
 1

IBM Cloud private 2.1.0.1

Proof of Technology

 2

Index

Lab 1: Deploy and expose an Application using IBM Cloud Private console. 4

1. Login to the console ... 4

2. Deploy a new application (K8s Deployment) ... 5

3. Expose the application (K8s Service) ... 9

3.1 ClusterIP ... 9

3.2 NodePort .. 13

3.3 Ingress .. 17

Lab 2: Deploy and expose an Application using K8s CLI ... 21

1. Configure Kubectl ... 21

2. Deploy an application ... 23

3. Expose the application.. 25

Lab 3. Storage .. 28

Create Persistent Volume (PV) and Persistent Volume Claim (PVC) ... 28

Use the volume in an application.. 34

Lab 4. Image repository ... 39

1. Create a docker image ... 39

Prepare the environment ... 39

Create the image .. 40

2. Publish the image to IBM Cloud Private .. 41

3. Create an application ... 43

Lab 5. Helm Catalog ... 46

Deploy MQ in IBM Cloud Private .. 46

Adding HELM Repositories ... 50

 3

Custom Chart ... 53

Lab 6. Configure Kubernetes to manage the application ... 56

Automatic restarts ... 57

Query application health .. 58

AutoScale ... 61

Rollouts. Update without down time. ... 65

Lab 7. Logging .. 73

Command line .. 73

ICP Console .. 74

ELK ... 74

Lab 8. Monitoring ... 77

Lab 9. Alerts ... 82

APPENDIX .. 87

Lab3 App.js... 87

Lab 3. package.json .. 89

 4

Lab 1: Deploy and expose an Application using IBM
Cloud Private console.

IBM Cloud Private host: 192.168.142.100.
Master, Worker and Proxy are in the same computer.

1. Login to the console

Using your browser access to https://192.168.142.100:8443 and login with admin / admin

 5

2. Deploy a new application (K8s Deployment)

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

We are going to deploy an NGinx official image.

Click on “Deployments”

 6

Select namespace default

And click “Create deployment”

Enter the following information

General:

Name: nginx (lower letters)
Replicas: 1

Container Settings:
Name: nginx
Image: nginx:1.13.1

 7

Click “Create”.

The first time the image nginx must be pulled from docker hub and it takes a bit of time to deploy
the Application (Deployment)

 8

Clicking in the application name nginx the console will show you information about the
application, replica set and pods

We will use latter the label “app=nginx”, also take note of the pod IP list at the bottom, in this case
10.1.90.220

 9

3. Expose the application (K8s Service)

3.1 ClusterIP

https://kubernetes.io/docs/concepts/services-networking/service/

This application is not exposed yet, now we are going to expose it. Go to Services:

First we are going to expose the application using a kubernetes Service of type “ClusterIP”.

Click on “Create Service”.

 10

Enter the following information

General:

Name: nginxsrv
Type: ClusterIP

Ports:
Name: http
Port: 80
TargetPort: 80

Selectors:
 Selector: app
 Value: nginx

 11

 12

If we click on the service “nginxsrv” we get the details:

We will work with the command line latter. If we get the details using the command line we get
more information as for example the IPs exposed by the service.

kubectl describe service nginxsrv
Name: nginxsrv
Selector: app=nginx
Type: ClusterIP
IP: 10.0.0.80
Port: http 80/TCP

 13

TargetPort: 80/TCP
Endpoints: 10.1.90.220:80
...

As you can see the service exposes by a unique IP 10.0.0.80 or hostname “nginxsrv” the
application/deployment “app=nginx” in the IP 10.1.90.220, in case we scale or restart the
application the service ip/hostame will be the same and will automatically update the Endpoint
IPs.

The type of service “ClusterIP” is used for communication between applications inside the cluster
so our application is not public yet. We have two options, create a service of type NodePort
instead of type ClusterIP or create an Ingress kubernetes object
(https://kubernetes.io/docs/concepts/services-networking/ingress/)

3.2 NodePort

Go to Services:

Now we are going to expose the application/deployment as a service of type “NodePort”.

Click on “Create Service”.

 14

Enter the following information

General:

Name: nginxsrv2
Type: NodePort

Ports:
Name: http
Port: 80
TargetPort: 80

Selectors:
 Selector: app
 Value: nginx

 15

If we click on the service “nginxsrv2” we get the details:

 16

A service of type NodePort is a ClusterIP service plus a NodePort. Now the property “Node port” is
configured. With NodePort kubernetes enables on the worker and proxy nodes the port
“NodePort” to access the Application/Deployment from outside the cluster.

Now you can open a browser and set the URL http://<worker/proxy node>:<node port> and
kubernetes will balance the traffic to the internal application/deployment ip:port.

http://192.168.142.100:31687 -> http://10.1.90.220:80

With NodePort we get TCP balancing but no additional features.

 17

In the next section we will use the kubernetes object “Ingress” that enables a kubernetes internal
nginx HTTP server to balance the traffic and provides additional features like SSL management

3.3 Ingress

Once we have a service we can create an Ingress object. As explained an Ingress object is use to
expose an application to consumers outside the kubernetes cluster. It uses a service to know the
IPs of the application/deployment.

The Ingress Controller used by default in ICP is “NGINX Ingress Controller”
(https://github.com/kubernetes/ingress-nginx) but there are more ingress controllers available, as
for example F5 Ingress Controller

Go to “Services”.

And select Ingress Tab.

 18

Click on “Create Ingress”

General:
 Name: nginxingress
Rules:
 Hostname: nginxhost
 Service name: nginxsrv
 Service port: 80

 19

kubectl describe ingress nginxingress
Name: nginxingress
Namespace: default
Address: 192.168.142.100
Rules:
 Host Path Backends
 ---- ---- --------
 nginxhost nginxsrv:80 (<none>)

With this Ingress object kubernetes has configured the ingress controller (an internal nginx) to
route traffic from proxy nodes to the application/deployment in the cluster.

The “rule” is that all the requests made for the hostname “nginxost” must be routed to the service
“nginxsrv”. There are other options to configure the rules, not only by hostname, it is also possible
to use the path.

It is also possible to use annotations to configure how the ingress controller manages the requests.

https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/annotations.md

Now if we add the hostname “nginxhost” to the hosts file of the operating system, pointing to the
proxy node ip “192.168.142.100”, and access to the url http://nginxhost we will access to our
application/deployment.

 20

You can also invoke the application using curl:

osboxes@osboxes:~$ curl -H "Host:nginxhost" 192.168.142.100
<!DOCTYPE html>
<html>
….
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

 21

Lab 2: Deploy and expose an Application using K8s CLI

1. Configure Kubectl

Access to IBM Cloud Private console and login with admin / admin

https://192.168.142.100:8443

Show the client configuration

 22

Copy the configuration:

Double check you are in namespace “default” (kubectl config set-context mycluster.icp-context --user=admin

--namespace=default)

This configuration is used by the k8s CLI (kubectl) to interact with correct kubernetes provider. In
this case the configuration points to the IBM Cloud Private installation.

 23

Paste it in the command line terminal. (open a putty for 192.168.142.100 with user osboxes /
osboxes.org

It is also possible to get this configuration through command line in case of system integrations.

2. Deploy an application

Now we can execute kubectl commands in name of user “admin”.

List the application deployed in Lab1:

osboxes@osboxes:~$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 1 1 1 1 1h

List the service deployed in Lab1:

osboxes@osboxes:/$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 1d
nginxsrv ClusterIP 10.0.0.80 <none> 80/TCP 22h
nginxsrv2 NodePort 10.0.0.227 <none> 80:31687/TCP 20h

osboxes@osboxes:/$ kubectl get ingress
NAME HOSTS ADDRESS PORTS AGE
nginxingress nginxhost 192.168.142.100 80 20m

Although you can create an application directly from command line we are going to create a
descriptor file. Create a file “nginx-deployment.yml” with the content:

osboxes@osboxes:~$ vi nginx-deployment.yml

osboxes@osboxes:~$ cat nginx-deployment.yml

 24

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx-deployment
 spec:
 containers:
 - name: nginx
 image: nginx:1.13.1
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 80

Create the deployment using k8s CLI:

osboxes@osboxes:~$ kubectl create -f nginx-deployment.yml
deployment "nginx-deployment" created

osboxes@osboxes:~$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 1 1 1 1 1h
nginx-deployment 1 1 1 0 9s

osboxes@osboxes:~$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-1769497579-80krq 1/1 Running 0 1h
nginx-deployment-1290044638-30937 1/1 Running 0 23m

If we go the IBM Cloud Private console we will see the new nginx-deployment.

 25

3. Expose the application

Create a file “nginx-deployment.yml” with the content:

osboxes@osboxes:~$ vi nginx-service.yml

osboxes@osboxes:~$ cat nginx-service.yml

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
 labels:
 app: nginx-service
spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
nodePort: 31320
 selector:
 app: nginx-deployment

Comments about this file:

 26

We are going to expose the service as NodePort with the property “type: NodePort”.
Although it is possible to specify a nodePort it is recommended to let K8s to assign it dynamically.
With the selector property we are specifying that the deployment that we are going to expose
with this service is the one we created before, it has the property “selector: app: nginx-
deployment”

Create the service using K8s CLI:

osboxes@osboxes:~$ kubectl create -f nginx-service.yml
service "nginx-service" created

osboxes@osboxes:~$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 1d
nginx-service NodePort 10.0.0.68 <none> 80:30062/TCP 16s
nginxsrv ClusterIP 10.0.0.80 <none> 80/TCP 22h
nginxsrv2 NodePort 10.0.0.227 <none> 80:31687/TCP 20h

Take note of the port “30062”, it is the port assigned by k8s to our service in the worker nodes.

In the IBM Cloud private console:

Now we can invoke the application (Deployment), this time we have exposed it as NodePort so to
invoke it we need to point to <K8s worker IP>:<NodePort>, in our case 192.168.142.100:30062.

 27

IBM Cloud Private also expose that port through the proxy component balancing the load between
the worker nodes, in our installation the worker node and the proxy node are in the same
computer so the url will be the same 192.168.142.100:30062.

 28

Lab 3. Storage

Create Persistent Volume (PV) and Persistent Volume Claim (PVC)

https://kubernetes.io/docs/concepts/storage/volumes/

During this lab we will configure Storage in IBM Cloud private, this storage will allow to our
application to access to a persistent storage.

We will use nginx and will load a page we have created.

There are several options for the Storage, like for example NFS, but for this lab we will use the
local file system.

Connect to the IBM Cloud private host and in the command line (putty terminal):

sudo mkdir -p /aStorage/nginx
sudo chmod 777 -R /aStorage/
vi /aStorage/nginx/index.html
cat /aStorage/nginx/index.html

<html>
<body>
Hello IBM Cloud private
</body>
</html>

Now go to the IBM Cloud private console, login as admin / admin and go to storage.

 29

Create a new Persistent Volume:

 30

JSON file:

{
 "kind": "PersistentVolume",
 "apiVersion": "v1",
 "metadata": {
 "name": "nginxhtml",
 "labels": {}
 },

 31

 "spec": {
 "capacity": {
 "storage": "10Mi"
 },
 "accessModes": [
 "ReadOnlyMany"
],
 "persistentVolumeReclaimPolicy": "Retain",
 "hostPath": {
 "path": "/aStorage/nginx"
 }
 }
}

Now select the tab PersistentVolumeClaim and create a new Persistent Volume Claim

 32

 33

JSON File:

{
 "kind": "PersistentVolumeClaim",
 "apiVersion": "v1",
 "metadata": {
 "name": "nginxvolume"
 },
 "spec": {
 "resources": {
 "requests": {
 "storage": "10Mi"
 }
 },
 "accessModes": [
 "ReadOnlyMany"
]
 }
}

 34

It is possible to use Labels and Storage Classes to specify which Persistent Volume will be bound by
the Persistent Volume Claim.

Use the volume in an application.

Creating a new deployment in the UI we can specify the volume claim in the “Volumes” section of
a new deployment window:

 35

YAML file:

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
 name: nginx-volume
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx-volume
 spec:
 hostNetwork: false
 volumes:
 - persistentVolumeClaim:
 claimName: nginxvolume
 name: nginxvolume
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent

 36

 ports:
 - protocol: TCP
 containerPort: 80
 resources:
 limits:
 cpu: 100m
 memory: 100Mi
 volumeMounts:
 - name: nginxvolume
 mountPath: "/usr/share/nginx/html"

Using the console with the property “Path” or in the yaml file with the property “mountPath” we
specify in which path inside the container we are going to mount our storage. In this case is
"/usr/share/nginx/html" that is where nginx loads its default web page.

In the console, in the top menu, select create resource, copy the yaml and click “Create”

 37

Expose the application:

As before click on “Create resource” and create a servive:

apiVersion: v1
kind: Service
metadata:
 name: nginx-volume
 labels:
 app: nginx-volume
spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 selector:
 app: nginx-volume

Check the node port exposed.

 38

Invoke the application from the command line:

osboxes@bootnode:~$ curl 192.168.142.100:30741
<html>
<body>
Hello IBM Cloud private
</body>
</html>

Make a change in the file and execute it again, you will see your updated file.

 39

Lab 4. Image repository

During these labs we have been using docker hub as image repository, in this lab we are going to
create our own docker image and we are going to push it to IBM Cloud Private image repository,
then we will use this image to create an application.

This image is a node.js application that we will use in the next lab to demonstrate the out of the
box features of Kubernetes as a “docker container manager”.

1. Create a docker image

Prepare the environment

For this lab we provide two files, app.js with the node.js code and package.json to automate the
build and execution of the node.js with npm.

In case you don’t have app.js and pacakage.json files in your environment they are in the Appendix
section of this document.

Copy / create them in a folder with name “node”.

osboxes@osboxes:~$ pwd
/home/osboxes

osboxes@osboxes:~$ mkdir node

osboxes@osboxes:~$ vi node/app.js
osboxes@osboxes:~$ vi node/package.json

osboxes@osboxes:~$ ls node
app.js package.json

Create the dockerfile to create our image.

osboxes@osboxes:~$ vi hellonode.dockerfile

osboxes@osboxes:~$ cat hellonode.dockerfile

 40

FROM debian:8.7

RUN apt-get -y update && apt-get install -y curl

RUN curl -sL https://deb.nodesource.com/setup_6.x | bash -
RUN apt-get install -y nodejs

RUN mkdir /app
ADD ./node/app.js /app
ADD ./node/package.json /app
RUN cd /app && npm install

ENV PORT 8080
EXPOSE 8080
WORKDIR "/app"
CMD ["npm", "start"]

With this docker file what we do is to create a new docker image from a from a debian docker
image in dockerhub. This is the line “FROM debian:8:1”.

Then we install node and copy our files inside the image.

Finally we say to the image that it has be started with the command /app/npm start

Create the image

At this moment we have these images in our local repository:

osboxes@osboxes:~$ sudo docker images | grep -v ibmcom
REPOSITORY TAG IMAGE ID CREATED SIZE
nginx latest 3f8a4339aadd 5 weeks ago 108MB
hello-world latest f2a91732366c 2 months ago 1.85kB
nginx 1.13.1 c246cd3dd41d 7 months ago 107MB

Create our hellonode docker image.

osboxes@osboxes:~$ pwd
/home/osboxes

 41

osboxes@osboxes:~$ sudo docker build -t hellonode:1.0 -f hellonode.dockerfile .
...
...
Successfully built 84ed3945077c

If we execute again docker images we will see debian:8.7 and hellonode:1.0

osboxes@osboxes:~$ sudo docker images | grep -v ibmcom
REPOSITORY TAG IMAGE ID CREATED SIZE
hellonode 1.0 595463fa00bb 22 seconds ago 227MB
nginx latest 3f8a4339aadd 5 weeks ago 108MB
hello-world latest f2a91732366c 2 months ago 1.85kB
nginx 1.13.1 c246cd3dd41d 7 months ago 107MB
debian 8.7 054abe38b1e6 9 months ago 123MB

2. Publish the image to IBM Cloud Private

In the IBM Cloud private list the images.

Login in IBM Cloud private.

https://192.168.142.100:8443

List the images:

 42

As this is a fresh installation the user does not have any image yet, all the images used in previous
labs where in dockerhub repository.

Using docker push command we will publish hellonode image to the IBM Cloud Private repository.

Tag the image

First we need to tag the docker image, with the tag name docker will know where to push the
image.

osboxes@osboxes:~$ sudo docker tag hellonode:1.0 mycluster.icp:8500/default/hellonode:1.0

osboxes@osboxes:~$ sudo docker images | grep -v ibmcom
REPOSITORY TAG IMAGE ID CREATED SIZE
hellonode 1.0 595463fa00bb 4 minutes ago 227MB
mycluster.icp:8500/default/hellonode 1.0 595463fa00bb 4 minutes ago
227MB
nginx latest 3f8a4339aadd 5 weeks ago 108MB
hello-world latest f2a91732366c 2 months ago 1.85kB
nginx 1.13.1 c246cd3dd41d 7 months ago 107MB
debian 8.7 054abe38b1e6 9 months ago 123MB

mycluster.icp:8500/ is the hostname pointing to IBM Cloud Private image repository.
default is the namespace
hellonode is the image name
1:0 is the version tag

Login to the repository and push the image

osboxes@osboxes:~$ sudo docker login mycluster.icp:8500
Username (devuser): admin
Password:
Login Succeeded

osboxes@osboxes:~$ sudo docker push mycluster.icp:8500/default/hellonode:1.0

Now in the IBM Cloud Private console you can see the image.

 43

The Scope determines if this image can be seen in any other namespace or just in the current one.
By default it is configured with scope “namespace” what means that it can only be used from the
current namespace.

3. Create an application

As we did in the previous create a new deployment and service using the “Create Resource”
option.

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
 name: hellonode
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: hellonode
 spec:
 containers:
 - name: hellonode
 image: mycluster.icp:8500/default/hellonode:1.0
 imagePullPolicy: IfNotPresent

Pay attention to the image property “image: mycluster.icp:8500/default/hellonode:1.0”, now we
are using the internal docker image repository.
Also the property “replicas: 1”, we will use it latter.

 44

kind: Service
apiVersion: v1
metadata:
 name: hellonode
 labels:
 app: hellonode
spec:
 type: NodePort
 ports:
 - protocol: TCP
 name: node
 port: 8080
 targetPort: 8080
 selector:
 app: hellonode
 clusterIP: ''
 sessionAffinity: None

 45

In this script the port is 31491 but it will be different in each case. It is recommended you take
note of your port to use it in the rest of the labs.

 46

Lab 5. Helm Catalog

Helm is a tool that streamlines installing and managing Kubernetes applications. Think of it like
apt/yum/homebrew for Kubernetes.

Use Helm to:

 Find and use popular software packaged as Kubernetes charts
 Share your own applications as Kubernetes charts
 Create reproducible builds of your Kubernetes applications
 Intelligently manage your Kubernetes manifest files
 Manage releases of Helm packages

Helm uses a packaging format called charts. A chart is a collection of files that describe a related
set of Kubernetes resources. A single chart might be used to deploy something simple, like a
memcached pod, or something complex, like a full web app stack with HTTP servers, databases,
caches, and so on.

Charts are created as files laid out in a particular directory tree, then they can be packaged into
versioned archives to be deployed.

https://github.com/kubernetes/helm/blob/master/README.md
https://github.com/kubernetes/helm/blob/master/docs/charts.md

By default ICP comes with a HELM repository to access and Install IBM software, but it is possible
to add external repositories with helm charts for third party software.

Deploy MQ in IBM Cloud Private

Access to ICP HELM Catalog

 47

Look for mq and click on the chart

Take a look at the documentation and click on configure

 48

Set this configuration:

Release name: mymq
Target namespace: default
Check the box "I have read and agreed to the license agreements"
Uncheck the box "Enable persistence"
Service type: NodePort
Queue manager name: qmgr
Admin password: admin

 49

Click Install and when finished click on “View Hel Release”

Click on “mymq”

In the installation sever kubernetes objects where created. Take note of the port assigned to 9443,
in this case 32178

Access to the admin console and login with admin / admin

 50

https://192.168.142.100:32178/ibmmq/console

Adding HELM Repositories

Manage HELM Repositories:

 51

By default there are two repositories.

Ibm-charts is the repository we have just used where are all the carts to install IBM software

Local-charts is an internal repository where ICP users can register their own charts.

Click on “Add repository” to add an extern repository

Add the repository https://kubernetes-charts.storage.googleapis.com/

 52

Go to the HELM Catalog and check the new charts.

 53

Custom Chart
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0/app_center/add_package.htm

A chart is a zip file of kubernetes objects as the files we used in previous labs to create deployment
and service objects.

Access to the url https://github.com/jxadro/ICP_PoT/tree/master/custom-chart-app

 54

This is the structure of a chart.

Inside the folder “templates” resides all the objects that are going to be created during the char
installation. It can be as many objects as needed. Although in this case there is only one
deployment if we would install a microservice application there would be several deployments.

These files use external parameters so the user can set the desired values during the chart
installation:

 55

The default values are taken from the file values.yaml

 56

Lab 6. Configure Kubernetes to manage the application

List the pods.

kubectl get pods
NAME READY STATUS RESTARTS AGE
hellonode-546947b56f-hvq77 1/1 Running 0 18m
....

See that the hellonode pod has not been restarted anytime yet. RESTARTS = 0

 57

Automatic restarts

Invoke /kill , The /kill method executes the sentence “process.exit();” what makes the node.js
process quit and finish the container.

After invoking /kill, if you execute in the command line kubectl get pods, you will see that the
hellonode pod has status completed and 0/1 Ready. But as when we deployed the Application we
set that we wanted 1 replica active, when kubernetes detects that there are less replicas active
than the number configured it automatically restarts the pods.

So if you execute again get pods you will see that the hellonode pod has ready 1/1, status running
and 1 restart.

In case of deleting the pod, kubernetes will create a new one:

 58

Query application health

We want kubernetes to ask the application its status, if it does not return a 200 OK, Kubernetes
will restart the Application.

In the node.js application we used to create our hellonode docker images we have two methods:

app.get("/infect", function(req, res, next){
 isHealthy = false;

app.get("/health", function(req, res, next){
 if(isHealthy)
 res.send("GREEN");
 else
 res.status(500).send("RED");

So after invoking the infect method, the app will start returning HTTP 500 code.

First we need to configure our Application to poll the application status.

Edit the hellonode application in the IBM Cloud Private console:

 59

Modify the deployment descriptor to add the element livenessProbe, this element is used by
kubernetes to poll the application asking for the status, in case it does not return 200 OK the
Application will be restarted.

 "livenessProbe": {
 "httpGet": {
 "path": "/health",
 "port": 8080
 },
 "initialDelaySeconds": 5,
 "periodSeconds": 10
 },

Wit this configuration kubernetes will invoke the operation /heath in periods of 10 seconds, if
three consecutives times the application does not returns 200 OK, kubernetes will restart the
Application.

In the command line execute kubectl get pods and see the logs

 60

Take note of the number of restarts.

Invoke /infect method.

(See that the port does not change after restarting the pods, that is the objective of the
kubernetes service objects, they automatically reflect and balance the traffic to the application
configured in the service selector)

Look at the logs. After the method /health is invoked three times returning RED the Application
will be restarted.

 61

AutoScale

Create a policy to scale your application, you can configure IBM Cloud private to scale the
Application based on CPU Usage.

Before creating a new policy take note of the current number of replicas:

Go to Workload -> Scaling Policies

 62

Create a new policy:

YAML:

 63

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: hellonodescale
 namespace: default
spec:
 scaleTargetRef:
 kind: Deployment
 name: hellonode
 apiVersion: extensions/v1beta1
 minReplicas: 2
 maxReplicas: 5
targetCPUUtilizationPercentage: 20

If you go to the deployments you will see that kubernetes is scaling the application to 2 pods as it
is the minimum specified in the new policy

Now we are going to query the application in an infinity loop to generate load and make that the
CPU consumed by the application grows beyond 20%. But first we need to set the CPU required by
the application/deployment.

 64

"resources": {
 "requests": {
 "cpu": "100m",
 "memory": "100Mi"
 }
},

Query the application.

 65

for ((i=1;10<=100;i++)); do curl -H "Connection: close" --connect-timeout 1 --connect-timeout 1
http://192.168.142.100:31491/; done

With the commands “kubectl describe horizontalpodautoscaler hellonodescale” you can get the
status of the policy. You can see the current percentage of CPU used and the actions taken.

From Kubernetes 1.6 it is possible to user more metrics than CPU % usage.

Rollouts. Update without down time.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-
deployment

In this section we are going to change the docker image version used by an
application/deployment. Kubernetes does it progressively without downtime.

Remove the policy we created in the previous lab and set the number of replicas to 5. The biggest
number of replicas the smoother the rollout will be.

 66

We are going to create a new version of our hellonode docker image used in Lab3.

Go to the command line and edit the file ./node/app.js

osboxes@osboxes:~$ pwd
/home/osboxes
osboxes@osboxes:~$ vi ./node/app.js
osboxes@osboxes:~$ cat ./node/app.js
...
...
app.get("/", function(req, res, next){
 logger.info("operation / invoked...");

 67

 res.send("I'm alive - 2 !!! ");
});
...
...

Create the docker image with version tag: 2.0

osboxes@osboxes:~$ sudo docker build -t mycluster.icp:8500/default/hellonode:2.0 -f
hellonode.dockerfile .

Push the image to IBM Cloud private image repository:

osboxes@osboxes:~$ sudo docker push mycluster.icp:8500/default/hellonode:2.0

Check the available images in our repository:

To be able to rollout the application without downtime we need to add the property
“readinessprobe” to our application/deployment.

This property tells kubernetes how to check when the application is ready so kubernetes will
enable the new pod IP in the service object only when the app is ready and not when just the
container is ready.

Edit the Application:

 68

Add the following element:

"readinessProbe": {
 "failureThreshold": 3,
 "httpGet": {
 "path": "/",
 "port": 8080,
 "scheme": "HTTP"
 },
 "initialDelaySeconds": 5,
 "periodSeconds": 2,
 "successThreshold": 1,
 "timeoutSeconds": 1
 }

 69

Double check you removed the scaling policy and you scale the application to 5 instances.

Open one terminal and execute the command: kubectl rollout status deployment/hellonode

You see the result of our last update (rollout).

Open other terminal and query the application:

for ((i=1;10<=100;i++)); do curl -H "Connection: close" --connect-timeout 1 --connect-timeout 1
http://192.168.142.100:31491/; done

I’m alive!!! is the only message corresponding to the version 1.

Edit the application/deployment and change the docker image version.

 70

Execute again the command kubectl rollout status deployment/hellonode, you will see how
kubernetes rollout your application

 71

And in the logs you will see first a mix of messages and then only I’m alive -2 !!! messages.

We can control how the rollout update is done with the property “strategy”. For example:

"strategy": {

 72

 "type": "RollingUpdate",
 "rollingUpdate": {
 "maxUnavailable": 1,
 "maxSurge": 1
 }
 }

This element means that during a rollout as maximum (maxSurge) there can only be 1 more pod
than the replicas configured. And that as maximum (maxUnavailabe) there can only be 1 pod less
available than the replicas configured.

So in the Application status we will never see more than 6 as current and less than 4 as available.

In the application details:

We see the scale up and scale down events.

 73

Lab 7. Logging

By default docker and kubernetes can access to the logs that a container prints to its STDOUT.
There are also options to access to internal or custom containers logs.

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0/manage_metrics/logging_elk.
html

Command line

List the pods.

kubectl get pods

Tail the logs.

kubectl logs –f kubectl logs -f hellonode-665cff556-pv7g2

 74

ICP Console

Go to deployments and select your application/deployment.

Select the tab “Logs” and review the logs of the pods of your deployment.

ELK

With ICP a you have out of the box an ELK installation to manage your application logs.

 75

Open Kibana UI

The Kibana console is open. The first action is to configure an index:

 76

Click on “Discover” and you will see the logs of all the containers in the cluster

Create a filter

 77

And click “Add” to the log label

Now you see all the logs of you application.

From the helm catalog in ICP you can deploy your own ELK instances with the custom scope and
configuration needed in your infrastructure or projects

Lab 8. Monitoring

ICP uses out of the box Prometheus and Grafana to monitor the state of your Kubernetes cluster
and the containers running on it

https://prometheus.io/

https://grafana.com/

 78

Basically you visualize with Grafana the metrics collected in Prometheus.

Go to Monitoring

By default there are some dashboards created, access to “ICP 2.1 Performance” dashboard.

 79

Import a new dashboard.

 80

In a browser load the page https://github.com/jxadro/ICP_PoT/blob/master/App%20Monitoring-
1511965974320.json and copy the json.

Paste the JSON in the dashboard import section

 81

 82

It is also possible to add datasources to Grafana additionally to the default “prometheus” data
source.

Lab 9. Alerts

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0/manage_metrics/monitoring_
service.html

Access to the alerting console.

 83

By default there are no alerts defined. You can define alerts using any of the metrics collected by
Prometheus.

First we are going to create new alerts and then we will explore how to visualize the available
metrics.

To create new rules we have do it through ConfigMap objects. Edit the rules ConfigMap.

 84

Add the following rules:

"data": {
 "sample.rules": "ALERT NodeMemoryUsage\n IF (((node_memory_MemTotal-
node_memory_MemFree-node_memory_Cached)/(node_memory_MemTotal)*100)) >
25\n FOR 1m\n LABELS {\n severity=\"page\"\n }\n ANNOTATIONS {\n
SUMMARY = \"{{$labels.instance}}: High memory usage detected\",\n
DESCRIPTION = \"{{$labels.instance}}: Memory usage is above 75% (current
value is: {{ $value }})\"\n }\nALERT HighCPUUsage\n IF
((sum(node_cpu{mode=~\"user|nice|system|irq|softirq|steal|idle|iowait\"})
by (instance, job)) - (sum(node_cpu{mode=~\"idle|iowait\"}) by
(instance,job)))/(sum(node_cpu{mode=~\"user|nice|system|irq|softirq|steal
|idle|iowait\"}) by (instance, job)) * 100 > 2\n FOR 1m\n LABELS { \n
service = \"backend\" \n }\n ANNOTATIONS {\n summary = \"High CPU
Usage\",\n description = \"This computer has really high CPU usage for
over 10m\",\n }"
}

 85

Now give it some minutes and refresh the alerting console.

To view the metrics you have to access to Prometheus console. By default it is not exposed so we
have to create a service to expose it.

 86

Click on “Create resource” and create the following service:

apiVersion: v1
kind: Service
metadata:
 name: monitoring-prometheus-nodeport
 namespace: kube-system
 labels:
 app: monitoring-prometheus-nodeport
 component: prometheus
spec:
 ports:
 - name: http
 protocol: TCP
 port: 9090
 targetPort: 9090
 selector:
 app: monitoring-prometheus
 component: prometheus
 type: NodePort
 sessionAffinity: None

Review the NodePort assigned:

kubectl get service monitoring-prometheus-nodeport -n kube-system

Access to the Prometheus console:

 87

Alerts can be pushed to different systems or generally to an HTTP Service.

https://prometheus.io/docs/alerting/configuration/

APPENDIX

Lab3 App.js

var express = require('express');
var log4js = require('log4js');
var http = require('http');
var app = express();
var logger = log4js.getLogger('HelloKube');
var isHealthy = true;

logger.info("Starting...");

setInterval(function(){

 88

 if(isHealthy)
 {
 logger.info("lalala....");
 }
 else
 {
 logger.info("cough...");
 }
},3000);

app.get("/", function(req, res, next){
 logger.info("operation / invoked...");
 res.send("I'm alive!!!");
});

app.get("/env", function(req, res, next){
 res.json(process.env);
});

app.get("/health", function(req, res, next){
 if(isHealthy)
 {

logger.info("operation /health invoked... returning GREEN");
 res.send("GREEN");
 }
 else
 {

logger.info("operation /health invoked... returning RED");
res.status(500).send("RED");

 }
});

app.get("/infect", function(req, res, next){
 logger.info("operation /infect invoked...");
 isHealthy = false;
 res.send("I don't feel that good...");
});

app.get("/kill", function(req, res, next){
 res.send("You are dead...");
 process.exit();
});

 89

var port = process.env.PORT || 8080;

app.listen(port, function(){
 logger.info('HelloKube listening on port ' + port);
});

Lab 3. package.json

{
 "name": "HelloKube",
 "main": "app.js",
 "description": "Listeneint API Connect API Events",
 "version": "1.0.0",
 "private": false,
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "express": "~4.2.0",
 "log4js": "~0.6.15"
 }
}

