	Alfabeto	Calcolo valore	Valore
"12"	quattro	{0,1,2,3}	4 * 1 + 2	sei
"12"	otto	{0,1,,7}	8 * 1 + 2	dieci
"12"	dieci	{0,1,,9}	10 * 1 + 2	dodici
"12"	sedici	$\{0,,9,A,,F\}$	16 * 1 + 2	diciotto

Inversamente, ogni numero può essere espresso, *in modo univoco*, *come* sequenza di cifre in una qualunque base

Esempi:

Numero	Base	Alfabeto	Rappresentazione
venti	due	{0,1}	"10100"
venti	otto	{0,1,,7}	~~24 "
venti	dieci	{0,1,,9}	"20"
venti	sedici	$\{0,,9,A,,F\}$	"14"

Non bisogna *confondere* un numero con una sua RAPPRESENTAZIONE!

NUMERI E LORO RAPPRESENTAZIONE

- Internamente, un elaboratore adotta per i numeri interi una rappresentazione binaria (base B=2)
- *Esternamente*, le costanti numeriche che scriviamo nei programmi e i valori che stampiamo a video/leggiamo da tastiera sono invece *sequenze di caratteri ASCII*

Il passaggio dall'una all'altra forma richiede dunque un **processo di** *conversione*

Esempio: RAPPRESENTAZIONE INTERNA/ESTERNA

- Numero: centoventicinque
- Rappresentazione interna binaria (16 bit):

00000000 01111101

Rappresentazione esterna in base 10:

occorre produrre la sequenza di caratteri ASCII '1', '2', '5'

00110001 00110010 00110101

vedi tabella ASCII

Esempio: RAPPRESENTAZIONE INTERNA/ESTERNA

Rappresentazione esterna in base 10:

È data la sequenza di caratteri ASCII
'3', '1', '2', '5', '4'
vedi tabella ASCII

00110011 00110001 00110010 00110101 00110100

Rappresentazione interna binaria (16 bit):

01111010 00010110

 Numero: trentunomiladuecentocinquantaquattro

CONVERSIONE STRINGA/NUMERO

Si applica la definizione:

$$v = \sum_{k=0}^{n-1} d_k B^k$$

$$= d_0 + B * (d_1 + B * (d_2 + B * (d_3 + ...)))$$

Ciò richiede la valutazione di un polinomio

→ Metodo di Horner

- Problema: dato un numero, determinare la sua rappresentazione in una base data
- Soluzione (<u>notazione posizionale</u>): manipolare la formula per dedurre un algoritmo

$$v = \sum_{k=0}^{n-1} d_k B^k$$
 vè noto, le cifre d_k vanno calcolate

$$= d_0 + B * (d_1 + B * (d_2 + B * (d_3 + ...)))$$

Per trovare le cifre bisogna calcolarle una per una, ossia bisogna trovare un modo per isolarne una dalle altre

$$V = d_0 + B^* (...)$$

Osservazione:

d₀ è la sola cifra non moltiplicata per B

Conseguenza:

d₀ è ricavabile come <u>v modulo B</u>

Algoritmo delle divisioni successive

- si divide v per B
 - \Box *il resto* costituisce la cifra meno significativa (d_0)
 - ☐ *il quoziente* serve a iterare il procedimento
- se tale quoziente è zero, l'algoritmo termina;
- se non lo è, lo si assume come nuovo valore v', e si itera il procedimento con il valore v'

Esempi:

Numero	Base	Calcolo valore	Stringa
quattordici	4	14/4 = 3 con resto 2	—
		3 / 4 = 0 con resto 3 —	→ "32"
undici	2	11/2 = 5 con resto 1 —	
		5/2 = 2 con resto 1	
		2/2 = 1 con resto 0	
		1/2 = 0 con resto 1	" 1011"
sessantatre	10	63 / 10 = 6 con resto 3	
		6 / 10 = 0 con resto $6 -$	63 "
sessantatre	16	63 / 16 = 3 con resto 15	
		3 / 16 = 0 con resto $3 -$	*3F"

NUMERI NATURALI: valori rappresentabili

- Con N bit, si possono fare 2^N combinazioni
- Si rappresentano così i numeri da 0 a 2^N-1

Esempi

```
\Box con 8 bit, [0 .... 255] In C: unsigned char = byte
```

□con 16 bit, [0 65.535]

In C: unsigned short int (su alcuni compilatori)

In C: unsigned int (su alcuni compilatori)

□con 32 bit, [0 4.294.967.295]

In C: unsigned int (su alcuni compilatori)

In C: unsigned long int (su molti compilatori)

OPERAZIONI ED ERRORI

La rappresentazione binaria rende possibile fare *addizioni e sottrazioni* con le usuali regole algebriche

Esempio:

ERRORI (primissimo assaggio ©)

Esempio (supponendo di avere solo 7 bit per la rappresentazione)

Errore!
Massimo numero rappresentabile: 2^7 -1 cioè 127

- Questo errore si chiama overflow
- Può capitare sommando due numeri dello stesso segno il cui risultato non sia rappresentabile utilizzando il numero massimo di bit designati

ESERCIZIO RAPPRESENTAZIONE

Un elaboratore rappresenta numeri interi su 8 bit dei quali 7 sono dedicati alla rappresentazione del modulo del numero e uno al suo segno. Indicare come viene svolta la seguente operazione aritmetica:

59 - 27

in codifica binaria

ESERCIZIO RAPPRESENTAZIONE

Soluzione

 $59 \rightarrow 0 0111011$

 $-27 \rightarrow 1 0011011$

Tra i (moduli dei) due numeri si esegue una sottrazione:

0111011

- 0011011

0100000

che vale 32 in base 10

DIFFERENZE TRA NUMERI BINARI

Che cosa avremmo dovuto fare se avessimo avuto 27-59 ?

Avremmo dovuto invertire i due numeri, calcolare il risultato, e poi ricordarci di mettere a 1 il bit rappresentante il segno

Per ovviare a tale problema, si usa la *notazione in* "complemento a 2" (vedi nel seguito), che permette di eseguire tutte le differenze tramite semplici somme

INFORMAZIONI NUMERICHE

- La rappresentazione delle informazioni numeriche è di particolare rilevanza
- Abbiamo già discusso i numeri naturali (interi senza segno) N = { 0,1,2,3, ...}
- Come rappresentare invece i numeri interi (con segno)?

$$Z = \{ -x, x \in \mathbb{N} - \{0\} \} \cup \mathbb{N}$$

Dominio: $Z = \{ ..., -2, -1, 0, 1, 2, 3, ... \}$

Rappresentare gli interi in un elaboratore pone alcune problematiche:

- come rappresentare il "segno meno"?
- possibilmente, come rendere semplice l'esecuzione delle operazioni aritmetiche?

Magari riutilizzando gli stessi algoritmi e gli stessi circuiti già usati per i numeri interi senza segno

Due possibilità:

- rappresentazione in modulo e segno
 - □ semplice e intuitiva
 - □ ma inefficiente e complessa nella gestione delle operazioni → non molto usata in pratica
- rappresentazione in complemento a due
 - ☐ meno intuitiva, costruita "ad hoc"
 - □ma efficiente e capace di rendere semplice la gestione delle operazioni → <u>largamente usata</u> nelle architetture reali di CPU

Rappresentazione in modulo e segno

- 1 bit per rappresentare il segno
 - 0 + 1 -
- (N-1) bit per il valore assoluto

Esempi (su 8 bit, Most Significant Bit –MSB- rappresenta il segno):

$$+ 5 = 00000101$$

$$-36 = 10100100$$

Rappresentazione in modulo e segno

Due difetti principali:

 occorrono algoritmi speciali per fare le operazioni

```
non è verificata la proprietà X + (-X) = 0
```

- □occorrono regole (e quindi circuiti) ad hoc
- due diverse rappresentazioni per lo zero

$$+ 0 = 00000000 - 0 = 10000000$$

Ad esempio:

(+5) + (-5) = -10???

1 0000101

1 0001010

Rappresentazione in complemento a due

- si vogliono poter usare le regole standard per fare le operazioni
- in particolare, si vuole che

$$\Box X + (-X) = 0$$

- □la rappresentazione dello *zero* sia *unica*
- anche a prezzo di una notazione più complessa, meno intuitiva, e magari non (completamente) posizionale

RAPPRESENTAZIONE in COMPLEMENTO A DUE

- <u>idea</u>: cambiare il valore del bit più significativo da +2^{N-1} a -2^{N-1}
- peso degli altri bit rimane lo stesso (come numeri naturali)

Esempi:

$$0\ 0000101 = +5$$
 $1\ 0000101 = -128 + 5 = -123$
 $1\ 1111101 = -128 + 125 = -3$

NB: in caso di MSB=1, gli altri bit NON sono il valore assoluto del numero naturale corrispondente

INTERVALLO DI VALORI RAPPRESENTABILI

• se MSB=0, stesso dei naturali con N-1 bit

```
da 0 a 2<sup>N-1</sup>-1 Esempio: su 8 bit, [0,+127]
```

• se MSB=1, stesso intervallo traslato di -2^{N-1}

```
da -2<sup>N-1</sup> a -1 Esempio: su 8 bit, [-128,-1]
```

• Intervallo globale = unione [-2^{N-1}, 2^{N-1}-1]

```
con 8 bit, [-128 .... +127]
con 16 bit, [-32.768 .... +32.767]
con 32 bit, [-2.147.483.648 .... +2.147.483.647]
```

- Osservazione: poiché si opera su N bit, questa è in realtà una aritmetica mod 2^N
- Rappresentazione del numero v coincide con quella del numero v $\pm 2^{\rm N}$
- In particolare, la rappresentazione del <u>negativo</u> v coincide con quella del <u>positivo</u> v' = v + 2^N

$$v = -d_{n-1}B^{n-1} + \sum_{k=0}^{n-2} d_k B^k$$

Questo è un naturale
$$v' = +d_{n-1}B^{n-1} + \sum_{k=0}^{n-2} d_k B^k$$

Esempio (8 bit,
$$2^N = 256$$
):
per calcolare la rappresentazione di -3, possiamo
calcolare quella del naturale
-3+256 = 253

- con la definizione di compl. a 2 $(2^{N-1} = 128)$:
 - $-3 = -128 + 125 \rightarrow "111111101"$
- con il trucco sopra:
 - $-3 \rightarrow 253 \rightarrow "111111101"$

Come svolgere questo calcolo in modo semplice?

• Se v<0:

$$v = -|v|$$

 $v' = v + 2^{N} = 2^{N} - |v|$

- che si può riscrivere come $v' = (2^N 1) |v| + 1$
- dove la quantità (2^N -1) è, in binario, una sequenza di N cifre a "1"

Ma la sottrazione (2^N -1) - |v| si limita a *invertire tutti i bit* della rappresentazione di |v|

Infatti, ad esempio, su 8 bit:

- 28 -1 = 111111111
- se |v| = 01110101

$$(2^8 - 1) - |v| = 10001010$$

Conclusione:

- per calcolare il numero negativo -|v|, la cui rappresentazione coincide con quella del positivo v' = (2^N -1) |v| + 1, occorre
- <u>prima</u> invertire tutti i bit della rappresentazione di |v| (calcolando così (2^N -1) |v|)
- *poi aggiungere 1* al risultato

Algoritmo di calcolo del complemento a due

CONVERSIONE NUMERO/STRINGA

Esempi

• V = -3

```
valore assoluto 3 \rightarrow "00000011" inversione dei bit \rightarrow "11111100" somma con 1 \rightarrow "11111101"
```

• v = -37

```
valore assoluto 37 \rightarrow "00100101" inversione dei bit \rightarrow "11011010" somma con 1 \rightarrow "11011011"
```

CONVERSIONE STRINGA/NUMERO

Importante:

l'algoritmo funziona anche a rovescio

```
• stringa = "11111101" \longrightarrow "00000010" somma con 1 \longrightarrow "00000011" calcolo valore assoluto \longrightarrow 3
• stringa = "11011011" \longrightarrow "00100100" somma con 1 \longrightarrow "00100100" calcolo valore assoluto \longrightarrow 37
```

OPERAZIONI SU NUMERI INTERI

Rappresentazione in complemento a due rende possibile fare addizioni e sottrazioni con le usuali regole algebriche

```
Ad esempio: -5 + 11111011

+3 = 00000011

---

-2 11111110
```

In certi casi occorre però una piccola convenzione: ignorare il riporto

```
Un altro esempio: -1 + 11111111
-5 = 11111011
-6 (1) 11111010
39
```

COMPLEMENTO a 2: NUMERI a 4 bit

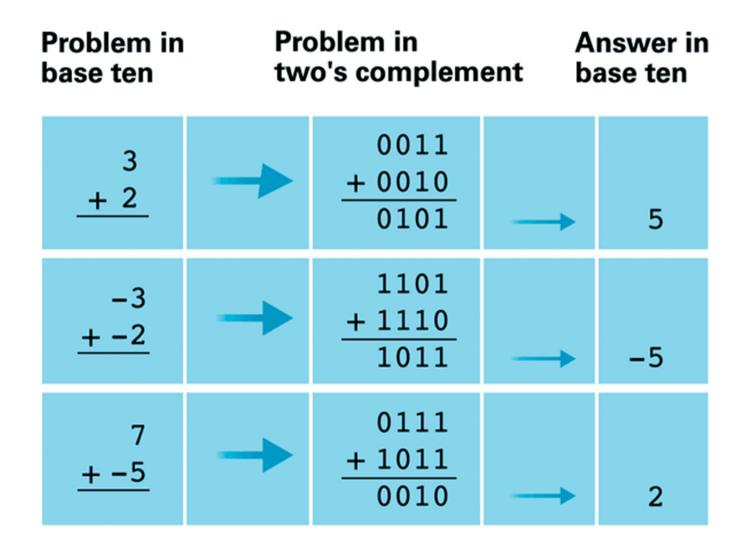
a. Using patterns of length three

Bit pattern	Value represented
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

b. Using patterns of length four

Bit pattern	Value represented	
0111	7	
0110	6	
0101	5	
0100	4	
0011	3	
0010	2	
0001	1	
0000	0	
1111	-1	
1110	-2	
1101	-3	
1100	-4	
1011	- 5	
1010	-6	
1001	- 7	
1000	-8	

ESEMPI DI SOMME



Rappresentazione dei Numeri: NUMERI RAZIONALI

Ovviamente *rappresentazione posizionale* vale anche per numeri "con virgola"

$$a = \sum_{i=-N}^{M-1} c_i * b^i$$
 Quindi, come si converte un numero razionale da decimale a binario?

Rappresentazione in *virgola mobile* (*mantissa ed esponente*), utilizzando base 2

Standard IEEE 754 (rappresentazione *float a 32 bit*):

- Bit più significativo per segno mantissa (0 per positivi, 1 per negativi)
- 8 bit per l'esponente (notazione in complemento a 2)
- Ultimi 23 bit per mantissa in forma normale

Rappresentazione dei Numeri: NUMERI RAZIONALI

- zero si rappresenta ponendo a 0 tutti i bit di mantissa ed esponente
- +∞ e -∞ si possono rappresentare ponendo a 1 tutti i bit dell'esponente e a 0 tutti i bit della mantissa
- Not a Number (NaN) ponendo a 1 tutti i bit dell'esponente e la mantissa diversa da 0

Nel caso di *doppia precisione – double*: 11 bit per esponente, 52 per mantissa

Valori massimo e minimo rappresentabili

Interi senza segno	0	4294967295
Interi con segno	-2147483647	2147483647
Interi in complemento a 2	-2147483648	2147483647
Reali in sing. prec. (modulo)	1.401298*10 ⁻⁴⁵	3.402823*10 ³⁸
Reali in doppia prec. (modulo)	4.940656*10 ⁻³²⁴	1.797693*10 ³⁰⁸

Errori di Approssimazione: OVERFLOW

- Se si sommano due numeri positivi tali che il risultato sia maggiore del massimo numero positivo rappresentabile con i bit fissati (lo stesso per somma di due negativi)
- Basta guardare il bit di segno del risultato: se 0 (1) e i numeri sono entrambi negativi (positivi) → overflow

ERRORI NELLE OPERAZIONI

Attenzione ai casi in cui venga invaso il bit più significativo (bit di segno)

Esempio

Questo errore si chiama *invasione del bit di segno;* è una forma di *overflow*

Può accadere solo *sommando due numeri dello stesso segno*, con modulo sufficientemente grande

Errori di Approssimazione: ERRORI DI ARROTONDAMENTO e UNDERFLOW

Tutti i numeri non interi si *approssimano al numero* razionale più vicino con rappresentazione finita (pensare a $\sqrt{2}$ ma anche a 0.1)

Precisione dell'ordine di 2ⁿ, dove n è il numero di bit dedicati alla mantissa

- Due numeri che differiscono per meno della precisione sono considerati uguali => errore di arrotondamento
- ❖ Se un numero è più piccolo della precisione, allora viene approssimato con 0 ⇒ errore di underflow

PROPAGAZIONE degli ERRORI

Propagazione "catastrofica" in alcuni algoritmi quando operandi (numeri razionali) molto diversi o molto simili

1) Molto diversi: il più piccolo dei due operandi perde precisione a causa spostamento mantissa (necessario per svolgere operazione: stessa mantissa del più grande)

Esempio:

se a sufficientemente grande e b sufficientemente piccolo

$$\Rightarrow$$
 a + b = a

(chi propone un esempio concreto in rappres. IEEE754?)

PROPAGAZIONE degli ERRORI

Propagazione "catastrofica" in alcuni algoritmi quando operandi (numeri razionali) molto diversi o molto simili

2) Molto simili: differenza fra due numeri molto vicini

Esempio (in base 10 per semplificare; mantissa con 3 cifre significative dopo virgola):

$$a = 1.000 \times 10^3$$
; $b = 999.8 \times 10^0$

$$a - b = (1.000x10^3) - (0.999x10^3) = 1.000x10^0$$
, che è piuttosto diverso da 0.2!

Nota che *diversi algoritmi possono produrre errori molto differenti*. Ad esempio $(x = 3.451x10^0, y = 3.450x10^0)$:

$$x^2 - y^2 = 1.190x10^1 - 1.190x10^1 = 0!!!$$

$$x^2 - y^2 = (x + y) (x - y) = (6.901x10^0) (1.000x10^{-3}) = 6.901x10^{-3}$$

Esempio di PROPAGAZIONE in ALGORITMO ITERATIVO

Attenzione ai *problemi di arrotondamento* in algoritmi iterativi, possibili anche in casi in cui non ce lo aspettiamo!

Esempio di somma di N numeri naturali

```
#include <stdio.h>
#define N 10000000

main () {
    float s=0, x=7;
    unsigned int i, is=0; ix=7;
    for (i=0; i<N; i++) {
        s += x; is += ix; }
    printf("usando float: %.0f x %d = %.0f\n", x, N, s);
    printf("usando integer: %d x %d = %d\n", ix, N, is);
}</pre>
```

Esempio di PROPAGAZIONE in ALGORITMO ITERATIVO

Errore già per i = 2396746, s = 16777222

Notazione IEEE 754; perdita della cifra più a destra dell'addendo 7 (approssimato a 6)

Quindi un risultato finale più basso? NO, NEMMENO

Situazione ancora più complessa: rappresentazione interna alla Floating Point Unit (FPU) a 80 bit, troncata quando si va in memoria centrale

Ovviamente stesso problema di arrotondamento su somma di qualunque coppia di numeri che differiscono troppo fra loro

E se avessimo a che fare con un *ottimizzatore di codice* sufficientemente intelligente?

COME RISOLVERE/ATTENUARE IL PROBLEMA?

Algoritmi equivalenti alternativi che riducano la differenza tra i numeri da sommare

Ad esempio: sommare prima m valori fra loro; poi sommare tra loro i k risultati (dove ovviamente k*m = n)

Oppure somma di Kahan:

```
float sum = 0., corr = 0., x = 7., tmp, y; int i;
for (i=0; i<N; i++) {
    y = corr + x;
    tmp = sum + y;
    corr = (sum - tmp) + y;
    sum = tmp; }
sum += corr;</pre>
```