
Class of Computer Networks MAntonio CorradiLuca FoschiniAcademic year 2017/2018Openstack & more…University of BolognaDipartimento di Informatica –Scienza e Ingegneria (DISI) Engineering Bologna Campus
OpenStack 2

NIST STANDARD CLOUD National Institute of Standards and Technology www.nist.gov/

OpenStack 3
Known Deployment Models

OpenStack 4 First step: Server virtualizationHOST 1 HOST 2 HOST 3 HOST 4, ETC.VMs Hypervisor:Turns 1 server into many “virtual machines” (instances or VMs)(VMWare ESX, Citrix XEN Server, KVM, Etc.)
 Hypervisors provide an abstraction layer between hardware and software
 Hardware abstraction
 Better resource utilization for every single serverCloud: resource virtualization

OpenStack 5 Second step: network and storage virtualizationCompute Pool Network Pool Storage PoolVirtualized Servers Virtualized Networks Virtualized Storage
 Resource pool available for several applications
 Flexibility and efficiencyCloud: resource virtualization

OpenStack 6APPSCreates Pools of Resources Automates The NetworkUSERS ADMINSCLOUD OPERATING SYSTEMCLOUD OPERATING SYSTEMConnects to apps via APIsHigh-level Architectureof the OpenStack Cloud IaaS

OpenStack 7OpenStack– Founded by NASA and Rackspace in 2010– Currently supported by more than 300 companies and 13866 people– Latest release: Juno, October 2014• Six-month time-based release cycle (aligned with Ubuntu release cycle)• Open-source vs Amazon, Microsoft, Vmware…• Constantly growing projectOpenStack history in a nutshell
OpenStack 8

Main Function in a Cloud

OpenStack 9
Main Function in a Cloud

cinder-volume neutron ceilometer
OpenStack 10

OpenStack main services

OpenStack 11
OpenStack main services

OpenStack 12
OpenStack main services

OpenStack 13
OpenStack services CeilometerHeat

OpenStack 14
OpenStack main componentsCeilometer Heat

OpenStack 15
OpenStack main components

OpenStack 16
OpenStack main worflow

OpenStack 17• Dashboard: Web application used by administrators and users to manage cloud resources• Identity: provides unified authentication across the whole system• Object Storage: redundant and highly scalable object storage platform• Image Service: component to save, recover, discover, register and deliver VM images• Compute: component to provision and manage large sets of VMs• Networking: component to manage networks in a pluggable, scalable, and API-driven fashion • Identity Service• Image ServiceOpenStack services (detailed)
OpenStack 18All OpenStack services share the same internal architecture organization that follow a few clear design and implementation guidelines:• Scalability and elasticity: gained mainly through horizontal scalability• Reliability: minimal dependencies between different services and replication of core components• Shared nothing between different services: each service stores all needed information internally• Loosely coupled asynchronous interactions: internally, completely decoupled pub/sub communications between core components/services are preferred, even to realize high-level synch RPC-like operationsOpenStack Services: Design Guidelines

OpenStack 19Deriving from the guidelines, every service consists of the following core components:• pub/sub messaging service: Advanced Message Queuing Protocol (AMQP) standard and RabbitMQ default implementation • one/more internal core components: realizing the service application logic• an API component: acting as a service front-end to export service functionalities via interoperable RESTful APIs• a local database component: storing internal service state adopting existing solutions, and making different technological choices depending on service requirements (ranging from MySQL to highly scalable MongoDB, SQLAlchemy, and HBase)OpenStack Services: Main Components
OpenStack 20• Provides on-demand virtual servers• Provides and manages large networks of virtual machines (functionality moving to Neutron)• Modular architecture designed to horizontally scale on standard hardware• Supports several hypervisor (i.e. KVM, XenServer, etc.) • Developers can access computational resources through APIs• Administrators and users can access computational resources through Web interfaces or CLINova - Compute

OpenStack 21
Nova – Components(a good OpenStack service example)

OpenStack 22• nova-API: RESTful API web service used to send commands to interact with OpenStack. It is also possible to use CLI clients to make OpenStack API calls• nova-compute: hosts and manages VM instances by communicating with the underlying hypervisor• nova-scheduler: coordinates all services and determines placement of new requested resources• nova database: stores build-time and run-time states of Cloud infrastructure • queue: handles interactions between other Nova servicesBy default, it is implemented by RabbitMQ, but also Qpidcan be usedNova – Components (1)

OpenStack 23• nova-console, nova-novncproxy e nova-consoleauth: provides, through a proxy, user access to the consoles of virtual instances• nova-network: accepts requests coming from the queue and executes tasks to configure networks (i.e., changing IPtables rules, creating bridging interfaces, …These functionalities are now moved to Neutron service.• nova-volume: handles persistent volumes creation and their de/attachment from/to virtual instancesThese functionalities are now moved to Cinder services Nova – Components (2)
OpenStack 24

Nova General interaction scheme

OpenStack 25Swift allows to store and recover files • Provides a completely distributed storage platform that can be accessed by APIs and integrated inside applications or used to store and backup data• It is not a traditional filesystem, but rather a distributed storage system for static data such as virtual machine images, photo storage, email storage, backups and archives• It doesn’t have a central point of control, thus providing properties like scalability, redundancy, and durabilitySwift - Storage
OpenStack 26• Proxy Server: handles incoming requests such as files to upload, modifications to metadata or container creation • Accounts server: manages accounts defined through the object storage service• Container server: maps containers inside the object storage service• Object server: manages files that are stored on various storage nodes Swift - Components

OpenStack 27Cinder handles storage devices that can be attached to VM instances• Handles the creation, attachment and detachmentof volumes to/from instances • Supports iSCSI, NFS, FC, RBD, GlusterFSprotocols• Supports several storage platforms like Ceph, NetApp, Nexenta, SolidFire, and Zadara• Allows to create snapshots to backup data stored in volumes. Snapshots can be restored or used to create a new volumeCinder – Block Storage
OpenStack 28• cinder-API: accepts user requests and redirects them to cinder-volume in order to be processed• cinder-volume: handles requests by reading/writing from/to cinder database, in order to maintain the system in a consistent stateInteracts with the other components through a message queue • cinder-scheduler: selects the best storage device where to create the volume• cinder database: maintains volumes’ stateCinder – Block Storage

OpenStack 29Glance handles the discovery, registration, and delivery of disk and virtual server images• Allows to store images on different storage systems, i.e., Swift• Supports several disk formats (i.e. Raw, qcow2, VMDK, etc.)Glance – Image Service
OpenStack 30• glance-API: handles API requests to discover, store and deliver images• glance-registry: stores, processes and retrieves image metadata (dimension, format,...).• glance database: database containing image metadata • Glance uses an external repository to store images Currently supported repositories include filesystems, Swift, Amazon S3, and HTTPGlance – Components

OpenStack 31
Nova – Launching a VM

OpenStack 32Provides a modular web-based user interface to accessother OpenStack servicesThrough the dashboard it is possible to perform actionslike launch an instance, to assign IP addresses, to uploadVM images, to define access and security policies, etc.Horizon - Dashboard

OpenStack 33• Keystone is a framework for the authentication and authorization for all the other OpenStack services• Creates users and groups (also called tenants), adds/removes users to/from groups, and defines permissions for cloud resources using role-based access control features. Permissions include the possibility to launch or terminate instances• Provides 4 primary services:
– Identity: user information authentication
– Token: after logged-in, replaces password authentication
– Catalog: maintains an endpoint registry used to discovery OpenStack services endpoints
– Policy: provides a rule-based authorization engineKeystone – Authentication and Authorization

OpenStack 34Keystone

OpenStack 35• Pluggable, scalable e API-driven support to manage networks and IP addresses.• NaaS “Network as a Service”Users can create their own networks and plug virtual network interface into them• Multitenancy: isolation, abstraction and full control over virtual networks• Technology-agnostic: APIs specify service, while vendor provides his own implementation. Extensions for vendor-specific features• Loose coupling: standalone service, not exclusive to OpenStack Neutron Networking
OpenStack 36• neutron-server: accept request sent through APIs e and forwards them to the specific plugin• Plugins and Agents: executes real actions, such as dis/connecting ports, creating networks and subnets, creating routers, etc.• message queue: delivers messages between quantum-server and various agents• neutron database: maintains network state for some pluginsNeutron – Components

OpenStack 37• dhcp agent: provides DHCP functionalities to virtual networks• plugin agent: runs on each hypervisor to perform local vSwitch configuration. The agent that runs, depends on the used plug-in (e.g. OpenVSwitch, Cisco, Brocade, etc.).• L3 agent: provides L3/NAT forwarding to provide external network access for VMsNeutron – Agents
OpenStack 38Neutron decouplesthe logical view of the network from the physical viewIt provides APIs to define, manage and connect virtual networks Neutron logical view vs. physical view

OpenStack 39
Neutron - logical view• Network: represents an isolated virtual Layer-2 domains; a network can also be regarded as a logical switch;• Subnet: represents IPv4 or IPv6 address blocks that can be assigned to VMs or router on a given network;• Ports: represent logical switch ports on a given network that can be attached to the interfaces of VMs. A logical port also defines the MAC address and the IP addresses to be assigned to the interfaces plugged into them. When IP addresses are associated to a port, this also implies the port is associated with a subnet, as the IP address was taken from the allocation pool for a specific subnet.

OpenStack 40
Neutron - tenant networksTenant networks can be created by users to provide connectivity within tenants. Each tenant network is fully isolated and not shared with other tenants. Neutron supports different types of tenant networks:• Flat: no tenant support. Every instance resides on the same network, which can also be shared with the hosts. No VLAN tagging or other network segregation takes place;• Local: instances reside on the local compute host and are effectively isolated from any external networks; • VLAN: each tenant network uses VLAN IDs (802.1Q tagged) corresponding to VLANs present in the physical network. This allows instances to communicate with each other across the environment, other than with dedicated servers, firewalls, load balancers and other networking infrastructure on the same layer 2 VLAN. Switch must support 802.1Q standard in order to provide connectivity between two VMs on different hosts;• VXLAN and GRE: tenant networks use network overlays to support private communication between instances. A Networking router is required to enable traffic to traverse outside of the tenant network. A router is also required to connect directly-connected tenant networks with external networks, including the Internet.

OpenStack 41
Neutron – VLAN tenant network

OpenStack 42
Putting it all together…

OpenStack 43• Funded by VMware and EMC Corporation• Open Source PaaS• Indipendent from underlying IaaS• Supports the development of applications written in Ruby, Java and Javascript, and many more…Cloud Foundry PaaS in a Nutshell
OpenStack 44Cloud Foundry (CF) is an open PaaS that enables fast definition, development , and scalable deployment of new applications, offering also a wide support for different:• Languages/frameworks  to develop new applications (apps)– Languages: Ruby, Sinatra, Rack, Java, Scala, Groovy, Javascript– Frameworks: Rails, Spring, Grails, Play, Lift, Express• External, bind-able and ready-to-use services– Redis, mySQL, postgreSQL, rabbitMQ, mongoDB• Multiple Clouds and Infrastructure as a Service (IaaS) systems– OpenStack, WebSphere, Amazon Elastic Cloud Computing (EC2) Web Services, …  Through the BOSH deployerCloud Foundry PaaS

OpenStack 45Cloud Foundry adopts an internal architecture organization that follow a few clear design and implementation guidelines:• Scalability and elasticity: gained mainly through horizontal scalability• Reliability: minimal dependencies between different components and replication of core components• Shared nothing between different services: each component is self-aware (stores all needed information internally)• Loosely coupled asynchronous interactions: completely decoupled pub/sub communications between core components/services are preferredCloud Foundry ‒ Design Guidelines
ROUTINGAUTHENTICATIONAPP LIFECYCLEAPP STORAGE& EXECUTIONSERVICESMESSAGINGMETRICS& LOGGINGRouterOAuth2 Server (UAA) Login ServerHealth ManagerCloud ControllerDroplet Execution Agent Blob StoreWardenService BrokersMessage Bus (NATS)App Log AggregatorMetrics CollectorCloud Foundry ‒ Layered View

OpenStack 47• Router: forwards in-/out-bound traffic from/to the external Internet, typically toward the Cloud Controller or an application instance• Cloud Controller: controls service/application lifecycle and stores all data about services applications, services, service instances, users, etc.• Health Manager: monitors application status (running, stopped, crashed)• Droplet Execution Agent (DEA): controls application instances and (periodically) publishes their current application status• Warden: isolated and self-contained container offering APIs to manage application execution• Service Broker: services front-end API controller• NATS: publish-subscribe internal messaging serviceMain CF Components
OpenStack 48Router for applications and endpointsBrain of the architecture,REST APIs and orchestratorExecution Agent, one for each VMCentral communication point Current DesignDistributed ArchitectureIntegration of external services(now calledService Broker)

OpenStack 49Digging into the code: DEA/Stager agent starts the app, not Cloud Controller.Cloud Controller creates an AppStagerTask, that is in charge to find an available Stager(DEA-Agent)The stager is found with “top_5_stagers_for(memory, stack)”.When the Stager is found, it handles the message, it starts the staging process and at the end invokes “notify_completion(message, task)” -> “bootstrap.start_app(message.data["start_message"])” ->instance = create_instance(data); instance.start
Current DesignManagement of Apps lifecycle

OpenStack 50CFCommand Line Cloud Controller Blobstore DEAstart Staged?choose DEAstart droplet fetch dropletreport statusreport app status Current DesignStarting an App

OpenStack 51A stack is a prebuilt file system, including an operating system, that supports running applications with certain characteristics. Any DEA can support exactly one stack.To stage or run an app, a DEA running the requested stack must be available (and have free memory).For instance, the lucid64 stack is supported out of the box as an Ubuntu 10.04 64-bit system containing a number of common programs and libraries.During a Staging or Start process, the Cloud Controller checks always the stack requested by the app and chooses the DEA accordingly.Apps and stacks
OpenStack 52

Current DesignManagement of Service lifecycle1. Provision: to create a new Service instance2. Bind: credentials and configuration information to access the Service instance saved in the App environment3. Unbind: to destroy credentials/configurations from the App environment4. Unprovision: to destroy the Service instancePlus Catalog to advertise Service offerings and service plans.

OpenStack 53CF only requires that a Service implements the broker API in order to be available to CF end users, many deployment models are possible. The following are examples of valid deployment models.• Entire Service packaged and deployed alongside CF• Broker packaged and deployed alongside CF, rest of the service deployed and maintained by other means• Broker (and optionally service) pushed as an application to CF user space• Entire Service, including Broker, deployed and maintained outside of CF by other meansServices Implementation & Deployment
OpenStack 54A Stemcell is a VM template with an embedded BOSH Agent.Stemcells are uploaded using the BOSH CLI and used by the BOSH Director when creating VMs through the Cloud Provider Interface (CPI). When the Director creates a VM through the CPI, it will pass along configurations for networking and storage, for Message Bus and the Blobstore.DirectorDB BlobstoreWorker Message Bus Health MonitorIaaSInterfaceManages VMsContains meta dataabout each VM Contains stemcells,source for packagesand binariesCreates, Destroys VMs JOBVMAgentOperating CF via Bosh Outer SHell (BOSH)

OpenStack 55DirectorDB BlobstoreWorker Message Bus Health MonitorIaaSInterfaceManages VMsContains meta dataabout each VM Contains stemcells,source for packagesand binariesCreates, Destroys VMsEach VM is a stemcell clonewith an Agent installedAgents get instructions Agents grabpackagesto installBOSH with different CPIs
OpenStack 56

Micro BOSH

OpenStack 57Scarce support for runtime monitoring!!!Monitoring of CF Services
OpenStack 58• Service Broker (Gateway): exposes four main dialogue APIs (un/provisioning, un/binding) interacting with Cloud Controller, and handling commands to the Service Nodes• Service Node: real business logic component (instantiates new service processes, binds them, etc.) that periodically publishes toward NATs service heartbeatsMonitoring of CF Services

OpenStack 59• Monitor process: subscribes to NATS and handles incoming heartbeats• Check status process: periodically controls if the service is still functioningCF Services: Availability Monitoring
OpenStack 60Performance monitoring exploits CLI commands to periodically check for activation time by using a mockup service that is dynamically created, bound, and destroyed CF Services: Performance Monitoring

OpenStack 61
CF Services: Performance Monitoring

OpenStack 62All-in-One single host environment: all Cloud Foundry components and services run on the same Virtual Machine (VM) managed via the OpenStack IaaSSome Experimental Results: Single Host

OpenStack 63Depend on the kind and version of service (different No/SQL data bases, messaging, and analytics services) 63
Experimental Results: Provisioning Time

OpenStack 64Almost equal for all services and versions: the binding process consists in a credential exchange between the service and the application using itExperimental Results: Binding Time

OpenStack 65Cloud Foundry distributed deployment via BOSH deployerover OpenStack IaaSHeavy-load Experimental Results:Distributed Deployment
OpenStack 66Sequential creation of 200 service instances by monitoring creation time and binding times1500170019002100230025002700 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175 181 187 193 199 averages Creation timesaverages Binding times0123 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196 fails in creationService instance

Exp. Results: Accumulation Stress Test

OpenStack 67Concurrent creation of service instances with different frequencies, up to 140 service instances MinuteMinuteMinuteMinute
Exp. Results: High-Req-Freq Stress Test

OpenStack 68Incoming requests arrival frequency follows an exponential increase Exp. Results: Exponential Increase

Cloud Foundry v2 ‒ Layered View
OpenStack 70• Router: forwards in-/out-bound traffic from/to the external Internet, typically toward the Cloud Controller or an application instance• Cloud Controller and Diego Brain: The Cloud Controller directs the deployment of applications and communicates with Diego Brain to coordinate Diego Cells that stage and run applications• Nsync, Bulletin Board System and Cell Reps: work together along a chain to keep apps running and control status• Diego Cell: Execute application start and stop, manages the VM's containers and reports app status/data to BBS • Consul: stores longer-lived control data and distributed locks to avoid duplicating actions• Service Broker: services front-end API controllerMain CF v2 Components

OpenStack 71 Motivations– Lack of standards in PaaS domain– Solutions lock-in
� Objectives– Interoperability and portability across different PaaS– Coordination activity

� formalization of use cases, concepts, guidelines, architectures, etc.
� identification and analysis of semantic interoperability problems– Standardization activity
� resolution of semantic interoperability problems–Supply a Reference Architecture implementation

� Semantic description of application requirements and PaaS offering
� Offerings marketplace
� Deployment, Lifecycle management, Monitoring, MigrationBrokering Cloud PaaS: the Cloud4SOA Project

OpenStack 72� Semantic Web technologies used for developing simple, extendable and reusable resource and service models
� Service Oriented Architecture used to provide a unified Cloud broker API to retrieve resources in a as a Service fashion
� Harmonized and standard API used to interface with several Cloud platforms in an uniform way
� Specific adapters used to execute harmonized API calls by translating them into specific PaaS APIs PaaSPaaSPaaSCloud4SOAbrokerdiscoverydeploymentmigrationmonitoringprofiling Harmonized API Specific AdapterSpecific AdapterSpecific AdapterUser

User

User

Cloud4SOA Architecture

OpenStack 73� Front-end Layer: allows Cloud developers to easily access Cloud4SOA functionalities
� SOA Layer: implements the corefunctionalities offered by the Cloud4SOA platform broker service discovery, announcement, deployment, monitoring, migration, etc.
� Distributed Repository: stores both semantic and non-semantic informationneeded to perform the intermediation and harmonization processes
� Semantic Layer: holds lightweight semanticmodels and tools for annotating Cloud Computing resources
� Governance Layer: offers a toolkit for monitoring the lifecycle of Cloud4SOA servicesCloud4SOA Layered Architecture

OpenStack 74 Solution-independent concepts, tools and mechanisms that can be used to model, understand, compare and exchange data in a uniform way
� Interoperability and portability conflicts solved by– a shared knowledge base (KB)– tools and mechanisms to support the KB
� Semantic description of Applicationrequirements and PaaS offerings
� Application requirements and PaaS offerings matchingCloud4SOA: Semantic Layer

OpenStack 75� Ontology development through a 5 steps modeling workflow– specification– conceptualization– formalization– implementation– maintenance
 Conceptualization of Cloud4SOA model follows a “meet-in-the-middle” approach:– Top-down: exploiting already existing ontologies (e.g. The Open Group SOA Ontology, TOGAF 9 Meta-Model, etc.)– Bottom-up: concepts derived from PaaS domain analysis
 The ontology is formally expressed by using OWL2ontology languageCloud4SOA Ontology Design

OpenStack 76� A uniform interface is provided by Cloud4SOA APIs to interact with the platforms in a uniform and standardized way, thus enabling interoperabilitybetween the incompatible offerings
� Implemented bindings for several PaaS provide fullworking functionalities for deploying applications, managing their lifecycle and undeploying them
� A CLI is provided in order to receive, interpret, and execute user commands
� The CLI language was designed to provide the sameexpressivity of OWL2 language, but closer to the userworld

 Recall the CF Service Broker concept!!!Cloud4SOA Bindings

OpenStack 77� PaaS solution provided by Amazon
� Based on the concept of application and applicationversion, representing a specific set of applicationfunctionalities at a specific time
� Environment as a collection of AWS resourcesinstantiated to run a specific version of an application
� Container type to describe the application stack, default configuration, and the AWS resources needed to create an environment
� APIs to manage the application lifecycle– create, delete, and update an application with no versioninformation – assign, remove or update a specific application versionAWS Beanstalk Amazon PaaS

OpenStack 78� PaaS solution focusing on developers needs
� Cloud environment natively bound with tools and systems used by developers for building and testing their applications
� Continuous Integration
� Ecosystem– set of third-party Cloud-based tools that can be used in the CloudBees environment
� DEV@Cloud framework– deploy applications to the Cloud – continuous integration of a project into the Cloud
� RUN@Cloud framework– deployment and management services to run applications in the Cloud Cloudbees PaaS

OpenStack 79� A first set of tests reports on the overhead introduced by each module when performing the brokerfunctionalities– performance evaluations about the deployment of an application, by measuring the elapsed time of the operation– use of implemented adapters for AWS Beanstalk and Cloudbees– Test performed by using a single account per provider
� A second set of tests analyzes system performance by varying the workload– use of mockup modules that simulate real adapters
� Application size 4KB
� Results are average values over 10 runsSome Experimental Results

OpenStack 80ExecutiontimeAllocatedmemory� CloudBees adapterdoes not introduceoverhead because the mapping is almost one-to-one
� Beanstalk adapter has to manage several interactions by calling variousspecific APIs
� Specific APIexecution time is the longest one also because it is affected by network latencyand providerperformanceOverhead for different PaaS Bindings

