
C/S MW and more 1

Antonio Corradi

Academic year 2017/2018

C/S and Middleware, Multicast, and MOMs

University of Bologna

Dipartimento di Informatica –

Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Class of Infrastructures for Cloud

Computing and Big Data M

Modelli 2

REMOTE REFERENCES

In many local environments (in object-oriented system), we
need the capacity of referring to some external resources, in
order to coordinate different machines (virtual or physical)

A C1 on one node must refer to a remote instance, the same as if
they were local instances on the same node

To refer to a remote instance we need some intermediary
support that extends the visibility to remote nodes

In some cases,

local and remote references

are uniformed via

local intermediaries (proxies)

that play the enabling role and

typically mask support

transparently

C1 instance

S1 instance

CLASS server S1

operations

state

Middleware for the integration

S1 instance

and support to DISTRIBUTION

Models 2

Modelli 3

RMI REMOTE REFERENCES

Between two JAVA JVM systems, we can use Java Remote Method
Invocation (RMI) that build two proxies

-one from the customer (stub)

-one on the side of the servant (skeleton)

Such proxies are often
generated automatically
and make the user part
reasoning regardless of
the specific deployments

Similarly other environments

(CORBA, DCOM, etc.)

define their specific support

for OO cases

C1 instance

N1 node

S1 instance

CLASS server S1

operations

state

S1 proxyC1 proxy
N2 node

Middleware for the integration

and support to DISTRIBUTION

Models 3

REMOTE REFERENCES via PROXY

Two Java virtual machines can use PROXIES to get remote
visibility of object references

RMI support many solutions but proposes problems:

- How do you get the reference to the server? (name system)

- Where are the ancillary classes?

- How to obtain them (while running)?

- And if there are any inconsistencies?

- And if the server is not active?

- And if you don't keep the status?

About remote references:

- two references to the same object?

- two references for the same service? …

C1 instance

N1 node

S1 instance

CLASS server S1

operations

state

S1 proxyC1 proxy
N2 node

Middleware for the integration

and support to DISTRIBUTION

Models 4

REMOTE REFERENCES & MIDDLEWARE

A central point in all middlewares that abstract away and
hide details from users for remote access is how to
enable and manage a remote reference in all its aspects

A remote reference allows access to non-local entity must
surely be transparently

But costs must be considered and evaluated for each aspects
of the support mechanism

- How does the remote reference
cost?

- How is the cost of middleware to
support organization?

- How to obtain remote references?

- Are inconsistencies possible?

- What are the responsibilities
of the middleware? …

- …

Client

N1 node

REMOTE Server

operations

state

Local Client

N2 node

Local Client

Middleware to support

EASY TRANSPARENT DISTRIBUTION

Models 5

PROXY
In a communication we may
have intermediaries placed and
deployed either side, the client
and the service provider

PROXY

from client or from server

proxy

C/S stub & skeleton
interceptor

to add functions

broker

something similar to a
container

INTERMEDIARIES & PROXIES

Requests

Client Server

Operations

Proxy C Proxy S

Proxy C Proxy S

broker or link manager
to implement the entitiy dynamic binding

Requests Operations

Client Server

Models 6

CORBA 7

OMG- Object Management Group

CORBA started in 1989 with 440 company Microsoft,
Digital, HP, NCR, SUN, OSF, etc. with main objective to
create a use and management system of a distributed
architecture

Common Object Request Broker Architecture
CORBA standard v1 � 1991, v1.2 � 1992

v2 � 1996, v3 � 2000
Orbix SunOS Solaris, Iris, Windows NT,
HP/UX, AIX, OSF/1, UnixWare
DSOM IBM

General specification of an Object
(component) Middleware to use in
heterogeneous distribute systems
not tied to a specific language

MIDDLEWARE: CORBA as a C/S MW

STANDARD OPEN SYSTEM based on OBJECT
models with heterogeneous components to implement
mutual and complete interaction and integration
between such components, inside distributed
environments also objects oriented (C/S model)

CORBA requires:

• definition of a language as service interface

• definition and support to objects interaction

• integration bus for different environments objects (ORB)

• interaction between systems with different managers

• different deployment languages (language mapping)

The objective is to allow services support without posing

limits on user application lifecycle

MIDDLEWARE: CORBA

C/S MW and more 8

Common Object Request Broker Architecture CORBA, as a
common environment, Object Management Architecture, for
multi-architecture and multi-language scenarios, with an optimal
integration with legacy systems and best support for
differentiated projects for server and clients

Object Request Broker (ORB) is the heart of the architecture and
acts as a broker of communication, to allow both static and
dynamic links (!?) between entities

ORB behave as an always available enabler and allows:

• control of allocation and visibility of objects

• control of methods and of communication

• control of accessory services always available inside OMA for
every language mapping

• simplified management of every possible services

CORBA is middleware to support an infinite lifetime

CORBA ARCHITECTURE

C/S MW and more 9

ORB is the center of Object Management Architecture
ORB as a bus center of an architecture that aims at the
integration among every resources of an organization

CORBA as a BUS

Applications Object

Every managed

application objects

can belong to

different

environments

and must be able

to mutually

communicate

without any need

of redesign

C/S MW and more 10

Other additional environment components

Common Facilities CF (horizontal)
Set of specific features

User Interface (client-site),

System Management, Information, Task (server-site)

Domain Interfaces (vertical)

Features dedicated to application areas, for ex.
manufacturing, telecommunications, electronic
commerce, transportation, business objects,
healthcare, finance, life science, …

Application Interfaces

Non standard in any way and application-dependent

Object Management Architecture

C/S MW and more 11

Ambiente Object Framework

Object Management Architecture - OMA

C/S MW and more 12

Every component can connect to every other one,
preparing link either before or during execution (if
unknown before), using the service of one or more
ORB (known dynamically)

Set of additional environment components

Object Services or CORBA Services (Common Mw Services)

Some operations are basic for object

• naming and trading service (compatible with OO)

• event and notification service (less Object-Oriented)

In addition to further operations (or services)

For lifecycle management, relational, transactional, concurrency
control, security, …

Object Management Architecture

C/S MW and more 13

The essential components of OMA architecture, i.e.,
CORBA, associated to an ORB:

- Object Request Broker (ORB)

- Interface Definition Language (IDL)

- Basic Object Adapter (e POA …) (BOA e POA)

- Static Invocation Interface (SII)

- Dynamic Invocation Interface (DII)

- Interface e Impl. Repository (IR e IMR)

- Integration Protocols (GIOP)

Those components are at very different level

CORBA COMPONENTS

C/S MW and more 14

• Identify implementation of an abject as a servant to
requests (object location)

• prepare the servant to receive the request - via adapter
(object creation, activation & management)

• transfer the request from the client to the servant

• return reply to client

ORB CONTINUOUS SUPPORT

Object Request Broker (ORB) must coordinate invocation
of local and remote services (dynamically)

Application objects

 Object Request broker ORB

Client Server

C/S MW and more 15

Elements in action: overall user view

CORBA: DYNAMIC VISION

view of
CORBA 1.x

not changed
until CORBA 3

 Invocation

Stub
Interface

Dynamic
IDL

ORB

Client
Implementation

ORB CORE

Standard interface for any ORB implementation

Potential multiple object adaptors

One stub & one skeleton for any interface (at least)

ORB-dependent interface

interface
backup call

Skeleton
Static

Adaptor

New, introduced in CORBA 2.0

Skeleton
Dynamic Object

Component

interface

usual downcall

C/S MW and more 16

Interface Definition Language (CORBA IDL) must identify
and coordinate requested and offered services, local and
remote (for either static or dynamic interactions)

• Both servants and clients can identify themselves to make
themselves mutually known

• Both operations request and service offers can be
optimally associated

• CORBA reuse the experience from already developed and
available IDLs for defining a general multi-language IDL

Unfortunately IDL prescribe predetermined identification and
link and statically recognized (CORBA static binding)
And if we want bindings unknown at development time?

COMMON LANGUAGE in CORBA

C/S MW and more 17

Interface Definition Language (CORBA IDL) coordinates requested and
offered services identification, with different languages

interface Factory //OMG IDL

{ Object create(); // CORBA object or reference

};

This interface permits to refer an object of type Factory (IDL) and to request
the create operation (without in or out parameters) that returns a generic
CORBA object (type Object, that is a reference to the object of interface
Object)

IDL makes possible to define new interfaces and new general types and
abstract, by need, to make them available and registered, and eventually
concretely usable inside different language environments

CORBA does not provide any object creation (neither Factory):
the creation is inside language environments and predefined there,
outside CORBA scopes (the same as C does not provide any I/O)

CORBA IDL for MULTILANGUAGE

C/S MW and more 18

The Interface Definition Language (CORBA IDL) allows to
generate support component (stub and skeleton), for
communication and data, inside different languages

The stub enable working on the message from the client
perspective (marshalling) and acting as client proxy

The skeleton collaborate with the ORB accepting service request
and adapting it to the server (unmarshalling), by managing requests
and responses

DEPLOYMENT

Typically, there is a static link between interface - client - servant
(not between client and servant, but between client - service and
service - servant)

The objects inside their different language environments are
bound to the stub and skeleton before execution
(stub and skeleton are objects? no)

CORBA IDL � STUB E SKELETON

C/S MW and more 19

Adapter (Object Adapter) system component to overcome

inhomogeneity and differences among implementation of

different service environments of different servants

(the Adapter does not connect with data presentation)

The Adapter is on the server side, with typical tasks of:

• object registration functions

• object external reference generation

• object and internal process activation even on demand

• requests demultiplexing to uncouple them

• send requests (upcall) to registered objects

Firsts adapters were Basic (BOA), then Portable (POA)

(OA are also CORBA objects? no, as OA are pseudo-objects)

CORBA ADAPTER

C/S MW and more 20

Interface Repository allows to know details about every IDL
data type and to explore interfaces, exported from existent
objects and available during execution

The interfaces are translated to different programming languages
(static binding) where components are defined and compiled
(language mapping)

IR allows to know and manage available interfaces
dynamically and to decide at runtime (dynamic binding)
what is available and convenient

Allows overcoming static approach: for example for a
gateway that allows access to CORBA interfaces of an
environment and cannot be recompiled for every new interface

IR service description system (it is not a naming system)

(IR is an object? yes)

INTERFACE REPOSITORY in CORBA

C/S MW and more 21

In CORBA, ORB is the middle enabler of any (remote) execution
and operation request between different entities

Every request is always delivered via the ORB and then server-side
mediated BY the adapter

The ORB do not know about any type information, that are outside
his scope and contained inside stub, skeleton and language
environment

Interface Repository works as a dynamic catalogue of interfaces
(not necessarily for static stub and skeleton),

And it is present for dynamic explorations at runtime, if it is
necessary to retrieve information on dynamic interfaces

The interfaces must be always registered within the IR at their time of
use and before consultation

In the static case, the IR is generally not needed (its function is plaid
by proxies)

ORB and IR in CORBA

C/S MW and more 22

ORB for communication of objects (intra-ORB)
and also for communication between objects in
different ORBs (inter-ORB)

In one CORBA system or in more CORBA systems
managing different brokers

DIFFERENT ORB SYSTEMS

Application objects

 Object Request broker ORB

Client Server

Application objects

 ORB 1

Client Server

 ORB 2

C/S MW and more 23

CORBA 24

Definition of Inter-ORB standards to establish how to

integrate different CORBA systems without problems

Necessity of standard protocols ORB-to-ORB interoperability

General Inter-ORB Protocol (GIOP) that prescribe a standard

message format

CORBA specifies a protocol between different ORBs in terms of

architecture and data exchange

Binary Communication

protocol: data are optimized

and non user-readable

(no source)

Common Data Representation

(CDR) standard

DIFFERENT CORBA SYSTEMS

Application objects

 ORB 1

Client Server

 ORB 2

GIOP / IIOP protocols

Definition (since version 2) of Inter-ORB Protocols to precisely

the interaction between different CORBA systems

ORB interoperability protocol

General Inter-ORB Protocol (GIOP) - Binary protocol

Common specification of data representation, data format,

interaction with transport messages (semantic assumptions:

reliable, connection, …)

for Internet using TCP/IP - Internet Inter-ORB Protocol (IIOP)

INTER-ORB PROTOCOL: GIOP e IIOP

Application requests

 ORB 1

Client Server

 ORB 2

GIOP / IIOP protocols

C/S MW and more 25

Overall picture of a communication between ORBs

CORBA ARCHITECTURE

C/S MW and more 26

Support components and pseudo-objects

Stub generated from IDL interface for a specific language
Skeleton generated from IDL interface for a specific language

These components realize the Static Invocation Interface SII

The SII consists also of other architecture component, such as
IDL interfaces (to generate stub and skeleton), (interface and
implementation) repositories to find component specifications
and implementation, and object references

The dynamic part is implemented in other pseudo-objects

DII, Dynamic Invocation Interface, or Request object
introduced for client dynamic invocation

DSI, Dynamic Skeleton Interface, or ServerRequest object
introduced for server dynamic invocation

CORBA: PSEUDO-OBJECTS

C/S MW and more 27

ORB acts as a coordinator, as an enabler, and as a
manager of services available on the system

CORBA applications produces objects that become part
of the system beyond application lifetime

The applications and the objects are developed using
different environments to represent stable resources
that can act to request methods and execute operations

ORB intermediates any interaction and

• coordinates requests from client objects, transparently
from the position and the implementation of remote objects

• facilitates and manages communication through the use
of references to existing servant objects

• supports and controls the whole interaction

ORB base functions

C/S MW and more 28

ORB is a fully object interaction enabler, by suggesting
a default blocking synchronous interaction

ORB limits its interaction responsibility by delegating
individual language environments for final execution

CORBA is not responsible for object creation and moving
CORBA employs external remote references that are
externally created by language implementation environments
that must define their service objects (servant)
CORBA obtains remote references via:

• conversion of string references and vice versa (objects
referred and translated into strings - stringification, and vice versa)

• use of objects directory, by using name services
(Trading e Naming service)

• Passing of reference parameters to servants

ORB functions

C/S MW and more 29

INTERFACE DEFINITION LANGUAGE (OMG IDL) has

been introduced to grant flexibility over heterogeneous

platforms

IDL are declarative languages to specify interfaces and

involved data (for API parameters)

Many common IDL are procedural

* OSI ASN.1 / GMDO

* ONC XDR (SUN RPC)

* Microsoft IDL

CORBA IDL is an object-oriented language (derived from C++)

Obviously, different IDLs are not compatible with each other,

even if often are different only for syntax and identification

systems and entity names

CORBA IDL

C/S MW and more 30

CORBA IDL is a purely description language for data

and method interfaces

• description of interfaces definition

• interfaces as set of method and attributes

• multiple inheritance of interfaces

• exception definition

• automatic management of attributes

• mapping for different languages and environments

The compiler can obtain automatically stubs for

clients/servants even using different languages

We must consider different language mapping for

references to servant objects (in different languages)

CORBA IDL

C/S MW and more 31

module Stock
{exception Invalid_Stock {}; exception Invalid_Index {};
const length = 100;

interface Quoter {
attribute float quote; readonly attribute float quotation;
long get_quote(in string stock_name) raises (Invalid_Stock);
};
interface SpecialQuoter: Quoter {
attribute float quotehistory [length];
readonly int index [length];
long get_next (in string stock_name) raises (Invalid_Index);
long get_first(in string stock_name) raises (Invalid_Index);

};
interface CancelQuoter: SpecialQuoter {
long cancelhistory (out float cancelledquote [length])

};
}

CORBA IDL EXAMPLE

C/S MW and more 32

For any attribute, an automatic access function is provided

suited for permitted operations

(_get for readings and _set for writings)

attribute float quote;
float _get_quote ();
void _set_quote (in float q);
readonly attribute ind index;
float _get_index ();

For any exception, the state (completion_status) provides

information on behavior semantics

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

CORBA IDL SUPPORT

C/S MW and more 33

CORBA 34

Language to define CORBA interfaces, independently of a

specific programming language

Naturally it is necessary pass from the abstract CORBA

level to concrete specific languages (language mapping)

CORBA IDL

CORBA specifies

the need of

mapping

environments

Servant creation

is a responsibility

of each language

mapping

CORBA is an environment where we use remote references

and do not move objects (static objects) because of the

heterogeneity of single deployment environment

Remote references allow to request operations to other

components with known CORBA interface

Every object has an interface (coarse granularity)

Interfaces define: attributes, methods, exceptions

(attributes accessed through get and set operations)

(operations with in or/and out arguments)

The interfaces use multiple inheritance

The interfaces can be grouped also within modules

(for logical aggregations)

CORBA IDL ENVIRONMENT

C/S MW and more 35

module BankAccount {

struct transaction { string data; float amount;};

exception RedException {string message;};

typedef sequence <actions> list_ops;

interface Account {

float balance(in string cc);

list_ops bankStatement (in string cc);

void withdrawal (in string cc, in float amount,

out float balance) raises RossoException;

Account accountTwin(); // returns an object };

};

Parameters passed by value (CORBA objects by references)

Problem of parameter handling in out and in out

OTHER CORBA IDL EXAMPLE

C/S MW and more 36

Types in CORBA

Object Reference (references to objects or interfaces)

vs. even with inheritance between CORBA objects

Value (values copy) and Exceptions

Basic values short, long, ushort, ulong, float, double, char, string,

boolean, octet, enum, Any

Constructed values Struct, Sequence, Union, Array

Any as general type that contains any type, primitive or from CORBA

interface (analyzable during execution)

Object by value (CORBA 3)

Objects that cannot be accessed remotely but only passed by copy from

an environment to another one overcoming heterogeneity of different

environments (no remote reference to them)

DATA in CORBA IDL

C/S MW and more 37

TYPES in CORBA IDL

Types in CORBA IDL
Types of CORBA IDL

are than translated

into types of different

programming

languages obtained

for different language

mapping

Type Object (IDL)

represents any type of

CORBA object without

any information of the

specific type

the generic type ANY
can contain any type of
 data, either primitive or

with the feature of giving
dynamically the current type

Type

Object Reference

Types

Prim. Values

Struct

Sequence

Union

Array

Short
Long
Ushort
Ulong
float
double
char
string
boolean
octet
enum

any

Exceptions

ANY generic type

Per invocare operazioni

remote su Oggetti Corba

 built and any CORBA

C/S MW and more 38

CORBA 39

Tools allows to build from CORBA IDL different components,

essential to the project and to execution in different

language mapping

stub and

skeleton

+

file helper

and of other

help (holder)

+ other

operations

From CORBA IDL to Languages

CORBA defines

interfaces (with inheritance), exceptions, methods with objects as
parameters of different types and with different modes (in, out,

in out)

Different languages must add tools, to harmonize their structures

to obtain interface conformance and guarantee run-time

operations (OO languages must integrate inheritance)

Strategy for consistency of concrete language types and

possibility of integrating with the CORBA model

various transformation functions provided automatically

management of types, to put together structures in simple way,

Apart from many other support functions (naming, trading, and

suggested development methodologies) usable by user

CORBA Language mapping

C/S MW and more 40

Use of holders in JAVA as language where are output parameters

for example

public final Class BalanceHolder …

{public float value;

public BalanceHolder() {}

float _read() {return value;}

void _write(float value) {this.value = value;}

};

for out and in out parameters (also other helps: helper)

In general, every language must create anything that is necessary

to foster development inside its environment

CORBA vs LANGUAGES: HOLDER

C/S MW and more 41

Helper use for Language mapping: in Java functions to

• harmonize and treat language types and CORBA types

In Java the CORBA Object type is mapped in

org.omg.CORBA.Object

functions of narrow-ing that transform from the CORBA Object

type to the one defined inside the interface

functions used for managing transformations from abstract

CORBA type for the specific concrete type of interest

• implement various utility functions

functions for reading and writing a type on an object stream

(associated to CORBA interface), to treat type dynamically

during execution, …

Every language must guarantee interoperability with CORBA

CORBA HELPER

C/S MW and more 42

Widely used and still rising

Object Broker DEC

ORB HP

DSOM IBM

Orbix IONA

Visibroker Borland

(DOM Facility)DOE Sun Studio Sun

PowerBroker ExperSoft

JacORB, ... Open source tools

Even if the learning curve is high and there is overhead in
performances

CORBA ENVIRONMENTS AVAILABILITY

C/S MW and more 43

Many variant of the Client/Server model
Novel variants

pull (synchronous non blocking)
(the client get afterwards the result, without waiting for it)

push (synchronous non blocking)

(the server gives the result afterwards to the client that do not wait for it)
delegation waiting for the result (synchronous non blocking)

(the delegate waits for the client and gives it the result)

notification for the result

(the delegate notifies the client that a result is arrived)

events (typically asynchronous, so non blocking)

(an event is generated from producer and advertised to consumers)
provisioning

(other parties can be interested in the call chain, apart from C/S)

NOT ONLY C/S: ADVANCED C/S MODELS

C/S MW and more 44

In a synchronous non blocking model, we may have a
delegated entity for handling the result

We add a new objects, typically called Poll and Call-Back
objects as intermediate entities

Poll Object Call-Back Object

Used for short operations Even long operations and limited and
response time independent from the client life cycle

We should define specifically the organization in any case

DELEGATION – GET THE RESULT…

C/S MW and more 45

Model of MESSAGE exchange
very flexible but primitive, not user friendly
Sometimes the message are only for the synchronization
(signals) without any real data communication (carrying no
information)

Information exchange: properties

a/ synchronous (no / result)

a/ symmetric (the same knowledge of partner)

in/ direct (intermediate entity or not)

Implementation

non/ blocking (un/blocking of the sender)

un/ buffered (non / message queuing)

un/ reliable (with/without message loss)

Models with multiple receivers or group messages

multicast (MX) and broadcast (BX)

MESSAGE EXCHANGE

C/S MW and more 46

MESSAGE EXCHANGE varies a lot in different
systems

Rendez-vous

One to one message exchange that is synchronous,

blocking, symmetric, unbuffered, coupled (more than C/S)

With an intermediate entity (channel, …)

Message exchange typically asynchronous, non blocking,

asymmetric, decoupled (less strict than C/S)

With intermediate entity & receivers group (events, …)

Message exchange typically asynchronous, non blocking,

asymmetric, decoupled and many to many

MODES of MESSAGE EXCHANGE

C/S MW and more 47

C/S vs MESSAGE EXCHANGE

Client/Server

Model with strong coupling
implies co-presence of interacting parties

Mechanism suitable for high-level and simple communication

Very high level (very suitable for application usage)
but not so flexible for differentiated situations,

no Multicast (MX) and Broadcast (BX)

Sender/Receiver message exchange

Model with loose (minimal) coupling
imposes no co-presence of interacting parties

Very flexible, primitive, and expressive mechanism, maybe not so
easy to use

Very low level (and suitable for any system potential usage):
many differentiated modes of usage, even easy support to any
kind of needed communication, e.g., any form of MX and BX

C/S MW and more 48

Communication tools can impose some constraints on
the interacting entities (also no imposition)

These constraints can even induce severe limitations on the interaction
and force knowledge needs sometimes not required

Different ways of coupling
- space
The interacting entities must know each other and be co-located

- time
The interacting entities must be present at the same time (they should
share some intervals of time)

- synchronization
The interacting entities must wait for each other and are subjected to
reciprocal limitations and blocks

Decoupling becomes a factor to enable greater flexibility
and to leverage the potential distribution of the load in a
system

DE / COUPLING

C/S MW and more 49

EVENT and PUBLISH-SUBSCRIBE

Management system

to handle and support events

produces quotes

consumes quotes

PRODUCER

CONSUMER

consumes quotes
PRODUCER

CONSUMER

produces quotes

Decoupling between interacting entities
Events are generated by producers, free of doing it when they
intend to generate events (publish or PUB) without worrying
about delivery

Consumers register their interest in specific events, topics, … (they
have subscribed SUB) and the event support is in charge of the
delivery

Producers and
consumers are
not required to be
present at the
same time

C/S MW and more 50

Different model than a synchronous requests of C/S t
The Framework tends to reverse the control for low level
events
The user process does not wait for result but register with a handling action

Example: Windows asks all processes to provide a waiting loop to serve
with the it is going to raise to them (and send to them)
When the result is produced the event is raised an the process can go on

Responses from the framework
to the user are called
backcall or upcall
They are similar to an
asynchronous event generated
by the framework and that
application must manage
through a handler function
specified by the user

FROM LOCAL EVENTS

Classi esistenti

Available Services and Functions

ADTs

mathematical

GUI

 LOOP

handling

event

internet

database

specific logic
Application

3D rendering

BACKCALL

UPCALL

functions

system

PROGRAM

Event systems have been modeled and designed
without any locality constraints (no coupling)

The model has its strength in the non-locality of interacting
entities only local implementations
Local implementations are not interesting (such as using the sharing on
the same node, between producer and consumer), arbitrary, and not
meaningful downsizing of the model

Develop a system for events not taking into account
the potential decoupling, ...

means to use badly the model properties, one of the
worst things we can do to a technology

If you constrain the events to the co-residence and co-presence
of interacting entities, you produce a deployment that contrasts
with the basic event model

EVENT SYSTEMS (DISTRIBUTED)

C/S MW and more 52

Event systems have been defined to model large
systems and scalable ones
Some indicators are core ones

Cost in distributing events (to limit)

Performance (to optimize)

Scalability (to keep high)

Latency (da limit in time)

Pervasivity of provided services (to keep high)

Independent develop and execution (high)

Fault tolerance (maximal possible)

When you implement event systems you start from viability, to

mean that you grant that the indicators are scalable, in other

words for all distributed implementation indicators keep

acceptable values, possibly ‘costant’… at least tested

EVENT SYSTEMS: INDICATORS

C/S MW and more 53

Primitive events
some events are on/off signals without any content information

interrupt events and signals triggered by low-level handling
functions

Events that carry contents
some contents carry information and one can also filters events
based on interest about specific information

RSS as an example, where there is interest only to specified topic
and users can register to specific interests

Events with quality - Quality of Service
These events can provide differentiated service for different
users: they can persist and be maintained for all or some users, the
delivery can be different depending on receivers, …

Persistent events: users not online do not lose any event, kept to be
delivered a.s.a.p. when they are on

Event priority, e.g., depending on the number of resources devoted to
users

EVOLUTION of EVENTS

C/S MW and more 54

PUB-SUB systems are advanced distributed systems based
on the event model and message exchange to take the best
advantage of the flexibility and the decoupling of interaction

to increase scalability and distribution

The PUB-SUB model has also many other flexible aspects…

Message filtering based on
topic-based: based on a predefined topic (a specific interest
between different channels: such as a specific RSS)

content-based: based on message contents (some keywords or
also some more complex relationships)

type-based: based on message type (in case of different message
types and a selection done on them)

Quality of Servizio (QoS) over messages
Persistency, Priority, Guarantee of maintenance and duration, …

PUBLISH-SUBSCRIBE SYSTEMS

C/S MW and more 55

Real PUB-SUB systems support operations for consumer
subscription

producers called also publishers provide events (they might
ask which are current subscribers)

consumers or subscriber that have subscribed must receive
events, via a notification

an infrastructure must ensure and grant the operations

PUBLISH-SUBSCRIBE SYSTEMS

C/S MW and more 56

TUPLE MODEL for loose and scalable interaction
A general model for communication and synchronization

designed as a shared memory abstraction + communication

A tuple space is a set of structured relationships, organized as a
container for attributes and values for PUB-SUB

On a tuple space tuples can be deposited / extracted high-level
information without causing any interference or incorrectness

A possible relationship: message (from, to, body)

The space is a container of tuple values according to the defined attributes

(the attribute types, here ASCII string)

Tuple values message: {Antonio, Giovanni, msg1}

{Giovanni, Antonio, msg1} {Antonio, Giovanni, msg2} …

There are no constraints on tuples that can be deposited and stay in the space
forever (almost, it is a model) so without time or space limits

DECOUPLED MODELS - TUPLE

C/S MW and more 57

Operations of In e Out on the tuple space

Tuple spaces offer operation always possible and correct for
readers (In consumer) and writers (Out producers) competitors
with access based on attribute contents
Out inserts one tuple in the space and In extracts one tuple from the space

The Out operation emits a tuple on the space available for a match with
an In request and the tuple stays there until it is consumed by one
corresponding In only

The In operation extracts one matching tuple from the space, if exists
If it dose not exists, the In waits until one is received for the match that
is based on pattern on the attribute values

In case of match with multiple tuples, only one is non-
deterministically extracted

Out: message (P, Q, text1)

In: message (?from, Q, ?body)

The In may have name of attributes for larger matches

The In waits for one tuple with the second attribute the string Q, and give to
the consumer the values from(=P) e body(=text1) of the matching tuple

TUPLE - Linda (Gelernter)

C/S MW and more 58

Tuple spaces

The communication is rather decoupled and asynchronous

In time
A producer can deposit tuples and go away, and only after a long time, the
consumer can arrive and get the tuples

In (reciprocal) knowledge (space & synchronization)
The consumers do not know the producers in any way, but only the tuple
contents they cannot interfere in any way with production (one in operation
extract one tuple, other in-s are queued and wait for their matching tuples and
outs operations)

In quality - QoS
Tuple spaces are persistent and their requirement is to maintain deposited
tuples without limit (in memory and time) without any preference for a specific
requesting process

Tuple spaces (local implementation) are available to favor local
communication well formed and with high level operations

Javaspaces, …

DECOUPLING TUPLE

C/S MW and more 59

Communication within a set of processes

Broadcast e Multicast
How to send general messages either to all currently present
processes in the system or to a subset of processes (a group)
in the system?

In a single location you can easily achieve it (in the same LAN)

On different networks and locations, you cannot easily achieve it

expressive incapacity, excess overhead, lack of QoS, ...

There are some semantic problems to solve in multicast
and broadcast
How to cope with the answers (if any)?

- no wait – asynchronous operations

- wait for one answer only

- wait for some answers only (how many?, how long?)

- wait for all answers (how many? how long? When to stop?)

GROUP COMMUNICATION

C/S MW and more 60

IP Broadcast
Broadcast limited and directed (inside local network)

IP Multicast heavier duty and protocol

Multicast for class D addresses

Local Multicast support and …

Internet uses Internet Group Management IGMP protocol since
long ago (RFC 1112 e 2236) to implement local multicast

Often the protocol could operate only on local subnetworks,
and it is implemented in different and not compatible forms

Multicast (more) global support
A multicast is realized by flooding between networks

a packet can traverse a node only once (node with state) and is
sent via any output queue apart from the one where it came in
(how long to keep the state?)

Traditional way of routing with simple and low cost (!) policies

GROUP COMMUNICATION

C/S MW and more 61

One can adopt some basic strategies with mechanisms

For example, we can use an a-priori dimensioning of time-to-live
(TTL) of datagrams (to specify penetration and cost)

TTL=0 local send TTL=1 local to connection

TTL<=32 local to area TTL<=64 local to region

TTL<=128 local to continent TTL>128 global

IP Multicast and the QoS?

How can we be sure that the message has been delivered (beyond
best-effort semantics)?

There is a limited guarantee on IGMP implementations

that is

We do not know if messages were all delivered to all recipients
and in which order

IP GROUP COMMUNICATION

C/S MW and more 62

IGMP as an example of local support to Multicast

(RFC 1112 e 2236)

IP multicast allows to send a unique packet to multiple receiver in
the same locality, by using class D names to identify a group, not
necessarily a local one but spanning a few local networks

The IGMP needs a support from management router

Every local network must hosts at least an IGMP router capable of
managing local incoming and outgoing traffic and it controls the group with
IGMP messages. It is possible to provide more multicast routers

IGMP v1 considers only two simple messages with C/S approach

IGMPQUERY a router periodically verifies the existence of hosts that
answer to a specific IP D address

IGMPREPORT a node signals a state change to the router related to the
group (only join the group and no leave)

GROUP COMMUNICATION

C/S MW and more 63

IGMP v1

Routers are in charge of group management
There is only a join message, but no leave message from the group in v1
Any router has always an active role that require to regularly emit queries:
nodes reply to the query to signal their presence or do not reply (problem
with nodes that answer late to the first join query)

this version requires group operations (only one single report from a
node for a single local network)

IGMP v2 (support for join / leave)
The second version consider the capability of nodes to send a message of
explicit leave (i.e., leave the address group)

Nodes that leave the group must notify the manager

More routers can be in charge of the management

Interference between router is settled with IP numbers order

IGMP VERSIONING

C/S MW and more 64

ROUTING MULTICAST PRINCIPLES

Multicast must employ the least resources as possible
during data transmission to receivers
Some assumptions tend to obtain an optimal use of resources and
to avoid an excess of bandwidth

- single sender support

- variable number of receivers support (up to n), that can be
added or removed dynamically

The main idea is to maximize sharing, so to send only one
copy, instead on N ones, of the same multicast message (1
message cost) instead of different unicast (N message cost)

Derived from assumptions, protocols identify a central tree starting
from the sender with optimal shared paths from sender to
current receivers

The goal is to employ most shared hops as possible from

root to leaves
the continuously changing tree must consider only currently active receivers

and disregard the ones where there are no currently active receivers

C/S MW and more 65

Multicast requires the identification of a (dynamic) tree from
sender to receivers for repeated forwarding

the sender is the root of the tree, the intermediate routers are
the intermediate nodes and identify subtrees, the receivers are
the leaf nodes in the tree

- an open group of nodes with a single sender

- the group membership is dynamic

- leaves are responsible for joining the group

- shared paths optimize bandwidth

The tree is extremely dynamic
Consider the case where

an host S transmits and B and E

are in the receiver group

ROUTING MULTICAST (STABLE)

S

B

C

E F

RS

RB

R
C

RE RF

RD

C/S MW and more 66

We consider only routers as participants (no nodes) and
we want to build a tree from the interconnection graph

First step (request for leaf identification: root to leaves)

We want to build a tree (a spanning tree) that connects root to
known leaf nodes, typically by using unicast routing protocol
information and organizing and aggregating paths

We start sending a flooding message towards every possible
recipient with the main objective of creating a bone multicast

The root identifies shortest paths by building it from replies from
receivers

some receivers nodes are
reached through multiple paths

MULTICAST: SPANNING TREE

RS

RB

RC

RE RF

RD

C/S MW and more 67

Second step (go back from leaves to root)
Every leaf signals direct paths (backwards) and can also identify
new paths (even not shortest) for going from root to leaves

minimal path messages are sent backward from leaves to root

only some paths are selected, other are discarded

some shortest path messages from the source are sent back in a
larger scope: they are forwarded from leaves on all exit links,
except the one where it was coming (to identify other better
paths not traversed from root to leaves)

Reverse path forwarding (backward path)
For every router reached from several
path, the root can so select the best

Re is reached from Rd but it can try to identify
other routes in order to determine
new shared parts

MULTICAST: MULTIPLE PATHS

RS

RB

RC

RE RF

RD

C/S MW and more 68

Normal routing: normal routing operation must work
continuously while tree identification is ongoing…
Distance Vector

Next hop information must be used (or use poisoned reverse) in order to block
too long paths

Link State

All shortest path trees must be built for every node and use “tie break” rules to
settle conflicts

Reverse Path Broadcast (2 step) for

deleting Multiple Paths

Leaves send a broadcast towards the root

during normal routing operations

The root receive new paths and can

reorganize the tree trying to aggregate

several sub-paths and produce an

optimal tree

MULTICAST in ACTION

RS

RB

RC

RE RF

RD

C/S MW and more 69

Reverse Path Broadcast allows to choose between different

paths to organize the optimal tree, while minimizing the number of

sent messages and used bandwidth

With a broadcast from leaves (the Reverse Path Multicast) it is

possible to find paths, connecting leaves with the root, that have not

been previously explored

It is up to the root to choose the best tree organization

Reverse Path Multicasting

(RPM) to reorganize

the tree (even with

a high cost)

REVERSE PATH BROADCAST

RS

RB

RC

RE

RD

a) RS

RB

RC

RE

b)

C/S MW and more 70

PRUNING and GRAFT

routers that have no receivers connected are excluded with
‘cut’ messages that flows throughout the tree

The tree must be rebuilt in case of any modification

Reverse Path Multicasting

(RPM) autonomously done

by the leaves to consent

PRUNING - from a) to b)

and reinserting parts

of the tree

GRAFT - from b) to a)

MULTICAST: PRUNING and GRAFTING

RS

RB

RC

RE

RD

a) RS

RB

RC

RE

b)

C/S MW and more 71

Reverse Path Multicasting from leaves to root (not a broadcast)

• used in a lot of multicast protocols

• keeps the state for communication per-sender, per-group

Networks with no members are pruned out from the tree and new
ones can reenter the group (explicit graft from the bottom) without
reorganizing the tree from scratch

The state (software) is
kept for a limited and
predetermined time

SOFT-STATE

The definition of the RPM

time interval is critical

REVERSE PATH MULTICAST

RS

RB

RC

RE

RD

RS

RB

RC

RE

C/S MW and more 72

There are many different routing multicast protocols,
incompatible with each other, even in competition between
themselves and supported by different communities

DVMRP (RFC 1075) Distance Vector Multicast Routing Protocol

Employs RPM, based on a modified version of RIP and very used in

MBONE (multicast backbone)

Update messages are sent using special paths (tunnel) and using only
some nodes

MOSPF (RFC 1584) Multicast Open Shortest Path First Protocol

Extends link-state, suitable for big networks, based on RPM and soft-state

It starts from networks map and uses them to calculate shortest path to
every single destination

It optimizes the trees and removes not used paths

DIFFERENT MULTICAST PROTOCOLS

C/S MW and more 73

PIM (RFC 2117) Protocol Independent Multicast Protocol

Uses any unicast protocol in different ways so to suit different systems

Scattered intended when there is a low probability of multiple nodes on the
same LAN and Dense where there are many neighbors routers

Scattered: removing the most number of intermediate router to simplify
the tree structure

Dense: use of flooding and prune, simplified with regard to DVMRP

CBT (RFC 2201) Core Based Trees

suitable for an organization based on core routers to choose

Some nodes are fixed (core) and trees are unified without defining a
per-sender or per-group state

It is possible to use sub-optimal tree organizations to avoid reorganizing
connection for every multicast reconfiguration

MANY STANDARD MULTICAST

C/S MW and more 74

MULTICAST PROTOCOLS

C/S MW and more 75

Message Oriented Middleware (MOM)
Data and code distribution via message exchange between
logically separated entities

Typed & un-typed message exchange with ad-hoc
tools both synchronous and asynchronous

• wide autonomy between components

• asynchronous and persistency actions

• handler (broker) with different strategies and QoS

• easy in multicast, broadcast, publish / subscribe

Example: Middleware based on messages and queues
MQSeries IBM, MSMQ Microsoft, JMS SUN, DDS, MQTT,
RabbitMQ, Active MQ, …

MOM MIDDLEWARE

C/S MW and more 76

The specific deployment and the interconnection graph
(OR) is always static (without the need of a name system)

Network overlay model between different applications with
specific support in distributed environment

Necessity of high-level Routing (as in ONs, but static)

Data treatment while communicating between different
environments

Predefined and static participating entities

Centralized model

MOM with a central node as hub-and-spoke that is responsible of
support and pass messages between different clients

Distributed model

MOM is located on any client node to form a static ON network,
that operate through P2P communication messages between
nodes in need of communication

MOM DEPLOYMENT

C/S MW and more 77

MOMs provide simple and efficient services

Communication operations available
via local ad-hoc API

MOMs put together different

nodes and provide services

on different fruition nodes

arranging queues for the support

of every communication

MOMs as integrators

use of routers, their

interconnection and

format conversion

MIDDLEWARE MOM

C/S MW and more 78

MOMs use queues local to interested nodes

Inbound and outbound queues on interested different
machines (connected in an univocal way)

Queue managers guarantee the expected operation level
and message forwarding

Routing system to connect different queues
(as an overlay network for application level routing)

MESSAGE-ORIENTED MIDDLEWARE

MOM Core

client application application tool

inbound
queue

Message-Oriented Middleware
(MOM)

queued
messages

Copyright Springer Verlag Berlin Heidelberg 2004
C/S MW and more 79

By following a ‘Glue’ model

MOMs keep together different autonomous systems and
organize their specific interconnection

Relay are intermediate entities that allow the implementation to
scale and to organize high level routing

Message Broker are entities able to support message content
transfer between environments with different representations

The MOM operations use not only asynchronous point-to-
point messages, but also many-to-many communications

The realization cost must be limited and reduced:
the main objective is to fast integrate existent legacy
systems

MIDDLEWARE MOM or GLUE

C/S MW and more 80

MOM proposal very popular and supported

Typically, the interconnection graph (routing) is controlled
by an always static and inflexible system management (no
name servers and no dynamicity)

Application level messages are managed by a queue
manager
Processes interact through API RPC to put/extract messages
from local queues

Transfers are enabled by unidirectional channels managed
by Message Channel Agents that deal with all details
(different delivery politics, message type, etc.)

MCA coordination is offered via primitives that should
enable flexible coordination (different activation policies, duration,
maximum allowed cost, state persistence, etc.)

MOM: MQSeries IBM

C/S MW and more 81

For the deployment, the system administrator defines the

appropriate interconnections by using routing tables, at the

configuration time

MQSeries IBM – Websphere part

C/S MW and more 82

To achieve the best integration, an MQ Broker can operate on

the messages by:

• modifying formats

• organizing routing based on contained information;

• working on application information, to specify action sequence

MQSeries IBM: Broker

C/S MW and more 83

