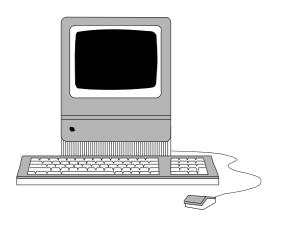
INFORMATICA

- Varie definizioni:
 - "Scienza degli elaboratori elettronici" (Computer Science)
 - "Scienza dell'informazione"
- Definizione proposta:
 - Scienza della rappresentazione e dell'elaborazione dell'informazione


1

L'informatica comprende:

- Metodi per la *rappresentazione* delle informazioni
- Metodi per la *rappresentazione* delle soluzioni
- · Linguaggi di programmazione
- Architettura dei calcolatori
- Sistemi operativi
- Reti di calcolatori
- · Sistemi e applicazioni distribuite
- Tecnologie Web
- Algoritmi
-

ELABORATORE ELETTRONICO ("COMPUTER")

Strumento per la rappresentazione e l'elaborazione delle informazioni

3

L'ELABORATORE

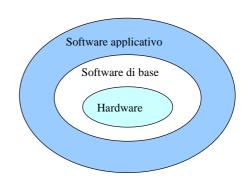
Componenti principali

- Unità centrale
- Video ("monitor")
- Tastiera e Mouse
- Lettore CD
- Dischi fissi ("hard disk")
- Dischetti ("floppy")

Componenti accessori

- Stampante
- Modem
- Scanner
- Tavolette grafiche

HARDWARE


. . .

SOFTWARE

Software: programmi che vengono eseguiti dal sistema

Distinzione fra:

- <u>Software di base</u> (es. Sistema Operativo)
- Software applicativo

5

IL SOFTWARE

Software:

insieme (complesso) di programmi

Organizzazione a strati, ciascuno con funzionalità di livello più alto rispetto a quelli sottostanti

Concetto di *MACCHINA VIRTUALE*

Programmi
Applicativi

Ambiente di programmazione

Sistema Software di Operativo Comunicazione

Hardware

IL FIRMWARE

Firmware:

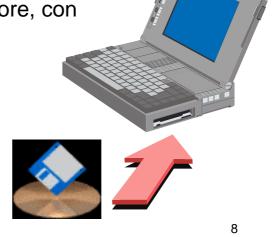
il confine fra hardware e software

È uno strato di *micro-programmi*, scritti dai costruttori, che agiscono direttamente al di sopra dello strato hardware

Sono memorizzati su una speciale *memoria* centrale permanente (ROM, EPROM, ...)

7

IL SISTEMA OPERATIVO


Strato di programmi che opera al di sopra di hardware e firmware e gestisce l'elaboratore

Solitamente, è venduto insieme all'elaboratore

Spesso si può scegliere tra diversi sistemi operativi per lo stesso elaboratore, con diverse caratteristiche

Esempi:

- Windows 95/98/XP
- Windows NT/2000
- Linux v.2.6
- MacOs X
- Symbian
- Palm OS
- ...

FUNZIONI DEL SISTEMA OPERATIVO

Le funzioni messe a disposizione dal SO dipendono dalla complessità del sistema di elaborazione:

- gestione delle risorse disponibili
- gestione della memoria centrale
- organizzazione e gestione della memoria di massa
- interpretazione ed esecuzione di comandi elementari
- gestione di un sistema multi-utente

Un utente "vede" l'elaboratore solo tramite il Sistema Operativo

→ il SO realizza una "macchina virtuale"

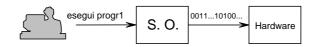
9

FUNZIONI DEL SISTEMA OPERATIVO

Qualsiasi operazione di accesso a risorse implicitamente richiesta da comando utente viene esplicitata dal SO

Conseguenza:

diversi SO possono realizzare diverse macchine virtuali sullo stesso elaboratore fisico


Attraverso il SO il livello di interazione fra utente ed elaboratore viene elevato:

senza SO: sequenze di bit


• con SO: comandi, programmi, dati

I sistemi operativi si sono evoluti nel corso degli ultimi anni (interfacce grafiche, Mac, Windows, ...)

ESEMPIO

e viceversa:

Utente: Sistema Operativo:

"esegui progr1" - input da tastiera
- ricerca codice di "progr1" su disco
- carica in memoria centrale codice e dati
<elaborazione>

Utente: Sistema Operativo:
"stampa 10" - output su video

11

PROGRAMMI APPLICATIVI

Risolvono problemi specifici degli utenti:

• word processor. elaborazione di testi (es. MSWord)

• fogli elettronici: gestione di tabelle, calcoli e

grafici (es. MSExcel)

• database: gestione di archivi (es. MSAccess)

• suite (integrati): collezione di applicativi capaci

di funzionare in modo integrato

come un'applicazione unica (es. Open Office)

- Sono scritti in linguaggi di programmazione di alto livello
- Risentono in misura ridotta delle caratteristiche della architettura dell'ambiente sottostante (portabilità)

AMBIENTI DI PROGRAMMAZIONE

È l'insieme dei programmi che consentono la scrittura, la verifica e l'esecuzione di nuovi programmi (*fasi di sviluppo*)

Sviluppo di un programma

- Affinché un programma scritto in un qualsiasi linguaggio di programmazione sia comprensibile (e quindi eseguibile) da un calcolatore, occorre tradurlo dal linguaggio originario al linguaggio della macchina
- Questa operazione viene normalmente svolta da speciali programmi, detti *traduttori*

13

L'ELABORATORE ELETTRONICO

- Il calcolatore elettronico è uno strumento in grado di eseguire insiemi di azioni ("mosse") elementari
- le azioni vengono <u>eseguite</u> su oggetti (*dati*) per <u>produrre</u> altri oggetti (*risultati*)
- l'esecuzione di azioni viene richiesta all'elaboratore attraverso frasi scritte in un qualche linguaggio (istruzioni)

PROGRAMMAZIONE

L'attività con cui si predispone l'elaboratore a **eseguire** un *particolare insieme di azioni* su *particolari dati*, allo scopo di *risolvere un problema*

15

ALCUNE DOMANDE FONDAMENTALI

- Quali istruzioni esegue un elaboratore?
- Quali problemi può risolvere un elaboratore?
- Esistono problemi che un elaboratore non può risolvere?
- Che ruolo ha il linguaggio di programmazione?

PROBLEMI DA RISOLVERE

I problemi che siamo interessati a risolvere con l'elaboratore sono di *natura molto varia*:

- Dati due numeri trovare il *maggiore*
- Dato un elenco di nomi e relativi numeri di telefono *trovare* il numero di telefono di una determinata persona
- Dati a e b, *risolvere l'equazione* ax+b=0
- Stabilire se una parola viene *alfabeticamente* prima di un'altra
- Somma di due numeri interi
- Scrivere tutti gli n per cui l'equazione: Xⁿ + Yⁿ = Zⁿ ha soluzioni intere (*problema di Fermat*)
- Ordinare una lista di elementi
- Calcolare il *massimo comune divisore* fra due numeri dati
- Calcolare il massimo in un insieme

17

RISOLUZIONE DI PROBLEMI

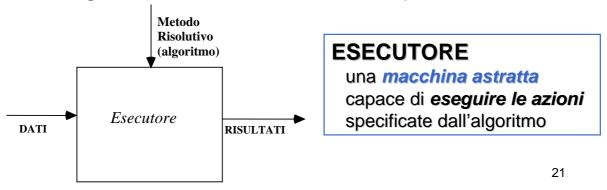
- La descrizione del problema non fornisce (in generale) un metodo per risolverlo
 - Affinché un problema sia risolvibile è necessario che la sua definizione sia chiara e completa
- Non tutti i problemi sono risolvibili attraverso l'uso del calcolatore. Esistono classi di problemi per le quali la soluzione automatica non è proponibile. Ad esempio:
 - se il problema presenta infinite soluzioni
 - per alcuni dei problemi non è stato trovato un metodo risolutivo
 - per alcuni problemi è stato dimostrato che **non esiste** un metodo risolutivo automatizzabile

RISOLUZIONE DI PROBLEMI

- Noi ci concentreremo sui problemi che, ragionevolmente, ammettono un metodo risolutivo problemi che, ragionevolmente, ammettono un metodo risolutivo problemi che, ragionevolmente,
- Uno degli obiettivi del corso è presentare le tecnologie e le metodologie di programmazione
 - Tecnologie: strumenti per lo sviluppo di programmi
 - Metodologie: metodi per l'utilizzo corretto ed efficace delle tecnologie di programmazione

19

RISOLUZIONE DI PROBLEMI


La risoluzione di un problema è il processo che dato un problema e individuato un opportuno metodo risolutivo, trasforma i dati iniziali nei corrispondenti risultati finali

Affinché la risoluzione di un problema possa essere realizzata attraverso l'uso del calcolatore, tale processo deve poter essere definito come sequenza di azioni elementari

ALGORITMO

Un algoritmo è una sequenza **finita** di mosse che risolve *in un tempo finito* una *classe* di problemi

L'esecuzione delle azioni *nell'ordine specificato* dall'algoritmo consente di ottenere, a partire dai dati di ingresso, i risultati che risolvono il problema

ALGORITMI: PROPRIETÀ

- Eseguibilità: ogni azione deve essere eseguibile dall'esecutore in un tempo finito
- Non-ambiguità: ogni azione deve essere univocamente interpretabile dall'esecutore
- Finitezza: il numero totale di azioni da eseguire, per ogni insieme di dati di ingresso, deve essere finito

ALGORITMI: PROPRIETÀ (2)

Quindi, l'algoritmo deve:

- essere applicabile a qualsiasi insieme di dati di ingresso appartenenti al dominio di definizione dell'algoritmo
- essere costituito da operazioni appartenenti ad un determinato insieme di operazioni fondamentali
- essere costituito da regole non ambigue, cioè interpretabili in modo univoco qualunque sia l'esecutore (persona o "macchina") che le legge

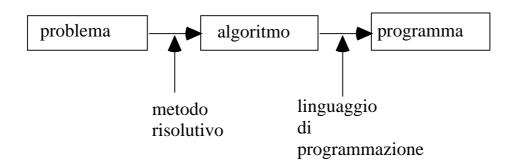
23

ALGORITMI E PROGRAMMI

- Ogni elaboratore è una macchina in grado di eseguire azioni elementari su oggetti detti DATI
- L'esecuzione delle azioni è richiesta all'elaboratore tramite comandi elementari chiamati ISTRUZIONI espresse attraverso un opportuno formalismo: il LINGUAGGIO di PROGRAMMAZIONE
- La formulazione testuale di un algoritmo in un linguaggio comprensibile a un elaboratore è detta PROGRAMMA

PROGRAMMA

Un programma è un testo scritto in accordo alla sintassi e alla semantica di un linguaggio di programmazione


Un *programma* è la **formulazione testuale**, in un certo linguaggio di programmazione, di un **algoritmo** che risolve un dato *problema*

25

ALGORITMO & PROGRAMMA

Passi per la risoluzione di un problema:

- individuazione di un procedimento risolutivo
- scomposizione del procedimento in un insieme ordinato di azioni ALGORITMO
- rappresentazione dei dati e dell'algoritmo attraverso un formalismo comprensibile dal calcolatore LINGUAGGIO DI PROGRAMMAZIONE

26

UN ESEMPIO DI PROGRAMMA (in linguaggio C)

```
main() {
  int A, B;
  printf("Immettere due numeri: ");
  scanf("%d %d", &A, &B);
  printf("Somma: %d\n", A+B);
}
```

27

ALGORITMI: ESEMPI

Soluzione dell'equazione ax+b=0

- leggi i valori di a e b
- calcola -b
- dividi quello che hai ottenuto per a e chiama x il risultato
- stampa x

Calcolo del massimo di un insieme

- Scegli un elemento come massimo provvisorio max
- Per ogni elemento i dell'insieme: se i>max eleggi i come nuovo massimo provvisorio max
- Il risultato è max

NOTA: si utilizzano **VARIABILI**, ossia nomi simbolici usati nell'algoritmo per denotare dati

ALGORITMI: ESEMPI

Stabilire se una parola P viene alfabeticamente prima di una parola Q

- leggi P,Q
- ripeti quanto segue:
 - se prima lettera di P < prima lettera Q
 - allora scrivi vero
 - altrimenti se prima lettera P > Q
 - allora scrivi falso
 - altrimenti (le lettere sono =)
 - togli da P e Q la prima lettera
- fino a quando hai trovato le prime lettere diverse
- Nota: funziona solo con P e Q di uguale lunghezza e con parole diverse
- Esercizio proposto: rilassare tali condizioni

29

ALGORITMI: ESEMPI

Somma degli elementi dispari di un insieme

Detto INS l'insieme di elementi considero un elemento X di INS alla volta senza ripetizioni. Se X è dispari, sommo X a un valore S inizialmente posto uguale a 0. Se X è pari non compio alcuna azione

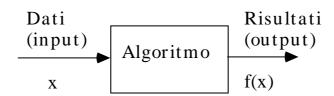
Somma di due numeri X e Y

Incrementare il valore di Z, inizialmente posto uguale a X per Y volte

- poni Z = X
- poni U = 0
- finché U è diverso da Y
 - incrementa Z (Z=Z+1)
 - incrementa U (U=U+1)
- Il risultato è Z

ALGORITMI EQUIVALENTI

Due algoritmi si dicono equivalenti quando:


- hanno lo stesso dominio di ingresso
- hanno lo stesso dominio di uscita
- in corrispondenza degli stessi valori del dominio di ingresso producono gli stessi valori nel dominio di uscita

31

ALGORITMI EQUIVALENTI (2)

Due algoritmi equivalenti

- forniscono lo stesso risultato
- ma possono avere diversa efficienza
- e possono essere profondamente diversi!

ALGORITMI EQUIVALENTI (3)

ESEMPIO: calcolo del M.C.D. fra due interi M, N

- Algoritmo 1
 - Calcola l'insieme A dei divisori di M
 - Calcola l'insieme B dei divisori di N
 - Calcola l'insieme C dei divisori comuni = A ∩ B
 - Il risultato è il massimo dell'insieme C
- Algoritmo 2 (di Euclide)

$$\begin{array}{c} \textbf{MCD (M,N) =} & \begin{array}{c} \textbf{M (oppure N)} & \text{se M=N} \\ \textbf{MCD (M-N, N)} & \text{se M>N} \\ \textbf{MCD (M, N-M)} & \text{se M$$

33

ALGORITMI EQUIVALENTI (4)

ESEMPIO: calcolo del M.C.D. fra due interi M, N Algoritmo 2 (di Euclide)

Finché M≠N:

- se M>N, sostituisci a M il valore M' = M-N
- altrimenti sostituisci a N il valore N' = N-M
- Il Massimo Comune Divisore è il valore finale ottenuto quando M e N diventano uguali

MCD (M,N) =	M (oppure N) MCD (M-N, N)	
Į.	(MCD (M, N-M)	se M <n< th=""></n<>