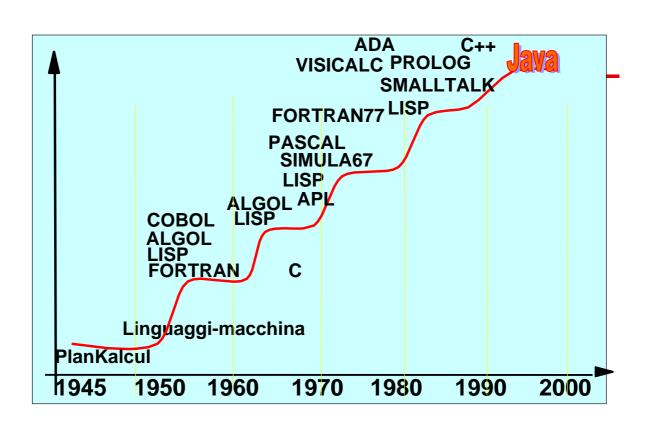
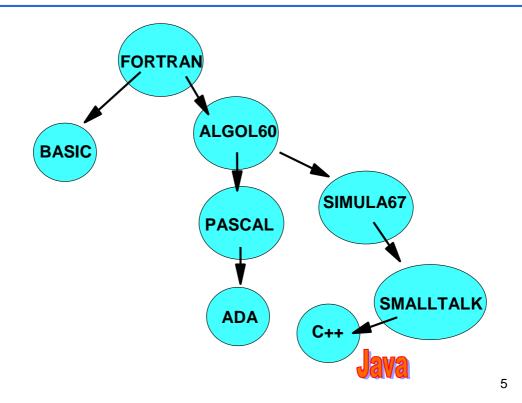


LINGUAGGI DI ALTO LIVELLO

Si basano su una macchina virtuale le cui "mosse" non sono quelle della macchina hardware



1



Evoluzione dei linguaggi

Evoluzione dei linguaggi

COS'È UN LINGUAGGIO?

"Un linguaggio è un **insieme di parole** e di **metodi di combinazione delle parole** usate e comprese da una comunità di persone"

- È una definizione poco precisa:
 - non evita le ambiguità dei linguaggi naturali
 - non si presta a descrivere processi computazionali meccanizzabili
 - non aiuta a stabilire proprietà

LA NOZIONE DI LINGUAGGIO

- Occorre una nozione di linguaggio più precisa
- Linguaggio come sistema matematico che consenta di risponde a domande come:
 - quali sono le frasi lecite?
 - si può stabilire se una frase appartiene al linguaggio?
 - come si stabilisce il significato di una frase?
 - quali elementi linguistici primitivi?

7

LINGUAGGIO & PROGRAMMA

- Dato un algoritmo, un programma è la sua descrizione in un particolare linguaggio di programmazione
- Un linguaggio di programmazione è una notazione formale che può essere usata per descrivere algoritmi. Due aspetti del linguaggio:
 - SINTASSI
 - SEMANTICA

SINTASSI & SEMANTICA

- Sintassi: l'insieme di regole formali per la scrittura di programmi in un linguaggio, che dettano le modalità per costruire frasi corrette nel linguaggio stesso
- Semantica: l'insieme dei significati da attribuire alle frasi (sintatticamente corrette) costruite nel linguaggio

NB: una frase può essere sintatticamente corretta e tuttavia non avere significato!

9

SINTASSI

Le regole sintattiche sono espresse attraverso *notazioni formali:*

- ◆ BNF (Backus-Naur Form)
- ◆ EBNF (Extended BNF)
- ♦ diagrammi sintattici

SINTASSI EBNF: ESEMPIO

Sintassi di un numero naturale

```
<naturale> ::=
    0 | <cifra-non-nulla>{<cifra>}

<cifra-non-nulla> ::=
    1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<cifra> ::=
    0 | <cifra-non-nulla>
```

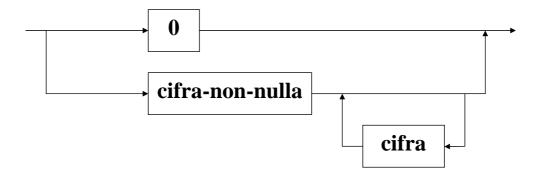
11

SINTASSI DI UN NUMERO NATURALE

```
<naturale> ::=
    0   | <cifra-non-nulla>{<cifra>}

Intuitivamente significa che un numero naturale si può riscrivere
come 0 oppure (|) come una cifra non nulla seguita da zero o più
({}) cifre

<cifra-non-nulla> ::=
    1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9


una cifra non nulla si può riscrivere come 1 oppure 2 oppure 3...

<cifra> ::= 0   | <cifra-non-nulla>

una cifra si può riscrivere come 0 oppure come una cifra non
nulla (definita precedentemente)
```

DIAGRAMMI SINTATTICI: ESEMPIO

Sintassi di un numero naturale

13

SEMANTICA

La semantica è esprimibile:

- ◆ a parole (poco precisa e ambigua)
- ♦ mediante azioni
 - \rightarrow semantica operazionale
- ♦ mediante funzioni matematiche
 - → semantica denotazionale
- ◆ mediante formule logiche
 - → semantica assiomatica

DEFINIZIONE DI LINGUAGGIO

- Un <u>linguaggio</u> è un insieme di frasi
- Una <u>frase</u> è una sequenza di simboli appartenenti a un certo alfabeto

Proprietà desiderabili:

- Un <u>linguaggio</u> deve essere effettivamente generabile
- Un <u>linguaggio di programmazione</u> deve essere decidibile

15

ALCUNE DEFINIZIONI

Alfabeto V (o vocabolario o lessico)

 È l'insieme dei simboli con cui si costruiscono le frasi

Universo linguistico V* di un alfabeto V

• È *l'insieme di tutte le frasi* (sequenze finite di lunghezza arbitraria) di elementi di V

Linguaggio L su un alfabeto V

• È un sottoinsieme di V*

ESEMPIO

17

ESEMPIO

LINGUAGGI E GRAMMATICHE

- Come specificare il sottoinsieme di V* che definisce il linguaggio?
- Specificando il modo formale e preciso la sintassi delle frasi del linguaggio

TRAMITE

una grammatica formale: una notazione matematica che consente di esprimere in modo rigoroso la sintassi di un linguaggio

19

GRAMMATICA FORMALE

Una quadrupla (VT, VN, P, S) dove:

- VT è un insieme finito di simboli terminali
- VN è un insieme finito di simboli non terminali
- P è un insieme finito di <u>produzioni</u>, ossia di regole di riscrittura
- S è un particolare simbolo non-terminale detto simbolo iniziale o scopo della grammatica

GRAMMATICA B.N.F.

Una *Grammatica B.N.F.* è una grammatica in cui le *produzioni* hanno la forma

X : := A

- X ∈ VN è un simbolo non terminale
- A è una sequenza di simboli ciascuno appartenente all'alfabeto V = VN ∪ VT
- Una Grammatica B.N.F. definisce quindi un linguaggio sull'alfabeto terminale VT mediante un meccanismo di derivazione (o riscrittura)

GRAMMATICA E LINGUAGGIO

Data una grammatica G, si dice perciò Linguaggio L_G generato da G

l'insieme delle frasi di V

- derivabili dal simbolo iniziale S
- applicando le produzioni P

Le frasi di un linguaggio di programmazione vengono dette *programmi* di tale linguaggio

DERIVAZIONE

Siano

- G una grammatica
- β, γ due stringhe, cioè due elementi dell'universo linguistico (VN∪VT)*

γ deriva direttamente da β (e si scrive $\beta \rightarrow \gamma$) se

- le stringhe si possono decomporre in

$$\beta = \eta A \delta$$

$$\gamma = \eta \alpha \delta$$

- ed esiste la produzione $A::=\alpha$

In generale, γ deriva da β se esiste una sequenza di N derivazioni *dirette* che da β possono produrre

$$\gamma \beta = \beta 0 \rightarrow \beta 1 \rightarrow ... \rightarrow \beta n = \gamma$$

23

FORMA B.N.F. COMPATTA

 In una grammatica BNF spesso esistono più regole con la stessa parte sinistra:

$$-X:=A_1$$

$$-X : = A_N$$

 Per comodità si stabilisce allora di poterle compattare in un'unica regola:

$$X ::= A_1 \mid A_2 \mid \ldots \mid A_N$$

dove il simbolo | indica l'alternativa

ESEMPIO COMPLESSIVO

25

ESEMPIO COMPLESSIVO

```
P = {
     <frase> ::= <soggetto> <verbo> <compl-ogg>
     <soggetto> ::= <articolo><nome>
          <articolo> ::= il
          <nome> ::= gatto | topo | sasso
          <verbo> ::= mangia | beve
          <compl-ogg> ::= <articolo> <nome>
}
```

ESEMPIO COMPLESSIVO

ESEMPIO: derivazione della frase

"il gatto mangia il topo"

(ammesso che tale frase sia derivabile, ossia faccia parte del linguaggio generato dalla nostra grammatica)

DERIVAZIONE "LEFT-MOST"

A partire dallo scopo della grammatica, si riscrive sempre *il simbolo non-terminale* più a sinistra

27

ESEMPIO COMPLESSIVO

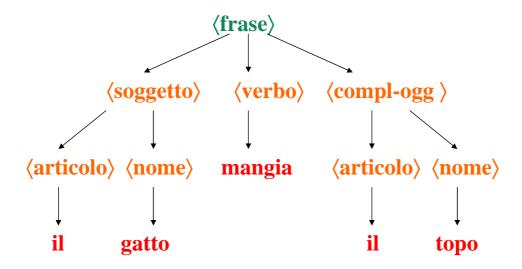
<frase>

- → <soggetto> <verbo> <compl-ogg>
- → <articolo> <nome> <verbo> <compl-ogg>
- → il <nome> <verbo> <compl-ogg>
- → il gatto <verbo> <compl-ogg>
- → il gatto mangia <compl-ogg>
- → il gatto mangia <articolo><nome>
- → il gatto mangia il <nome>
- → il gatto mangia il topo

ESEMPIO COMPLESSIVO

ALBERO SINTATTICO

un grafo che esprime il processo di derivazione di una frase usando una data grammatica


ESEMPIO: derivazione della frase

"il gatto mangia il topo"

(ammesso che tale frase sia derivabile, ossia faccia parte del linguaggio generato dalla nostra grammatica)

29

ESEMPIO COMPLESSIVO

EXTENDED B.N.F. (E.B.N.F.)

Una forma *estesa* della notazione B.N.F. che introduce alcune *notazioni compatte* per *alleggerire la scrittura* delle regole di produzione

Forma EBNF	BNF equivalente	significato
X ::= [a] B	X ::= B aB	a può comparire 0 o 1 volta
X ::= {a}n B	X ::= B aB a ⁿ B	a può comparire da 0 a n volte
X ::= {a} B	X ::= B aX	a può comparire 0 o più volte

NOTA: la produzione X ::= B | aX è ricorsiva (a destra)

31

EXTENDED B.N.F. - E.B.N.F.

Per raggruppare categorie sintattiche:

Forma EBNF	BNF equivalente	significato
X ::= (a b) D c	X ::= a D b D c	raggruppa cate- gorie sintattiche

- Ci sono programmi che possono creare automaticamente analizzatori sintattici (parser) per linguaggi espressi tramite EBNF
- XML e definito da una grammatica EBNF di circa 80 regole

ESEMPIO: I NUMERI NATURALI

ESEMPIO: I NUMERI INTERI

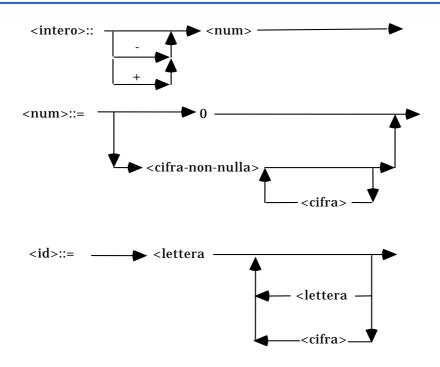
- Sintassi analoga alla precedente
- ma con la possibilità di un segno (+, -) davanti al numero naturale

Quindi:

- stesse regole di produzione più una per gestire il segno
- stesso alfabeto terminale più i due simboli + e -

33

ESEMPIO: I NUMERI INTERI

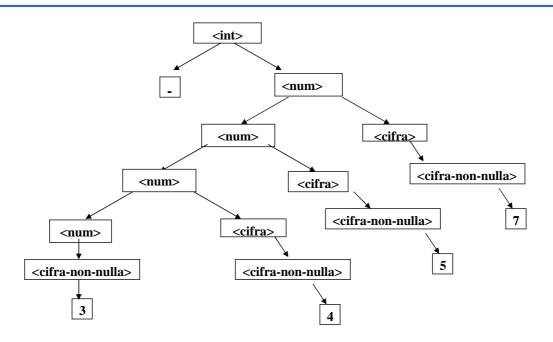

35

ESEMPIO: IDENTIFICATORI

```
G = \langle VT, VN, P, S \rangle
```

 Nell'uso pratico, quasi sempre si danno solo le regole di produzione, definendo VT, VN e S implicitamente

DIAGRAMMI SINTATTICI


37

ESEMPIO DI ALBERO SINTATTICO

- Albero sintattico del numero -3457 (grammatica EBNF dell'esempio 2)
- Attenzione

```
poiché X ::= {a} B equivale a X ::= B | aX, e X ::= C {a} equivale a X ::= C | Xa, la regola: <num> ::= <cifra-non-nulla> {<cifra>} equivale a: <num> ::= <cifra-non-nulla> | <num> <cifra>
```

ALBERO SINTATTICO DI -3457

39

ESERCIZIO Grammatiche 1

Data la grammatica **G** con scopo **S** e simboli terminali {a,c,0,1}

S := a F c

F ::= a S c | E

E ::= 0 | 1

si mostri (mediante derivazione left-most) che la stringa **aaa1ccc** appartiene alla grammatica

ESERCIZIO 1: Soluzione

$$S := a F c$$

$$F := a S c | E$$

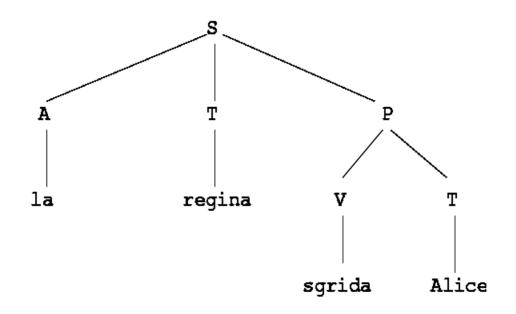
41

ESERCIZIO Grammatiche 2

Si consideri la grammatica G con scopo S e simboli terminali (il, la, Alice, regina, coniglio, sgrida, saluta, gioca)

S:=TP|ATP

P::= V | V T | V A T


T::= Alice | regina | coniglio

A::= iI | la

V::= sgrida | saluta | gioca

Si dica se la stringa la regina sgrida Alice è sintatticamente corretta rispetto a tale grammatica e se ne mostri l'albero sintattico

ESERCIZIO 2: Soluzione

43

ESERCIZIO Grammatiche 3

Espressioni algebriche

 $G = \langle VT, VN, P, S \rangle$, dove:

$$S = \langle E \rangle$$

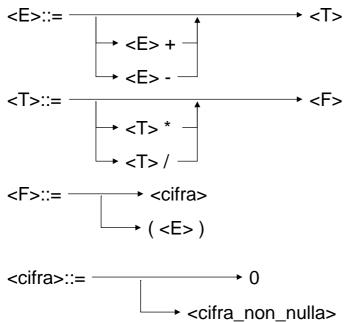
ESERCIZIO Grammatiche 3

Espressioni Algebriche

```
P = {
      <E> ::= <E> + <T> | <E> - <T> | <T>
      <T> ::= <T> * <F> | <T> / <F> | <F>
      <F> ::= <cifra> | (<E>)
      <cifra> ::= 0 | <cifra-non-nulla>
      <cifra-non-nulla> ::= 1|2|3|4|5|6|7|8|9
}
```

Disegnare il diagramma sintattico di tale grammatica.

Determinare poi se le seguenti frasi fanno parte del linguaggio generato da questa grammatica o no, e disegnarne l'albero di derivazione sintattica:


- 1. 5 + 3 * 7
- $2. \quad 3/0+4$

45

ESERCIZIO Grammatiche 3

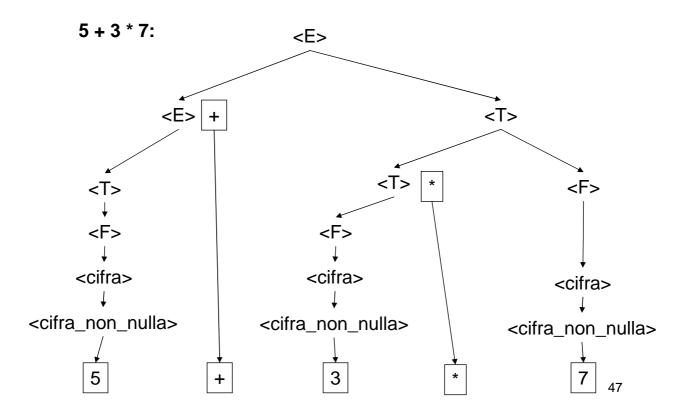
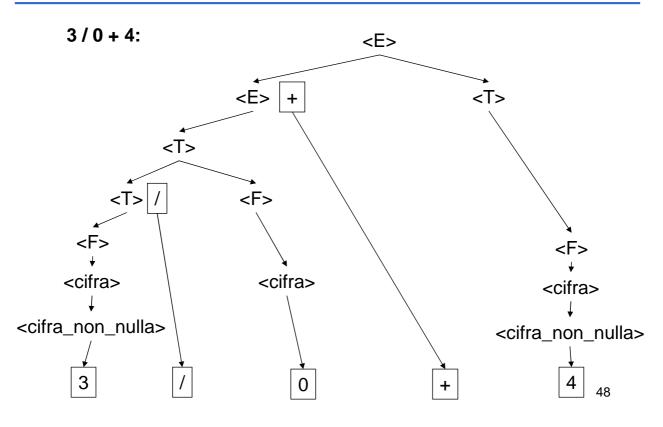

Soluzione

Diagramma sintattico:


ESERCIZIO Grammatiche 3

Soluzione

ESERCIZIO Grammatiche 3

Soluzione

