LA RICORSIONE

- Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa
- La ricorsione consiste nella possibilità di *definire una funzione in termini di se stessa.*
- È basata sul *principio di induzione* matematica:
 - se una proprietà P vale per n=n₀
 CASO BASE
 - e si può provare che, assumendola valida per n, allora vale per n+1

allora P vale per ogni n≥n₀

LA RICORSIONE

- Operativamente, risolvere un problema con un approccio ricorsivo comporta
 - di identificare un "caso base" la cui soluzione sia nota
 - di riuscire a esprimere la soluzione al caso generico n in termini dello stesso problema in uno o più casi più semplici (n-1, n-2, etc).

Esempio: il fattoriale di un numero

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

```
int fact(int n) {
    if (n<=0) return 1;
    else return n*fact(n-1);
}
main() {
    int fz,f6,z = 5;
    fz = fact(z-2);
}</pre>
```

Servitore & Cliente:

```
int fact(int n) {
    if (n<=0) return 1;
    else return n*fact(n-1);
}

main() {
    int fz,f6,z = 5;
    fz = fact(z-2);
}

int fz = fact(z-2);
}</pre>
Si valuta l'espressione che
costituisce il parametro attuale
(nell'environment del main) e si
trasmette alla funzione fatt una
copia del valore così ottenuto (3).
}
```

LA RICORSIONE: ESEMPIO

Servitore & Cliente:

```
int fact(int n) {
   if (n<=0) return 1;
   else return n*fact(n-1);
}

main() {
   int fz,f6,z = 5;
   fz = fact(z-2);
}

La funzione fact lega il parametro n
   a 3. Essendo 3 positivo si passa al
   ramo else. Per calcolare il risultato
   della funzione e' necessario
   effettuare una nuova chiamata di
   funzione fact(2)</pre>
```

Servitore & Cliente:

```
int fact(int n) {
   if (n<=0) return 1;
   else return n*fact(n-1);

}

main() {
   int fz, f6, z = 5;
   fz = fact(z-2);
   }

fz = fact(z-2);
}

La funzione fact lega il parametro n
   a 3. Essendo 3 positivo si passa al
   ramo else. Per calcolare il risultato
   della funzione e' necessario
   effettuare una nuova chiamata di
   funzione. n-1 nell'environment di
   fact vale 2 quindi viene chiamata
   fact(2)</pre>
```

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

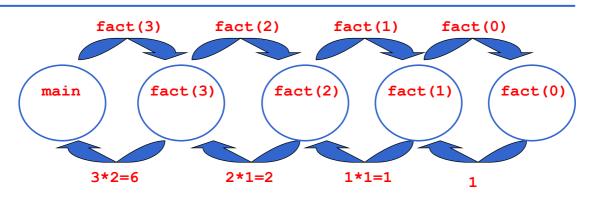
Servitore & Cliente:

LA RICORSIONE: ESEMPIO

Servitore & Cliente:

• Servitore & Cliente:

LA RICORSIONE: ESEMPIO


Servitore & Cliente:

• Servitore & Cliente:

```
int fact(int n) {
   if (n<=0) return 1;
   else return n*fact(n-1);
}

main() {
   int fz,f6,z = 5;
   int fz = fact(z-2);
   dove vale 3) ottenendo come
   risultato 6 e terminando.
   IL CONTROLLO PASSA AL MAIN
   CHE ASSEGNA A fz IL VALORE 6</pre>
```

LA RICORSIONE: ESEMPIO

main	fact(3)	fact(2)	fact(1)	fact(0)
Cliente di fact(3)	Cliente di fact(2) Servitore del main	Cliente di fact(1) Servitore di fact(3)	Cliente di fact(0) Servitore di fact(2)	Servitore di fact(1)

Problema: calcolare la somma dei primi N interi

Specifica:

Considera la somma 1+2+3+...+(N-1)+N come composta di due termini:

• (1+2+3+...+(N-1))

N Valore noto

Il primo termine non è altro che lo stesso problema in un caso più semplice: calcolare la somma dei primi N-1 interi

Esiste un caso banale ovvio: CASO BASE

• la somma fino a 1 vale 1.

LA RICORSIONE: ESEMPIO

Problema: calcolare la somma dei primi N interi

Algoritmo ricorsivo

Se N vale 1 allora la somma vale 1 altrimenti la somma vale N + il risultato della somma dei primi N-1 interi

Problema: calcolare la somma dei primi N interi

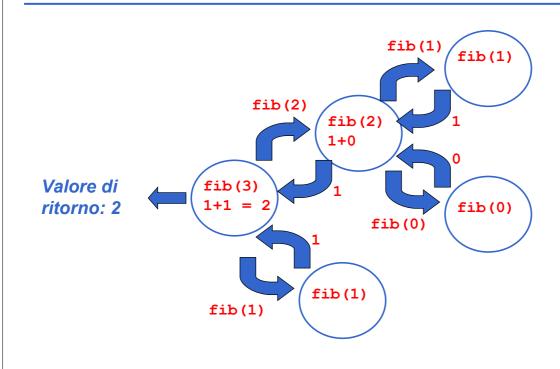
Codifica:

```
int sommaFinoA(int n) {
  if (n==1) return 1;
    else return sommaFinoA(n-1)+n;
}
```

LA RICORSIONE: ESEMPIO

Problema: calcolare l'N-esimo numero di Fibonacci

fib (n) =
$$\begin{cases} 0, & \text{se n=0} \\ 1, & \text{se n=1} \end{cases}$$
 fib(n-1) + fib(n-2), altrimenti


Problema: calcolare l'N-esimo numero di Fibonacci

Codifica:

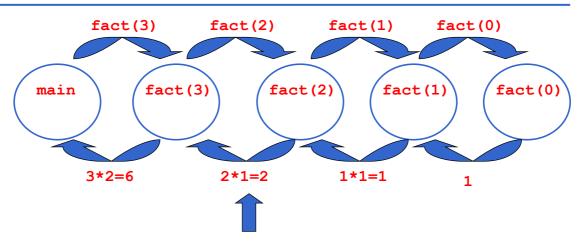
```
unsigned fibonacci(unsigned n) {
  if (n<2) return n;
  else return fibonacci(n-1)+fibonacci(n-2);
}</pre>
```

Ricorsione non lineare: ogni invocazione del servitore causa due nuove chiamate al servitore medesimo.

LA RICORSIONE: ESEMPIO

UNA RIFLESSIONE

 Negli esempi visti finora si inizia a sintetizzare il risultato solo dopo che si sono aperte tutte le chiamate, "a ritroso", mentre le chiamate si chiudono.


Le chiamate ricorsive decompongono via via il problema, <u>ma non calcolano nulla</u>

- Il risultato viene sintetizzato <u>a partire dalla fine</u>, perché prima occorre arrivare al caso "banale":
 - il caso "banale" fornisce il valore di partenza
 - poi si sintetizzano, "a ritroso", i successivi risultati parziali.

Processo computazionale effettivamente ricorsivo

LA RICORSIONE

PASSI:

- 1) fact (3) chiama fact (2) passandogli il controllo,
- 2) fact (2) calcola il fattoriale di 2 e termina restituendo 2
- 3) fact (3) riprende il controllo ed effettua la moltiplicazione 3*2
- 4) termina anche fact (3) e torna il controllo al main

FATTORIALE ITERATIVO

 Abbiamo visto il calcolo del fattoriale di un numero N tramite procedimento iterativo. Costruiamo ora una funzione che calcola il fattoriale in modo iterativo

FATTORIALE ITERATIVO

```
La variabile F accumula risultati intermedi: se n = 3 inizialmente

F=1 poi al primo ciclo for i=2 F assume il valore 2. Infine

all'ultimo ciclo for i=3 F assume il valore 6.

*Al primo passo F accumula il fattoriale di 1

*Al secondo passo F accumula il fattoriale di 2

*Al i-esimo passo F accumula il fattoriale di i
```

PROCESSO COMPUTAZIONALE ITERATIVO

- In questo caso il risultato viene sintetizzato "in avanti"
- Ogni processo computazionale che computi "in avanti", per accumulo, costituisce una <u>ITERAZIONE</u> ossia è un processo computazionale iterativo.
- La caratteristica fondamentale di un processo computazionale ITERATIVO è che <u>a ogni passo è</u> <u>disponibile un risultato parziale</u>
 - dopo k passi, si ha a disposizione il risultato parziale relativo al caso k
 - questo <u>non è vero nei processi computazionali ricorsivi</u>, in cui nulla è disponibile finché non si è giunti fino al caso elementare.

PROCESSO COMPUTAZIONALE ITERATIVO

- Un processo computazionale iterativo si può realizzare anche tramite funzioni ricorsive
- Si basa sulla disponibilità di una variabile, detta accumulatore, destinata a esprimere in ogni istante la soluzione corrente
- Si imposta identificando quell'operazione di modifica dell'accumulatore che lo porta a esprimere, dal valore relativo al passo k, il valore relativo al passo k+1.

FATTORIALE ITERATIVO

Definizione:

```
n! = 1 * 2 * 3 * ... * n

Detto v_k = 1 * 2 * 3 * ... * k:

1! = v_1 = 1

(k+1)! = v_{k+1} = (k+1)* v_k \quad per k \ge 1

n! = v_n \quad per k = n
```

FATTORIALE ITERATIVO

 Abbiamo visto il calcolo del fattoriale di un numero N tramite procedimento iterativo. Costruiamo ora una funzione che calcola il fattoriale in modo iterativo

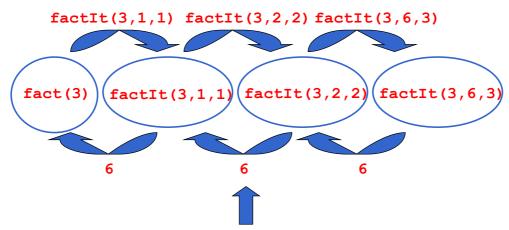
ITERAZIONE E RICORSIONE TAIL

- il corpo del ciclo rimane immutato
- il ciclo diventa un if con, in fondo, la chiamata tail-ricorsiva.

Naturalmente, può essere necessario *aggiungere nuovi parametri* nell'intestazione della funzione tailricorsiva, per "portare avanti" le variabili di stato.

FATTORIALE ITERATIVO

```
int fact(int n) {
    return factIt(n,11)
}


Contatore del passo

int factIt(int n, int F, int i) {
    if (i < n)
        {F = (i+1)*F;
        i = i+1;
        return factIt(n F i);
    }

return F; Accumulatore del risultato parziale</pre>
```

}

LA RICORSIONE

Al passo i-esimo viene calcolato il fattoriale di i. Quando i = n l'attivazione della funzione corrispondente calcola il fattoriale di n. NOTA: ciascuna funzione che effettua una chiamata ricorsiva si sospende, aspetta la terminazione del servitore e poi termina, cioè NON EFFETTUA ALTRE OPERAZIONI DOPO come succedeva nel caso del fattoriale ricorsivo vero e proprio che dopo la fine del servitore si doveva effettuare una moltiplicazione

RIASSUMENDO....

• La soluzione ricorsiva individuata per il fattoriale è sintatticamente ricorsiva ma dà luogo a un processo computazionale ITERATIVO

Ricorsione apparente detta RICORSIONE TAIL

- Il risultato viene sintetizzato <u>in avanti</u>
 - ogni passo decompone e calcola
 - e porta in avanti il nuovo risultato parziale quando le chiamate si chiudono non si fa altro che riportare indietro, fino al cliente, il risultato ottenuto.

RICORSIONE TAIL

- Una ricorsione che realizza un processo computazionale ITERATIVO è una ricorsione apparente
- la chiamata ricorsiva è sempre <u>l'ultima istruzione</u>
 - i calcoli sono fatti prima
 - la chiamata serve solo, <u>dopo averli fatti</u>, per proseguire la computazione
- questa forma di ricorsione si chiama <u>RICORSIONE</u>
 <u>TAIL</u> ("ricorsione in coda")