

Part II—The REAL Assignment: Karel problems (due 3:15pm on Friday, Oct. 5th)
The real problem solving portion of this assignment consists of four Karel programs.
There are starter projects for each of these problems on the CS 106 web site in the area
for Assignment 1. When you want to work on one of these programs, you need to
download that starter folder as described in Handout #6 (Using Karel in Eclipse). From
there, you need to edit the program files so that the assignment actually does what it’s
supposed to do, which will involve a cycle of coding, testing, and debugging until
everything works. The final step is to submit your assignment using the Submit Project
entry under the Stanford menu. Remember that you can submit your programs individually
as you finish them and that you can submit more than one version. If you discover an
error after you’ve submitted one of these problems, just fix your program and submit a
new copy. Also, Please remember that your Karel programs must limit themselves
to the language features described in Karel the Robot Learns Java in the Karel and
SuperKarel classes. You may not use other features of Java, even though the
Eclipse-based version of Karel accepts them.

The four Karel problems to solve are described below.

Mehran Sahami Handout #7
CS 106A September 26, 2007

Assignment #1: Email and Karel the Robot
Karel problems due: 3:15pm on Friday, October 5th

Email due: 11:59pm on Sunday, October 7th
Based on a handout by Eric Roberts

 – 3 –

Problem 1
Your first task is to solve a simple story-problem in Karel’s world. Suppose that Karel
has settled into its house, which is the square area in the center of the following diagram:

1 2 3 4 5 6 7

1

2

3

4

5

Karel starts off in the northwest corner of its house as shown in the diagram. The problem
you need to get Karel to solve is to collect the newspaper—represented (as all objects in
Karel’s world are) by a beeper—from outside the doorway and then to return to its initial
position.

This exercise is extremely simple and exists just to get you started. You can assume that
every part of the world looks just as it does in the diagram. The house is exactly this size,
the door is always in the position shown, and the beeper is just outside the door. Thus, all
you have to do is write the sequence of commands necessary to have Karel

1. Move to the newspaper,
2. Pick it up, and
3. Return to its starting point.

Even though the program is only a few lines, it is still worth getting at least a little
practice in decomposition. In your solution, include a private method for each of the
steps shown in the outline.

A Word of Advice

Before you go on to the harder problems on this assignment, why don’t
you try submitting your project as soon as you are done with this first
problem? Every year, a handful of students run into some kind of problem
with the electronic submission option provided in the Stanford version of
Eclipse. If you wait until 4:45P.M. on Friday before you submit any of
your work, you may discover that there is some aspect of the submission
process that you didn’t quite understand only after it’s too late to get any
help. So right now, as soon as you’ve got this first program working, go
ahead and hit the submit button to make sure that you can ship things off.
Once you’ve done so, you’ll know that you’ve got the submission process
under control. Remember, we only look at the last submission you make
before the due date, so it doesn’t hurt to submit new versions of your
solution as you finish them.

 – 4 –

Problem 2
Karel has been hired to repair the damage done to the Quad in the 1989 earthquake. In
particular, Karel is to repair a set of arches where some of the stones (represented by
beepers, of course) are missing from the columns supporting the arches, as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

Your program should work on the world shown above, but it should be general enough to
handle any world that meets certain basic conditions as outlined at the end of this
problem. There are several example worlds in the starter folder, and your program should
work correctly with all of them.

When Karel is done, the missing stones in the columns should be replaced by beepers, so
that the final picture resulting from the world shown above would look like this:

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

Karel may count on the following facts about the world, list on the next page:

 – 5 –

• Karel starts at 1st Avenue and 1st Street, facing east, with an infinite number of
beepers.

• The columns are exactly four units apart, on 1st, 5th, 9th Avenue, and so forth.
• The end of the columns is marked by a wall immediately after the final column. This

wall section appears after 13th Avenue in the example, but your program should work
for any number of columns.

• The top of the column is marked by a wall, but Karel cannot assume that columns are
always five units high, or even that all columns are the same height.

• Some of the corners in the column may already contain beepers representing stones
that are still in place. Your program should not put a second beeper on these corners.

Problem 3
In this exercise, your job is to get Karel to create a checkerboard pattern of beepers inside
an empty rectangular world, as illustrated in the following before-and-after diagram:

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Before

1 2 3 4 5 6 7 8

After

This problem has a nice decomposition structure along with some interesting algorithmic
issues. As you think about how you will solve the problem, you should make sure that
your solution works with checkerboards that are different in size from the standard 8x8
checkerboard shown in the example. Odd-sized checkerboards are tricky, and you should
make sure that your program generates the following pattern in a 5x3 world:

1

2

3

1 2 3 4 5

Another special case you need to consider is that of a world which is only one column
wide or one row high. The starter folder contains several sample worlds that test these
special cases, and you should make sure that your program works for each of them.

 – 6 –

Problem 4
As an exercise in solving algorithmic problems, program Karel to place a single beeper at
the center of 1st Street. For example, if Karel starts in the world

1 2 3 4 5

1

2

3

4

5

it should end with Karel standing on a beeper in the following position:

1 2 3 4 5

1

2

3

4

5

Note that the final configuration of the world should have only a single beeper at the
midpoint of 1st Street. Along the way, Karel is allowed to place additional beepers
wherever it wants to, but must pick them all up again before it finishes.

In solving this problem, you may count on the following facts about the world:

• Karel starts at 1st Avenue and 1st Street, facing east, with an infinite number of

beepers in its bag.
• The initial state of the world includes no interior walls or beepers.
• The world need not be square, but you may assume that it is at least as tall as it is wide.

Your program, moreover, can assume the following simplifications:

• If the width of the world is odd, Karel must put the beeper in the center square. If the

width is even, Karel may drop the beeper on either of the two center squares.
• It does not matter which direction Karel is facing at the end of the run.

There are many different algorithms you can use to solve this problem. The interesting
part of this assignment is to come up with a strategy that works.

