University of Bologna

Dipartimento di Informatica —
Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Class of
Computer Networks M

Openstack & more...

Antonio Corradi
Luca Foschini

Academic year 2017/2018

NIST STANDARD CLOUD

Deployment ‘ .

Models Private Cloud Public Cloud
Essential

Characteristics

Service
Models

Massive Scale Resilient Computing

Common Homogeneity Geographic Distribution

Characteristics

National Institute of Standards and Technology www.nist.gov/ OpenStack 2

Known Deployment Models

Public cloud

...............

Tysack

CUATET T -
iCloud Architect:: HP Cloud

. Rackspace | (oo
' Dell . CloudServers 1l .

—_ CERN T iWikimedia Labs: ...

.| Nova (Compute) e : {infrastructure : -

(9 suit toage) T 0 G
£7 Both (Compute and Storage) | Marcadolibre

Private cloud

OpenStack 3

Cloud: resource virtualization

- First step: Server virtualization
Xypen/isor:
Turns 1 server into many “virtual machines” (instances or VMs)
(VMWare ESX, Citrix XEN Server, KVM, Etc.)
= Hypervisors provide an abstraction layer between
hardware and software
- Hardware abstraction
- Better resource utilization for every single server

OpenStack 4

Cloud: resource virtualization

Second step: network and storage virtualization

Cp®
Compute Pool Network Pool Storage Pool
Virtualized Servers Virtualized Networks Virtualized Storage

Resource pool available for several applications
Flexibility and efficiency

OpenStack 5
High-level Architecture
of the OpenStack Cloud laaS
_- Connects to apps via APIskgs + &g
n CLOUD OPERATING SYSTEM
oansiadk
Createls Pools of Resources Automftes The Network
ol avk TAte e T

OpenStack 6

OpenStack history in a nutshell

OpenStack
— Founded by NASA and Rackspace in 2010

— Currently supported by more than 300 companies
and 13866 people

— Latest release: Juno, October 2014

« Six-month time-based release cycle (aligned with
Ubuntu release cycle)

» Open-source vs Amazon, Microsoft, Vmware...
« Constantly growing project

openstack
OpenStack 7
Main Function in a Cloud
App Dev Dev Ops App Owner Cloud Ops
@ |

Billing Image API
Presentation/
Identity Orchestration J§ Scheduling Policy image Logging Monitoring
Registry

Logic (Control) |

mm

Integration/ Resources Management
J J

@ 0o

nttp://ken.pepple.info

wpenodCk 8

Main Function in a Cloud

Integration‘

Justomer
Portal

Presentationj

ogic (Control)‘

OSOUI'OOS‘

Admin API

ManagementJ

hitp:ifken.pepple.info
upenswack 9

OpenStack main services

S

Network

<5

R
Block
Storage

Provides
o / Ul for i
/ Provides \

Dashboard

Provides

Ul for Provides

) Provides
Provides Ul for

Ul for

Auth for

2 2

Provide 3
network
connectivity Stores @ Stores disk
for Compl‘ne images in files in
g Image
Provides
volumes
4 for
Provides Provides
Provides Auth for
At for Auth for
Provides
Auth for
Provides (v
EY L]

Auth for
\ http://ken.pepple.info

Identity

OpenStack 10

OpenStack main services

User Interface

Dashboard
(Horizon) pers:stent storage

J [u@

OpenStack
Networking

Volume Service Compute Ob;ect Storage
(Cinder) (Nova) (Swift)

T sy Y wle ¥ 7 ol ¥

network cdtnecuvny stores images ¥ stores disk files
n n 1
il 1 il I
‘-L-----L-----L-----L----.
Authentication

Image
(Glance)

I
J

Identity
(Keystone)

OpenStack 11

OpenStack main services

graphical user interface

creates stacks

slores ecJ b for VMs

OpenStack
i Networking

Metering

Identity

network connectivity 5l0r05 IMages stores images as objects

S TSI NS

collocts usage statistics

OpenStack 12

OpenStack services

Dashboard

A

|

Identity

BT T

y { ;lw* VY Yy V7
Object

p Block
\T A A T“\} 4“‘* *“[
Telemet
»

<G >
Ceilometer

 /

OpenStack 13

OpenStack main components

|| Horizon R =Quantum

/ Neutron

=Glance
=Nova
— cUles =SQwift

Store

) @

=Keystone e
! - =Cinder
Ceilometer Heat

OpenStack 14

OpenStack main components

Inside OpenStack n

The open source cloud operating system openstack
OpenStack is a set Dashboard (Horizon| Designed with
of inter_related Compute (Nova) open ;’Fandard; and
software versatility in mind

components Object Storage (Swift)

» Multiple hypervisors

Block Storage (Cinder) (Xen, KVM, VMWare,

Developed and Hyper-V)

maintained Network (Neutron)
collaboratively

by a large, active
community Image Service (Glance)

* Armazon and
Identity (Keystone) Rackspace APls are
supported

* Distributed under
Apache 2.0 license

OpenStack 15

OpenStack main worflow

Request Flow for Provisioning

Instance in OpenStack g Dashboard/ CLI \
\
keystone
3
N “
5

nova-api
slence
glance-registry
11} J10 \
glance-api o
=
Store e

quantum-server

20

nova-
scheduler

23

quantum
-plugin(s)

—
quantum-
agent(s)

Quantum

nova-
conductor

26

cinder-api

Cinder-

Hypervisor cinder- scheduler
volume
http:f/ilearnstack wordpress. com cinder

N 16

OpenStack services (detailed)

Your Applications
E OPENSTACK
)penStack Dashboard

Compute Networking Storage

OpenStack Shared Services __{ d Ident|ty SerVICG
» Image Service

tandard Hardwar

Dashboard: Web application used by administrators and users to manage
cloud resources

Identity: provides unified authentication across the whole system
Object Storage: redundant and highly scalable object storage platform

Image Service: component to save, recover, discover, register and deliver VM
images

Compute: component to provision and manage large sets of VMs
Networking: component to manage networks in a pluggable, scalable, and API-
driven fashion

OpenStack 17

OpenStack Services: Design Guidelines

All OpenStack services share the same internal
architecture organization that follow a few clear
design and implementation guidelines:

« Scalability and elasticity: gained mainly through horizontal
scalability

* Reliability: minimal dependencies between different services
and replication of core components

« Shared nothing between different services: each service
stores all needed information internally

 Loosely coupled asynchronous interactions: internally,
completely decoupled pub/sub communications between
core components/services are preferred, even to realize high-
level synch RPC-like operations

OpenStack 18

OpenStack Services: Main Components

Deriving from the guidelines, every service
consists of the following core components:

* pub/sub messaging service: Advanced Message Queuing
Protocol (AMQP) standard and RabbitMQ default implementation

* one/more internal core components: realizing the service
application logic

« an APl component: acting as a service front-end to export
service functionalities via interoperable RESTful APIs

* alocal database component: storing internal service state
adopting existing solutions, and making different technological
choices depending on service requirements (ranging from MySQL
to highly scalable MongoDB, SQLAIchemy, and HBase)

OpenStack 19

Nova - Compute

* Provides on-demand virtual servers

» Provides and manages large networks of virtual
machines (functionality moving to Neutron)

» Modular architecture designed to horizontally scale
on standard hardware

« Supports several hypervisor (i.e. KVM, XenServer,
etc.)

» Developers can access computational resources
through APIs

« Administrators and users can access computational
resources through Web interfaces or CLI

OpenStack 20

Nova — Components
(a good OpenStack service example)

nova-api
\, (08, ECZ, Adwin) /

% =)
nova-compute

Obiectstore

libvirt, XenAPl, ete.

‘ hypervisor ‘

OpenStack Compute

OpenStack 21

Nova — Components (1)

nova-APIl: RESTful APl web service used to send
commands to interact with OpenStack. It is also possible to
use CLI clients to make OpenStack API calls

nova-compute: hosts and manages VM instances by
communicating with the underlying hypervisor

nova-scheduler: coordinates all services and determines
placement of new requested resources

nova database: stores build-time and run-time states of
Cloud infrastructure

queue: handles interactions between other Nova services
By default, it is implemented by RabbitMQ, but also Qpid
can be used

OpenStack 22

Nova — Components (2)

* nova-console, nova-novncproxy e nova-
consoleauth: provides, through a proxy, user access to
the consoles of virtual instances

* nova-network: accepts requests coming from the
queue and executes tasks to configure networks (i.e.,
changing IPtables rules, creating bridging interfaces, ...
These functionalities are now moved to Neutron service.

* nova-volume: handles persistent volumes creation and
their de/attachment from/to virtual instances
These functionalities are now moved to Cinder services

OpenStack 23

Nova General interaction scheme

Nova
Scheduler
Request _L
made Resource confirmed &
scheduled
Request S -
de | No ‘]
Mé}g‘ rE: -. e W
O L ¢
s LRTREST &
Database Poll:
read & Message Received
updated ¥ &
‘ Nova
" | Database Service
read &
updated

OpenStack 24

Swift - Storage

Swift allows to store and recover files

* Provides a completely distributed storage platform
that can be accessed by APls and integrated inside
applications or used to store and backup data

It is not a traditional filesystem, but rather a
distributed storage system for static data such as
virtual machine images, photo storage, email storage,

backups and archives

» It doesn’t have a central point of control, thus
providing properties like scalability, redundancy,

and durability

OpenStack 25

Swift - Components

Proxy Server: handles incoming
requests such as files to upload,
modifications to metadata or
container creation

Accounts server: manages
accounts defined through the
object storage service

Container server: maps
containers inside the object
storage service

Object server: manages files that
are stored on various storage
nodes

]

swift-proxy

-

‘ account 'con’rather ” object
r r

Y J L
account confainer object
1]] store

OpenStack Object Store

OpenStack 26

Cinder — Block Storage

Cinder handles storage devices that can be

attached to VM instances

« Handles the creation, attachment and detachment

of volumes to/from instances

« Supports iISCSI, NFS, FC, RBD, GlusterFS

protocols

« Supports several storage platforms like Ceph,
NetApp, Nexenta, SolidFire, and Zadara

» Allows to create snapshots to backup data stored
in volumes. Snapshots can be restored or used to

create a new volume

OpenStack 27

Cinder — Block Storage

cinder-API: accepts user requests
and redirects them to cinder-volume
in order to be processed

cinder-volume: handles requests by
reading/writing from/to cinder
database, in order to maintain the
system in a consistent state

Interacts with the other components
through a message queue

cinder-scheduler: selects the best
storage device where to create the
volume

cinder database: maintains
volumes’ state

(cinder-api)
/ \
T
cinder
database

cinder-scheduler

OpenStack
Block Storage Service

OpenStack 28

Glance - Image Service

Glance handles the discovery,
registration, and delivery of disk and
virtual server images

« Allows to store images on different storage
systems, i.e., Swift

« Supports several disk formats (i.e. Raw,
gcow?2, VMDK, etc.)

OpenStack 29

Glance — Components

« glance-API: handles API requests
to discover, store and deliver
images

 glance-registry: stores, processes

and retrieves image metadata —Qlaic‘s—apl}

(dimension, format,...).

« glance database: database
containing image metadata

« Glance uses an external
repository to store images
Currently supported repositories
include filesystems, Swift, Amazon
S3,and HTTP

Glance Stores

Openstack
Image Service

OpenStack 30

Nova - Launching a VM

|. launch vm

2. find service,
heck credentials,
£ ec]au:,f:]., jn o 1 7.find service, chgck credentials,
réquest image 11. find service,
P check credentials,
é.request | | ~, s J‘“" o request image
image :
3 e
3.launch vm B-""—’“"‘-‘P 9. return
Image location
T %, |& metadata
- 10. request
‘!' image
Gy 12. get image
4.schedule vm 3. get image
v
RabbltMQ "~ S.receive
launch vm
message
OpenStack 31

Horizon - Dashboard

e St LR L el
n Instances & Volumes

openstack i Filaon "Wt laarie
Instances e |
e Harer [el Tk Pawes Bade Adkies
i acdrman MR | IVGPUIRDEY Bus Rers FoSme ot
) [r——
i v (S
[[] =
[pIep—

agtas

Provides a modular web-based user interface to access

other OpenStack services
Through the dashboard it is possible to perform actions
like launch an instance, to assign IP addresses, to upload

VM images, to define access and security policies, etc.

OpenStack 32

Keystone — Authentication
and Authorization

+ Keystone is a framework for the authentication and
authorization for all the other OpenStack services

» Creates users and groups (also called tenants),
adds/removes users to/from groups, and defines
permissions for cloud resources using role-based access
control features. Permissions include the possibility to
launch or terminate instances

* Provides 4 primary services:

— ldentity: user information authentication
— Token: after logged-in, replaces password authentication

— Catalog: maintains an endpoint registry used to discovery
OpenStack services endpoints

— Policy: provides a rule-based authorization engine

OpenStack 33

Keystone
Forward
Request authorized
: request | OpenStack
Keystone ;
Use token | Service

Reject
unauthorized
request

to obtain
tenant,
roles, etc.

OpenStack 34

Neutron Networking

Pluggable, scalable e API-driven support to
manage networks and IP addresses.

NaaS “Network as a Service’
Users can create their own networks and plug virtual
network interface into them

Multitenancy: isolation, abstraction and full control
over virtual networks

Technology-agnostic: APIs specify service, while
vendor provides his own implementation. Extensions
for vendor-specific features

Loose coupling: standalone service, not exclusive
to OpenStack

OpenStack 35

Neutron — Components

neutron-server: accept request sent
through APls e and forwards them to
the specific plugin

Plugins and Agents: executes real
actions, such as dis/connecting
ports, creating networks and

quanfum-server

subnets, creating routers, etc. | (s Sointer
message queue: delivers messages

between quantum-server and """
various agents Netwark Serve

neutron database: maintains
network state for some plugins

OpenStack 36

Neutron — Agents

« dhcp agent: provides DHCP functionalities to virtual
networks

* plugin agent: runs on each hypervisor to perform
local vSwitch configuration. The agent that runs,
depends on the used plug-in (e.g. OpenVSwitch,
Cisco, Brocade, etc.).

« L3 agent: provides L3/NAT forwarding to provide
external network access for VMs

OpenStack 37
Neutron
logical view vs. physical view
. g 2 B E
Neutron decouples enant iew kLr ! kl

the logical view of
the network from = - -
the physical view

) //—:/ PhySrvl) (" physrz —, ~—(physva)
It provides APIs to w |
define, manage and p— S e J | @

connect virtual Provider View ”
networks
l Data Centre Network

OpenStack 38

Neutron - logical view

virtual server

<«—— virtual interface
x / (VIF)
W~ < virtual port

y <— |2 virtual network

)
T-h'"“' Virtual subnet

Network: represents an isolated virtual Layer-2 domains; a network can also be regarded as
a logical switch;

Subnet: represents IPv4 or IPv6 address blocks that can be assigned to VMs or router on a
given network;

Ports: represent logical switch ports on a given network that can be attached to the

interfaces of VMs. A logical port also defines the MAC address and the IP addresses to be
assigned to the interfaces plugged into them. When IP addresses are associated to a port,
this also implies the port is associated with a subnet, as the IP address was taken from the

allocation pool for a specific subnet.
OpenStack 39

Neutron - tenant networks

Tenant networks can be created by users to provide connectivity within tenants. Each tenant
network is fully isolated and not shared with other tenants.

Neutron supports different types of tenant networks:

« Flat: no tenant support. Every instance resides on the same network, which can also be shared
with the hosts. No VLAN tagging or other network segregation takes place;

« Local: instances reside on the local compute host and are effectively isolated from any external
networks;

* VLAN: each tenant network uses VLAN IDs (802.1Q tagged) corresponding to VLANs present
in the physical network. This allows instances to communicate with each other across the
environment, other than with dedicated servers, firewalls, load balancers and other networking
infrastructure on the same layer 2 VLAN. Switch must support 802.1Q standard in order to
provide connectivity between two VMs on different hosts;

+ VXLAN and GRE: tenant networks use network overlays to support private communication
between instances. A Networking router is required to enable traffic to traverse outside of the
tenant network. A router is also required to connect directly-connected tenant networks with
external networks, including the Internet.

Compute Node Network Node

Neutron Router

Provider Network ' @

Tenant Network 1 Tenant Network 2

OpenStack 40

Neutron — VLAN tenant network

)

[Configured by Nova Compute
vmO0 3 :

ethQ

o’

Tenant flows are separated
by internally assigned VLAN ID

VLAN ID is converted with flow table
dl_vian=101 => mod_vlan_vid:1

(—Tpy— |

dl_vian=102 = mod_vlan_vid:2

Tenant flows are separated '
el i L VLAN ID is converted with flow table
| di_vian=1 => mod_vlan_vid:101
di_vlan=2 => mod_vlan_vid:102
Physical L2 Switch | YLANIOL
for Private Network VLAN102

OpenStack 41
- L]
P u ttl n g It a I I - Command-line interfaces (nova, neutron, swift, etc)
- Cloud Management Tools (Rightscale, Enstratius, etc)
- GUI tools (Dashboard, Cyberduck, iPhone lient, etc)
together...
Internet
OpenStack
Ogject el (I)penSt}a\;l; uli Opesitnd, OpenStack
mage
9 OpenStack (A('))mpute VNC/VMRC Block Storage
v Dashboard ! API
. - TEEERSs EET OpenStack
| .---=-["2-] Horizon I _______________________________ Networking
HTTP(S) 3 T i N API
H —==~-J-.__ OpenStackBlock
. " ; b T <. _Storage API OpenStack ™ ">~
/OpenStack v OpenStack S Networking API h
/lmage ! \ Compute AP/ [[Dervices) >
I API § \Admin API
Y ¥ | Openstack
______ &~ | Image APl i

glance
database

OpenStack
Image Service

container
database

object
database

account
database

OpenStack Object Store

\
'
i
'
'
1
'
1
'
'
|
'
i
'
'
'
'
1
'
'
i
'
i
'
|
1
i

OpenStack Block Storage

neutron
database

OpenStack Networking

OpenStack —+——»

Y Identity ———>
// APL—>1

'

'
' '
' '
T T
v v

'
'
'
'
Y
T
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
v
'
'

http://www.solinea.com

OpenStack Identity API

OpenStack Identity API

OpenStack
Identity
Service
token catalog policy identity
backend backend backend backend

OpenStack Identity API

R e D TRN

Cloud Foundry PaaS in a Nutshell

BrD
¢ spring || B4 &= :

- ; Public
= Clouds

Private
Clouds

Funded by VMware and EMC Corporation

Open Source PaaS

Indipendent from underlying laaS

Supports the development of applications written in Ruby, Java and
Javascript, and many more...

OpenStack 43

Cloud Foundry Paa$S

Cloud Foundry (CF) is an open PaaS that enables fast
definition, development , and scalable deployment of new
applications, offering also a wide support for different:

« Languages/frameworks - to develop new applications (apps)
— Languages: Ruby, Sinatra, Rack, Java, Scala, Groovy, Javascript
— Frameworks: Rails, Spring, Grails, Play, Lift, Express

« External, bind-able and ready-to-use services
— Redis, mySQL, postgreSQL, rabbitMQ, mongoDB

* Multiple Clouds and Infrastructure as a Service (laaS) systems

— OpenStack, WebSphere, Amazon Elastic Cloud Computing (EC2)
Web Services, ... & Through the BOSH deployer

OpenStack 44

Cloud Foundry — Design Guidelines

Cloud Foundry adopts an internal architecture organization
that follow a few clear design and implementation
guidelines:

« Scalability and elasticity: gained mainly through horizontal
scalability

* Reliability: minimal dependencies between different
components and replication of core components

« Shared nothing between different services: each
component is self-aware (stores all needed information
internally)

* Loosely coupled asynchronous interactions: completely
decoupled pub/sub communications between core
components/services are preferred

OpenStack 45

Cloud Foundry — Layered View

. Router rouTiNG
OAuth2 Server (UAA) AUTHENTICATION
Cloud Controller Health Manager APP LIFECYCLE

Droplet Execution Agent
Blob APP STORAGE
‘ Warden ’ Store & EXECUTION

Service Brokers SERVICES

Message Bus (NATS) MESSAGING

i METRICS
Metrics Collector App Log Aggregator o Lonaine

Main CF Components

Router: forwards in-/out-bound traffic from/to the external Internet,
typically toward the Cloud Controller or an application instance

Cloud Controller: controls service/application lifecycle and stores
all data about services applications, services, service instances,
users, etc.

Health Manager: monitors application status (running, stopped,
crashed)

Droplet Execution Agent (DEA): controls application instances
and (periodically) publishes their current application status

Warden: isolated and self-contained container offering APlIs to
manage application execution

Service Broker: services front-end API controller
NATS: publish-subscribe internal messaging service

OpenStack 47

Distributed Architecture

""""""" 9 . S3 Blobs 3

Integration of
external services
(now called

Service Broker

OpenStack 48

Management of Apps lifecycle

CF Cloud Controller CCNG — Droplet Execution Droplet Execution
Command Line (CCNG) Blobstore CCbB Agent (DEA - Agent (DEA -
Staging) Running)
Developer | | | |

. | 1 | 1 I I
! ! | | | : :
'o CFPush |] !) i :
I I 1 1 1 I 1
: a Create App | : : : :
: . e Stores App Metadata : ! !
! | | | |
: ; Upload App Files_ 1 : : : :
e i 1 |
: 2 B Store App Files : : ! !
1] [} I 1 :
H e App Start ! ! p : !
! 1 1 | : :
: : PP : : | 1
! 1 I [1 !
| : ;] Stream Staging Output e 1
1
i i i i i i
| | | ! 1Store App Droplele :

1 L
. : ! . , : :
: : : : Report Staging Complete |
1
i i i i
1 | 1 | |
! Start Staged App [:
: | I I
| T 1 I R I

| eport App Status

| | : | o

Digging into the code: DEA/Stager agent starts the app, not Cloud Controller.

Cloud Controller creates an AppStagerTask, that is in charge to find an available Stager(DEA-Agent)
The stager is found with “top_5_stagers_for(memory, stack)”.

When the Stager is found, it handles the message, it starts the staging process and at the end invokes
“notify_completion(message, task)” -> “bootstrap.start_app(message.data["start_message"])” ->
instance = create_instance(data); instance.start

OpenStack 49

Starting an App

CF
Command Line

start

Cloud Controller Blobstore DEA
Staged? i
choose DEA i
E >!
] start drople]
—

fetch droplet

A

1€

re_port app status

report statu

e . e ey e ————————

mmmmm =L

OpenStack 50

Apps and stacks

A stack is a prebuilt file system, including an operating system, that
supports running applications with certain characteristics. Any DEA can
support exactly one stack.

To stage or run an app, a DEA running the requested stack must be
available (and have free memory).

For instance, the lucid64 stack is supported out of the box as an
Ubuntu 10.04 64-bit system containing a number of common programs
and libraries.

During a Staging or Start process, the Cloud Controller checks always
the stack requested by the app and chooses the DEA accordingly.

push

MyApp
stack lucide4

Cloud

Controller

Does exist lucid64 stack?
Does exist a DEA with that stack?

OpenStack 51

Management of Service lifecycle

-_—

2.

3.

4.

Plus Catalog to advertise Service offerings and service plans.

™ — T |
! Cloud Foundry @ 1 ! Service '
1 Elastic Runtime s | ' !
; P ! s - '
1)
: provision \ provison] . ; '
- bind ’ cloud] bing H service service :
: ___unbind | controller | wnbind H broker back-end :
: daprovisica ! caprovision : :
' ' I ’
H wel VCAP_SERVICES l ! ' '
1 '
! 1 ! 1
: App environment Ve e) : : :
' \VCAP SERVICES: AP LE..ee ST PP fsnsssnunessssvasnussEvEs e ¢ - -
: - Ins20- unl, credentials A | . bincieg RN inzf:r?:ee 0 -
1 A e 1
] T L '
' : o ffrEes L] '
: 4 1 T Lok : 1
- — 1 aest"” '
: App environment A Rl T : service 1
1 VCAP_SERVICES: A | O e N 65 s 3iel s nl ol b s e ..o instance 1 -
1 - ins20: url, credentals B N] ninding '
' - Inst1: url, credentals l | '
) 1
, g : , :
! 1 ! 1
B e e il e e -

Provision: to create a new Service instance

Bind: credentials and configuration information to access the Service instance
saved in the App environment

Unbind: to destroy credentials/configurations from the App environment
Unprovision: to destroy the Service instance

OpenStack 52

Services Implementation & Deployment

CF only requires that a Service implements the broker
API in order to be available to CF end users, many
deployment models are possible.

The following are examples of valid deployment models.

» Entire Service packaged and deployed alongside CF

» Broker packaged and deployed alongside CF, rest of
the service deployed and maintained by other means

* Broker (and optionally service) pushed as an
application to CF user space

» Entire Service, including Broker, deployed and
maintained outside of CF by other means

OpenStack 53

Operating CF via Bosh Outer SHell (BOSH)

Contains stemcells,
source for packages
and binaries

Contains meta data
about each VM

Blobstore

_—

Manages Vl\(s m
\

Message Health
Bus Monitor

Worker

EER
Interface

Creates, Destroys VMs

A Stemcell is a VM template with an embedded BOSH Agent.
Stemcells are uploaded using the BOSH CLI and used by the BOSH Director when creating VMs
through the Cloud Provider Interface (CPI). When the Director creates a VM through the CPI, it will

pass along configurations for networking and storage, for Message Bus and the Blobstore.
UPEIDLdLK O

BOSH with different CPIs

Contains meta data
about each VM

Contains stemcells,
source for packages

Worker

laaS
Interface

Creates, Destroys VMs

siobstore and binaries
Manages VMs
Agents grab
Message Health packages
Bus Monitor to install

Agents get instructions

LIL
“firamazon openstack

Each VM is a stemcell clone
with an Agent installed :>

“7 web service%

vmware

OpenStack 55

Micro BOSH

Worker

EEN

Blobstore

Director

Message Health
Bus Monitor

Interface

OpenStack 56

Monitoring of CF Services

Scarce support for runtime monitoring!!!

HEARTBEAT

OpenStack 57

Monitoring of CF Services

SERVICE (SERVICE \

1 BROKER APIs
CLOUD
CONTROLLER J

S 2

« Service Broker (Gateway): exposes four main dialogue APIs
(un/provisioning, un/binding) interacting with Cloud Controller,
and handling commands to the Service Nodes

« Service Node: real business logic component (instantiates new
service processes, binds them, etc.) that periodically publishes
toward NATSs service heartbeats

OpenStack 58

CF Services: Availability Monitoring

* Monitor
process:
subscribes to
NATS and
handles
incoming
heartbeats

* Check status
HEARTBEAT process:
periodically
controls if the
service is still
functioning

OpenStack 59

CF Services: Performance Monitoring

Performance
monitoring exploits
CLI commands to
periodically check
for activation time
by using a mockup
service that is
dynamically
created, bound,
and destroyed

OpenStack 60

CF Services: Performance Monitoring

lINPUT: $0 PERIOD

[START.SH]

L EVERY $0 SECONDS

PERIODIC_STATS.SH

\ / BINDING TIME

]
|
|
|
1
1
|
|
|
BIND.SH
e— gl |
1
1
1
[

B T —— ——

STORE RESULTS

SERVICENAMEVERSION.TXT

OpenStack 61

Some Experimental Results: Single Host

All-in-One single host environment: all Cloud Foundry
components and services run on the same Virtual
Machine (VM) managed via the OpenStack [aaS

/ OPENSTACK FOLSOM SINGLE INSTALLATION \

16 CPUs 1596 MHz - 48 GB RAM

/ UBUNTU 10.04.4 SERVER 64 BIT \

4 VCPUs - 8 GB RAM - 10 GE EFHEMERAL. DISK

il T F' F' Y
CLOUD HEALTH MANAGER DEA
CONTROLLER
\ N N »,
i T i i)
UAA CORE SERVICE 1: NATS SERVER
MySQL 5.1

———

OpenStack 62

Experimental Results: Provisioning Time

Depend on the kind and version of service (different
No/SQL data bases, messaging, and analytics services)

Services Creation Times

5000
4500
4000
[l blob0.51
3500
[l mongodb2.0
mongodb1.8
3000 |)
mysql5.1
2500 postgresql9.0

2000

[l rabbitmq2.4
& B redis2.6
\ \ W redis2.4
1500{ N—"

5001

1000

OpenStack 42

Experimental Results: Binding Time

Almost equal for all services and versions: the binding
process consists in a credential exchange between the service

an Binding Times BoxChart

4250 - —_—

4000

3750

3500 _ —_

3250

3000

2750 T

2500 I Il Max Value
_ —_ B 25-75 percentile

e - =S e . = = = Il Median

S Il Min Value

1750

1500

1250

1000

750

500

250

0
blob0.51 mongodb2.0 mongodb1.8 mysqgl5.1 postgresql9.0 rabbitmq2.4 redis2.6 redis2.4

OpenStack 64

Heavy-load Experimental Results:
Distributed Deployment

Cloud Foundry distributed deployment via BOSH deployer
over OpenStack laaS
4)

OPENSTACK HAVANA
' ™ '
COMPUTE NODE COMPUTE NODE COMPUTE NODE COMPUTE NODE COMPUTE NODE
DUAL CORE DUAL CORE DUAL CORE PENT. 2.60 GHz PENT. 2.60 GHz
3.06 GHz 3.06 GHz 3.06 GHz 4 GB RAM 4 GB RAM
4 GBRAM 4 GB RAM 4 GB RAM
i '
BOSH
N Ny N N
VM VM VM VM VM
1VCPU 1 VCPU 1 VCPU 1VCPU 1VCPU
2 GB RAM 2 GB RAM 2 GB RAM 2 GB RAM 2 GB RAM
20 GB DISK 20 GB DISK 20 GB DISK 20 GB DISK 20 GB DISK
CF INTERNAL UAA SERVICE SERVICE
DATABASE CONTROLLER GATEWAY NODE
ROUTER
HEALTH M.
NATS
OpenStack 65

Exp. Results: Accumulation Stress Test

Sequential creation of 200 service instances by
monitoring creation time and binding times

2700

2500 l l

2300 WY | W | A \,A M ’ Mlm A

2100 ¥ ¥ ——averages Creation times

- averages Binding times

1900 \

1700

1500 -t T T T T T T T T T T T T T

3

DBfails in creation

> R Service instance

A A A A A A A A A A A A

OpenStack 66

Exp. Results: High-Req-Freq Stress Test

frequencies, up to 140 service instances
Number of Service Instances

70
60
50
40
30

20 -+
10

10

Requests per Minute

w Requests per Minute

1 2 3 4 5 & 7 Minute
% MEMORY Service node process

M % MEMORY Service

1 I I I I I I I node process

1 2 3 4 5 6 7 Minute

160
140
120
100

80
60 -
40 -+
20 +
0 -

Concurrent creation of service instances with different

1

2 3

4

5

B Number of Service
Instances

6 7 Minute

%CPU Service node process

O B N W b U O N
L ! y s L

5

M %CPU Service node
process

6 7 Minute

OpenStack 67

Exp. Results: Exponential Increase

Incoming requests arrival frequency follows an

exponential increase

REQUESTS PER MINUTE/FAILS

160

140

120

100

80

msucc

o0

60
40

20 1 3

7

0 ; . L

MINUTE 1 MINUTE 2 MINUTE 3

MINUTE 4

AVERAGE CREATION TIME

8000

B FAILS

MINUTE 5

7000

6000

5000

4000

3000

i AVERAGE

2000

0 T T T

MINUTE 1 MINUTE 2 MINUTE 3

MINUTE 4

MINUTE 5

_, _ Stack 68

Cloud Foundry v2 — Layered View

OAuth2 Server (UAA) AUTHENTICATION
Cloud Controller Diego Brain Cell Reps APP LIFECYCLE

App Execution (Diego Cell)

APP STORAGE

[Garden] & EXECUTION

BBS (HTTP/S) NATS Message Bus MESSAGING
Metrics Collector App Log Aggregator & &Egg:ﬁ(s;

Main CF v2 Components

Router: forwards in-/out-bound traffic from/to the external Internet,
typically toward the Cloud Controller or an application instance

Cloud Controller and Diego Brain: The Cloud Controller directs
the deployment of applications and communicates with Diego
Brain to coordinate Diego Cells that stage and run applications

Nsync, Bulletin Board System and Cell Reps: work together
along a chain to keep apps running and control status

Diego Cell: Execute application start and stop, manages the VM's
containers and reports app status/data to BBS

Consul: stores longer-lived control data and distributed locks to
avoid duplicating actions

Service Broker: services front-end API controller

OpenStack 70

Brokering Cloud PaasS:
the Cloud4SOA Project

m Motivations
- Lack of standards in PaaS domain
- Solutions lock-in

0 Objectives
— Interoperability and portability across different PaaS

— Coordination activity
o formalization of use cases, concepts, guidelines, architectures, etc.
o identification and analysis of semantic interoperability problems

- Standardization activity
0 resolution of semantic interoperability problems

-Supply a Reference Architecture implementation

o0 Semantic description of application requirements and PaaS
offering

0 Offerings marketplace

o Deployment, Lifecycle management, Monitoring, Migration
OpenStack 71

Cloud4SOA Architecture

0 Semantic Web technologies used for developing simple,
extendable and reusable resource and service models

0 Service Oriented Architecture used to provide a unified
Cloud broker API to retrieve resources in a as a Service
fashion

0 Harmonized and standard API used to interface with several
Cloud platforms in an uniform way

0 Specific adapters used to execute harmonized API calls by
translating them into specific PaaS APIs

: Specific
i Adapter .}

OpenStack 72

Cloud4SOA Layered Architecture

Front-end Layer: allows Cloud developers to
easily access Cloud4SOA functionalities

SOA Layer: implements the core
functionalities offered by the Cloud4SOA
platform broker service discovery, Fontenditye
announcement, deployment, monitoring,
migration, etc.

Distributed Repository: stores both
semantic and non-semantic information
needed to perform the intermediation and Distributed Repository
harmonization processes

Semantic Layer: holds lightweight semantic
models and tools for annotating Cloud
Computing resources

Governance Layer: offers a toolkit for
monitoring the lifecycle of Cloud4SOA
services

SOA Layer

Semantic Layer
Governance Layer

OpenStack 73

Cloud4SOA: Semantic Layer

Solution-independent concepts, tools and
mechanisms that can be used to model,
understand, compare and exchange data in a
uniform way

Interoperability and portability conflicts solved
by

— a shared knowledge base (KB)

— tools and mechanisms to support the KB

Semantic description of Application
requirements and PaaS offerings

Application requirements and PaaS offerings
matching

OpenStack 74

Cloud4SOA Ontology Design

Ontology development through a 5 steps modeling
workflow

- specification

- conceptualization

- formalization

- implementation

- maintenance

Conceptualization of Cloud4SOA model follows a “meet-
in-the-middle” approach:

- Top-down: exploiting already existing ontologies (e.g. The Open
Group SOA Ontology, TOGAF 9 Meta-Model, etc.)

- Bottom-up: concepts derived from PaaS domain analysis

The ontology is formally expressed by using OWL2
ontology language

OpenStack 75

Cloud4SOA Bindings

A uniform interface is provided by Cloud4SOA APIs to
interact with the platforms in a uniform and
standardized way, thus enabling interoperability
between the incompatible offerings

Implemented bindings for several PaaS provide full
working functionalities for deploying applications,
managing their lifecycle and undeploying them

A CLI is provided in order to receive, interpret, and
execute user commands

The CLIlanguage was designed to provide the same
expressivity of OWL2 language, but closer to the user
world

- Recall the CF Service Broker concept!!!

OpenStack 76

AWS Beanstalk Amazon PaaS

Paa$S solution provided by Amazon

Based on the concept of application and application
version, representing a specific set of application
functionalities at a specific time

Environment as a collection of AWS resources
instantiated to run a specific version of an application

Container type to describe the application stack, default
configuration, and the AWS resources needed to create
an environment

APIs to manage the application lifecycle

- create, delete, and update an application with no version
information

- assign, remove or update a specific application version

OpenStack 77

Cloudbees PaaS

PaaS solution focusing on developers needs

Cloud environment natively bound with tools and systems
used by developers for building and testing their
applications

Continuous Integration

Ecosystem

- set of third-party Cloud-based tools that can be used in the
CloudBees environment

DEV@Cloud framework

- deploy applications to the Cloud
- continuous integration of a project into the Cloud

RUN@Cloud framework

- deployment and management services to run applications in
the Cloud

OpenStack 78

Some Experimental Results

o A first set of tests reports on the overhead introduced by
each module when performing the broker

o Application size 4KB
0 Results are average values over 10 runs

functionalities

- performance evaluations about the deployment of an
application, by measuring the elapsed time of the operation

- use of implemented adapters for AWS Beanstalk and

Cloudbees

— Test performed by using a single account per provider

0 A second set of tests analyzes system performance by

varying the workload
— use of mockup modules that simulate real adapters

OpenStack 79

Overhead for different PaaS Bindings

O

CloudBees adapter
does not introduce
overhead because
the mapping is
almost one-to-one
Beanstalk adapter
has to manage
several interactions by
calling various
specific APIs
Specific API
execution time is the
longest one also
because it is affected
by network latency
and provider
performance

Execution time

Allocated memory

Beanstalk deploy CloudBees deploy
35000 3000
30000 30000
Z 25000 £ 25000
£ 20000 £ 20000
-
% 15000 & 15000
E
£ 10000 10000
<
5000 5000
_______ i E B EEEENN.
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 910
u Specific Api W Adapter Req/sec = Specific Api ™ Adapter Req/sec
Semantic WRest Semantic ®Rest
Beanstalk deploy CloudBees deploy
16000 16000
14000 14000
12000 12000
= 2
€ 10000 € 10000 |
£ 8000 I gz 8000 |-
g [| E B
£ 6000 i | & 6000 |
4000 . l 4000 - —
2000 [l 2000 +5— il
o 8 H = H N N | | o /A 2 = m NN i
1 2 3 4 s 6 7 12 3 4 5 6 7 8 9 10
Specific API ™ Adapter Req/ Specific API 8 Adapter Req/sec

Semantic mREST

Semantic mREST

OpenStack 80

