
Docker Ecosystem and Tools

Imola, 18/06/2018

↘ Speakers: Davide Zanetti
↘ Stefano Monti
↘ Enrico Grillini

Agenda

1. Containers & Docker ecosystem

1. Docker basics

2. Docker basics - hands on

3. Web GUIs (e.g Portainer) & Debug

4. Docker-compose

5. Docker-compose - hands on

2. Orchestration tools

1. Overview

2. Kubernetes

2

Agenda

1. Containers & Docker ecosystem

1. Docker basics

2. Docker basics - hands on

3. Web GUIs (e.g Portainer) & Debug

4. Docker-compose

5. Docker-compose - hands on

2. Orchestration tools

1. Overview

2. Kubernetes

3

Virtualization vs Containerization

4

PHYSICAL INFRASTRUCTURE

HOST OS

HYPERVISOR

GUEST

OS

LIBS/BIN

APP

GUEST

OS

LIBS/BIN

APP

GUEST

OS

LIBS/BIN

APP

VIRTUAL

MACHINE

Virtualization vs Containerization

5

PHYSICAL INFRASTRUCTURE

HOST OS

HYPERVISOR

GUEST

OS

LIBS/BIN

APP

GUEST

OS

LIBS/BIN

APP

GUEST

OS

LIBS/BIN

APP

PHYSICAL INFRASTRUCTURE

HOST OS

DOCKER ENGINE

LIBS/BIN

APP

LIBS/BIN

APP

LIBS/BIN

APP

VIRTUAL

MACHINE

Virtualization vs Containerization

6

PHYSICAL INFRASTRUCTURE

HOST OS

HYPERVISOR

GUEST

OS

LIBS/BIN

APP

GUEST

OS

LIBS/BIN

APP

GUEST

OS

LIBS/BIN

APP

PHYSICAL INFRASTRUCTURE

HOST OS

DOCKER ENGINE

LIBS/BIN

APP

LIBS/BIN

APP

LIBS/BIN

APP

VIRTUAL

MACHINE

CONTAINER

Containerization vs Virtualization

7

▪ containers include an application/service together with its dependencies

▪ containers share kernel with other containers

▪ containers run as isolated processes

▪ higher efficiency w/r to virtualization

▪ images are the cornerstone in crafting declarative/automated, easily repeatable,

and scalable services and applications

Running Docker on Windows/MacOS (as of 03/2018)

8

▪ On Windows (Windows 10 Pro 17.09 «Falls Creator Update»):

▪ «Docker for Windows» official tool

▪ Linux containers → run on a Hyper-V Linux VM

▪ Windows containers → run on a Hyper-V «Windows server kernel» VM

Limitation: other hypervisors (eg. VirtualBox) cannot run if Hyper-V if

enabled

▪ On Windows Server (Windows Server 2016)

▪ native Windows Server Containers (no need for VM)

▪ On MacOS: «Docker for Mac» official tool

▪ run Linux containers on a HyperKit VM

▪ ... or you can always manually create a Linux or Windows Server VM with

VirtualBox/VMWare with shared folders and install Docker on it

What is Docker?

An open platform for distributed applications for
developers and sysadmins

Docker allows you to package an application with all of
its dependencies into a standardized unit for software
development.

https://docs.docker.com/engine/

9

https://docs.docker.com/engine/

What is Docker?

▪Docker consists of:
▪ The Docker Engine - our lightweight and powerful open

source containerization technology combined with a work
flow for building and containerizing your applications.

▪ Docker Hub - our SaaS service for sharing and managing
your application stacks.

10

https://hub.docker.com/

Docker inception

11

▪ 2013: Docker comes to life as an open-source project at dotCloud Inc.

▪ 2014: company changed name to “Docker Inc.” and joined the Linux Foundation

▪ 2015: tremendous increase in popularity

▪ Today:

https://blog.docker.com/2018/03/5-years-later-docker-journey/

https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls/

Docker - Under the hood

▪ Standard Bodies: Open Container Initiative (OCI), Cloud Native Computing Foundation

(CNCF)

▪ OCI Image specification

▪ OCI Runtime Specification

▪ runc runtime (formerly libcontainer)

▪ an abstraction/unification layer to decouple Docker from kernel-specific

container features (e.g. LXC, libvirt, ...)

▪ The Docker Images:

▪ copy-on-write filesystems (e.g. AUFS)

▪ The Go programming language

▪ a statically typed programming language developed by Google with syntax

loosely based on C

12

Docker Architecture

13

▪ Docker daemon – The Docker daemon listens for Docker API requests and manages Docker objects

such as images, containers, networks, and volumes.

▪ Docker client – The Docker client (docker) is the primary way that many Docker users interact with

Docker. When you use commands such as docker run, the client sends these commands to the docker

daemon, which carries them out.

▪ Docker registries – A Docker registry stores Docker images. Docker Hub and Docker Cloud are

public registries that anyone can use, and Docker is configured to look for images on Docker Hub by

default. You can even run your own private registry. Docker registries are the distribution component of

Docker.

Docker objects

Docker images
A Docker image is a read-only template. For example, an image could contain an

Ubuntu operating system with Apache and your web application installed. Images
are used to create Docker containers. Docker provides a simple way to build new
images or update existing images, or you can download Docker images that other
people have already created. Docker images are the build component of Docker.

Docker containers
Docker containers are similar to a directory. A Docker container holds everything

that is needed for an application to run. Each container is created from a Docker
image. Docker containers can be run, started, stopped, moved, and deleted. Each
container is an isolated and secure application platform. Docker containers are
the run component of Docker.

14

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

LOCAL HOST

15

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

CONTAINER A1 CONTAINER A2

CONTAINER B CONTAINER C

LOCAL HOST

16

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

CONTAINER A1 CONTAINER A2

CONTAINER B CONTAINER C

DOCKER REGISTRY

LOCAL HOST

REPOSITORY

REPOSITORY

IMAGE 1 IMAGE 2

IMAGE N IMAGE M

DOCKER HUB

17

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

CONTAINER A1 CONTAINER A2

CONTAINER B CONTAINER C

DOCKER REGISTRY

LOCAL HOST DOCKER HUB

REPOSITORY

REPOSITORY

IMAGE 1 IMAGE 2

IMAGE N IMAGE M

DOCKER HOST

DOCKER DAEMON

IMAGE 6 IMAGE 7

CONTAINER X

CONTAINER Y

DOCKER REGISTRY

REMOTE HOST PRIVATE REGISTRY

REPOSITORY

IMAGE 6 IMAGE 7

18

Docker Container Lifecycle

19

Docker images

20

ubuntu:15.04

d3a1f33e8a5a 188.1 MB

c22013c84729 194.5 KB

d74508fb6632 1.895 KB

91e54dfb1179 0 B

Random UUID
holds all container-specific

writes and deletes

Cryptographic

content-based

hashes

IMAGE

LAYERS (R/O)

CONTAINER

LAYER (R/W)

Docker Images

21

▪ Docker images are read-only stacks of layers → copy-on-write approach

▪ each layer is uniquely identified by a cryptographic content-based hash (>=v.1.10)

▪ collision detection mitigation

▪ strong and efficient content comparison mechanism

▪ This approach is hugely beneficial

▪ efficient disk usage

▪ each new layer keeps only differences from preceding layers

▪ layers can be shared among images, e.g. “base” layers such as OS layers

(fedora:latest, ubuntu:latest)

▪ ease of modification

▪ new images may be built by simply stacking new layers on top of

preceding ones, leaving the below layers unmodified

Docker Images - Naming convention

22

[hostname[:port]]/[username]/reponame[:tag]

Hostname/port of registry holding the image. If missing, defaults

to Docker Hub public registry.

Username. If missing, defaults to library username on Docker

Hub, which hosts official, curated images.

Reponame. Actual image repository.

Tag. Optional image specification (e.g., version number). If

missing, defaults to latest.

Docker CLI

23

▪ docker pull – get image from registry
$ docker pull imagename

copy image from registry to localrepo

▪ docker build - builds an image from a Dockerfile
$ docker build .

builds a new image based on a Dockerfile located on the current directory (.)

$ docker build -t imagename .

builds a new image based on a Dockerfile located on the current directory (.) and names that image as

imagename

▪ docker run - runs a command in a new container, based on a specific image
$ docker run hello-world

runs the default command on a newly created container, based on the public hello-world image

$ docker run -it ubuntu /bin/bash

runs the bash command interactively on a newly created container, based on the public ubuntu image

$ docker run -d tomcat:8.0

runs the default command (catalina.sh) on a newly created container, based on the public tomcat V.8.0

image, and detaches (-d) it to background

▪ docker stop - stops a running container
$ docker stop containerId

stops container identified by containerId

▪ docker start – starts a stopped container
$ docker start containerId

start container identified by containerId

Docker CLI

24

Docker CLI

25

▪ docker exec – runs a command in an already running container
$ docker exec -it containerId /bin/bash

runs the bash command interactively on container containerId

▪ docker container – manage container
$ docker container comando

▪ List containers

$ docker container ls docker ps

lists running containers

$ docker container ls –a docker ps –a

lists all containers (including stopped ones)

▪ Remove container

$ docker container rm containerName

remove container containerName docker rm containerName

Docker CLI

26

▪ docker image – manage image
$ docker image comando

▪ List containers

$ docker image ls docker images

lists images

▪ Remove image

$ docker image rm imageName

remove image imageName docker rmi imageName

Docker images

27

Browse https://hub.docker.com/_/httpd/

docker pull httpd

docker history httpd

docker run httpd

docker ps

docker stop ???

docker rm ???

Browse https://hub.docker.com/explore

https://hub.docker.com/_/httpd/
https://hub.docker.com/explore

Dockerfile example - PostgreSQL

28

FROM ubuntu

MAINTAINER SvenDowideit@docker.com

RUN apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-keys B97B0AFCAA1A47F044F244A07FCC7D46ACCC4CF8

RUN echo "deb http://apt.postgresql.org/pub/repos/apt/ precise-pgdg main" > /etc/apt/sources.list.d/pgdg.list

RUN apt-get update && apt-get install -y python-software-properties software-properties-common postgresql-9.3 postgresql-client-9.3

postgresql-contrib-9.3

USER postgres

RUN /etc/init.d/postgresql start &&\

psql --command "CREATE USER docker WITH SUPERUSER PASSWORD 'docker';" &&\

createdb -O docker docker

RUN echo "host all all 0.0.0.0/0 md5" >> /etc/postgresql/9.3/main/pg_hba.conf

RUN echo "listen_addresses='*'" >> /etc/postgresql/9.3/main/postgresql.conf

EXPOSE 5432

VOLUME ["/etc/postgresql", "/var/log/postgresql", "/var/lib/postgresql"]

CMD ["/usr/lib/postgresql/9.3/bin/postgres", "-D", "/var/lib/postgresql/9.3/main", "-c",

"config_file=/etc/postgresql/9.3/main/postgresql.conf"]

Dockerfile Reference

29

▪ FROM: sets the base image for subsequent instructions

▪ MAINTAINER: reference and credit to image author

▪ RUN: runs a command and commits changes to a layer on top of previous image layers; the committed image

will be visible to the next steps in the Dockerfile

▪ ADD: copies files from the source on the host (or remote URL) into the container's filesystem destination

▪ COPY: copies files from the source on the host into the container's filesystem destination (no URL, no automatic

archive expansion support)

▪ CMD: sets the default command for an executing container

▪ ENTRYPOINT: sets/overrides the default entrypoint that will (optionally) execute the provided CMD

▪ ENV: sets environment variables

▪ EXPOSE: instructs Docker daemon that containers based on the current image will listen on the specified

network port

▪ USER: sets the user name or UID to use when running the image and for any RUN, CMD and ENTRYPOINT

instructions that follow it in the Dockerfile

▪ VOLUME: creates a mount point for external data (from native host or other containers)

▪ WORKDIR: sets the working directory for any RUN, CMD, ENTRYPOINT, COPY and ADD instructions that

follow it in the Dockerfile

▪ LABEL: adds metadata to an image

Dockerfile reference - CMD vs ENTRYPOINT

30

Both CMD and ENTRYPOINT instructions define what command gets executed when running a container. There are

few rules that describe their co-operation.

▪ Dockerfile should specify at least one of CMD or ENTRYPOINT commands.

▪ ENTRYPOINT should be defined when using the container as an executable.

▪ CMD should be used as a way of defining default arguments for an ENTRYPOINT command or for executing an

ad-hoc command in a container.

▪ CMD will be overridden when running the container with alternative arguments

No ENTRYPOINT ENTRYPOINT [“entry_s1”, “entry_s2”]
ENTRYPOINT entry_s1

entry_s2

No CMD error, not allowed entry_s1 entry_s2 /bin/sh -c entry_s1 entry_s2

CMD [“cmd_s1”, “cmd_s2”] cmd_s1 cmd_s2 entry_s1 entry_s2 cmd_s1 cmd_s2 /bin/sh -c entry_s1 entry_s2

CMD cmd_s1 cmd_s2 /bin/sh -c exec_cmd p1_cmd
entry_s1 entry_s2 /bin/sh -c exec_cmd

p1_cmd
/bin/sh -c entry_s1 entry_s2

Docker networking

31

▪ docker networking provides full isolation for containers

▪ isolation can be overwritten to make containers communicate with each

other

▪ docker engine creates 3 default networks

▪ bridge → default network for containers; points to docker0 (virtual)

network interface

▪ none → container lacks network interfaces; only loopback address is

available

▪ host → adds container to the host network stack

▪ docker allows users to create user-defined networks

HOST

Docker networking - port forwarding

32

Container1

eth0

172.17.0.2

lo

127.0.0.1

docker0

172.17.0.1

Container2

eth0

172.10.0.3

lo

127.0.0.1

lo

127.0.0.1

docker run -d -p 80:80 httpd:2.4

docker inspect --format '{{ .NetworkSettings.IPAddress }}' $(docker ps -q)

80

80

eth0

192.168.X.Y

default gw

80

HOST

Docker networking - port forwarding

33

Container1

eth0

172.17.0.2

lo

127.0.0.1

docker0

172.17.0.1

Container2

eth0

172.10.0.3

lo

127.0.0.1

lo

127.0.0.1

docker run -d -p 80:80 --name container1 httpd:2.4

docker run -d -p 81:80 --name container2 httpd:2.4

80

80

eth0

192.168.X.Y

default gw

80 8181

80

HOST

Docker networking - host

34

Container1 Container2

lo

127.0.0.1

docker run -d --network host httpd:2.4

80

eth0

192.168.X.Y

80

Container has the same network

stack of the host

HOST

Docker networking - none

35

Container1

lo

127.0.0.1

Container2

lo

127.0.0.1

lo

127.0.0.1

docker run -d --network none httpd:2.4

eth0

192.168.X.Y

Docker Network

36

From host

docker network ls

docker network inspect networkInterface

From container

docker exec -it containerId /bin/bash

ip a

Container data persistence

37

▪ Volumes are stored in a part of the host filesystem which is managed by Docker

(/var/lib/docker/volumes/ on Linux). Non-Docker processes should not modify this part

of the filesystem. Volumes are the best way to persist data in Docker. Volumes may

be named or anonymous.

▪ Bind mounts may be stored anywhere on the host system. Non-Docker processes on

the Docker host or a Docker container can modify them at any time.

▪ tmpfs mounts are stored in the host system’s memory only, and are never written to

the host system’s filesystem.

Note: You can mount even a single file in container filesystem.

Good use cases for volumes

38

▪ Sharing data among multiple running containers. If you don’t explicitly create it, a

volume is created the first time it is mounted into a container. When that container

stops or is removed, the volume still exists. Multiple containers can mount the same

volume simultaneously, either read-write or read-only. Volumes are only removed

when you explicitly remove them.

▪ When the Docker host is not guaranteed to have a given directory or file structure.

Volumes help you decouple the configuration of the Docker host from the

container runtime.

▪ When you want to store your container’s data on a remote host or a cloud provider,

rather than locally.

▪ When you need to back up, restore, or migrate data from one Docker host to another,

volumes are a better choice. You can stop containers using the volume, then back up

the volume’s directory (such as /var/lib/docker/volumes/<volume-name>).

Good use cases for bind mounts

39

▪ Sharing configuration files from the host machine to containers. For example

Docker by default provides DNS resolution to containers by default, by mounting

/etc/resolv.conf from the host machine into each container.

▪ Sharing source code or build artifacts between a development environment on the

Docker host and a container. For instance, you may mount a Maven target/ directory

into a container, and each time you build the Maven project on the Docker host, the

container gets access to the rebuilt artifacts. Don’t use this modality in production

environment (embed the artifact in the image).

▪ When the file or directory structure of the Docker host is guaranteed to be consistent

with the bind mounts the containers require.

Good use cases for tmpfs mounts

40

▪ tmpfs mounts are best used for cases when you do not want the data to persist either

on the host machine or within the container. This may be for security reasons or to

protect the performance of the container when your application needs to write a large

volume of non-persistent state data.

Bind mount

41

container

Path in the host filesystem

container

Pre-existing content

in the container

filesystem is hidden

mount...

Not-empty named/anonymous volume

42

Internal docker volume folder for

volume A in the host filesystem

/var/lib/docker/volumes/A

container

Pre-existing content

in the container

filesystem is hidden

Mount..

container

Mounting empty named/anonymous volumes

43

Internal docker volume folder for

volume A in the host filesystem

/var/lib/docker/volumes/A

container

Pre-existing content

in the container

filesystem is hidden

2) mount..

1) Prepopulation

(copy files)...

container

NOTE: prepopulation

does not happen for bind

mounts!

Docker volumes - container data persistence

44

▪ Container filesystem is visible and persistent as long as the container is

available (running/stopped/restarted).

▪ Docker volumes

▪ can be shared/reused among different containers

▪ persist even after container deletion

mounts a specific host directory (usually, in the /var/lib/docker/… FS tree)

to /webapp mountpoint within the container

docker run -d -v /webapp tomcat:8.0

mounts /host_fs_folder host directory to /webapp mountpoint within the container

docker run -d -v /host_fs_folder:/webapp tomcat:8.0

create and mount a named volume

docker volume create tomcat-webapps

docker run -d -v tomcat-webapps:/webapp tomcat:8.0

Docker Volume

45

docker volume ls

docker volume inspect volumeName

docker volume prune

Agenda

1. Containers & Docker ecosystem

1. Docker basics

2. Docker basics - hands on

3. Web GUIs (e.g Portainer) & Debug

4. Docker-compose

5. Docker-compose - hands on

1. Orchestration tools

1. Overview

2. Kubernetes

46

1 - Web Hello World

Goals

▪ HTTPD (a.k.a. APACHE) Web Server up and running on standard HTTP port 80, and host-accessible

▪ the default HTML page (index.html) greets users with a HELLO WORLD

Hints

▪ Docker Hub hosts publicly available images

▪ COPY statement in a Dockerfile allows to copy content from host to container filesystem

Docker - Hands-on

47

git clone http://git.imolinfo.it/Unibo/docker-seminar-templates.git

cd docker-seminar-templates/Exercise1-Docker/1.1-HelloWeb/

Container

HTTP

80

index.html

https://hub.docker.com/explore/
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

2 - Real-world JEE Application Server

Goals

▪ JBoss Wildfly JEE AS Server up and running on standard HTTP port 8080, and host-accessible

▪ MySQL datasource configured

▪ check datasource connectivity via CLI

Hints

▪ Docker Hub hosts publicly available images

▪ default JBoss Wildfly image comes with a stock configuration file that uses an embedded database

→ example configuration files are provided in the exercise template

▪ COPY statement in a Dockerfile allows to copy content from host to container filesystem

Docker - Hands-on

48

git clone http://git.imolinfo.it/Unibo/docker-seminar-templates.git

cd Exercise1-Docker/1.2-WildflyMysql/

Container

JBoss Wildfly

8080

MySQL

datasource

https://hub.docker.com/explore/
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

Agenda

1. Containers & Docker ecosystem

1. Docker basics

2. Docker basics - hands on

3. Web GUIs (e.g Portainer) & Debug

4. Docker-compose

5. Docker-compose - hands on

1. Orchestration tools

1. Overview

2. Kubernetes

50

Portainer

51

docker run -d -p 9000:9000 --restart always -v /var/run/docker.sock:/var/run/docker.sock -v
/opt/portainer:/data portainer/portainer

Debugging running container

52

Copy file from container

docker cp containerId:containerFilePath hostFilePath

Copy file into container

docker cp hostFilePath containerId:containerFilePath

Install tool via yum/apt if package manager is installed into container:

apt update && apt install iputils-ping –y # ping

apt update && apt install iproute2 –y # ip

apt update && apt install net-tools –y # netstat

elsewhere copy file:

docker cp /bin/less containerId:/bin/less # less

docker cp /bin/ping containerId:/bin/ping # ping

docker cp /bin/ip containerId:/bin/ip # ip

Other techniques: nsenter – https://stackoverflow.com/a/40352004

https://stackoverflow.com/a/40352004

Container Restart policy

Available flag:

▪ no - Do not automatically restart the container. (the default)

▪ on-failure - Restart the container if it exits due to an error, which manifests

as a non-zero exit code.

▪ unless-stopped - Restart the container unless it is explicitly stopped or

Docker itself is stopped or restarted.

▪ always - Always restart the container if it stops.

53

docker update --restart=flag containerId

Agenda

1. Containers & Docker ecosystem

1. Docker basics

2. Docker basics - hands on

3. Web GUIs (e.g Portainer) & Debug

4. Docker-compose

5. Docker-compose - hands on

2. Orchestration tools

54

Complex distributed applications are typically composed of a number of interacting

services and layers (e.g.: database, cluster of application servers, load balancers, etc…)

Docker promotes encapsulation of reusable pieces of application logic

▪ coarse-grained (e.g., 1 container - N services) containers are easily manageable

but fall short on reusability

▪ fine-grained (e.g., 1 container - 1 service) containers are highly reusable (thus

generally preferable) but require a higher level of orchestration (e.g., starting up

all containers serving an application, in the right order)

Right service granularity requires tradeoff between modularity and manageability

Docker shortcomings

55

Docker-compose

56

Docker-compose

Compose is a tool for defining and running multi-container Docker

applications.

With Compose, you use a YAML file to configure your application’s services.

Then, with a single command, you create and start all the services from your

configuration.

Docker-compose allows to orchestrate fine-grained (e.g., single service)

containers into a complex application

▪ single container composition definition file (docker-compose.yml)

▪ single command to build and run a composition of containers

▪ containers still available as single atomic units of deployment

https://docs.docker.com/compose/

57

https://docs.docker.com/compose/

58

Docker-compose CLI

▪ up
$ docker-compose up

builds, (re)creates, starts, and attaches to containers for a service; services definition is expected to be on

a docker-compose.yml file in the current directory

$ docker-compose up -d

builds, (re)creates, starts, and attaches to containers for a service; services definition is expected to be on

a docker-compose.yml file in the current directory (.); containers run in background

▪ build
$ docker-compose build

builds/rebuilds the services (containers) specified on a docker-compose.yml file in the current directory

(.)

▪ start
$ docker-compose start

starts existing containers for a service composition

▪ ps
$ docker-compose ps

show running containers

59

Docker-compose CLI

▪ down
$ docker-compose down –v --rmi all

removes containers network, volumes (-v) and images (--rmi all)

▪ create
$ docker-compose create

Create containers but do not start them

▪ exec
$ docker-compose exec [options] SERVICE COMMAND [ARGS...]

Execute a command on an existing service

▪ run
$ docker-compose run [options] [-v VOLUME...] [-p PORT...] [-e

KEY=VAL...] SERVICE [COMMAND] [ARGS...]

Create a new container for that service and execute a command on it

Docker-compose.yml - Wordpress

60

version: '3'

services:

db:

image: mysql:5.7

volumes:

- dbdata:/var/lib/mysql

restart: always

environment:

MYSQL_ROOT_PASSWORD: somewordpress

MYSQL_DATABASE: wordpress

MYSQL_USER: wordpress

MYSQL_PASSWORD: wordpress

wordpress:

depends_on:

- db

image: wordpress:latest

ports:

- "8000:80"

restart: always

environment:

WORDPRESS_DB_HOST: db:3306

WORDPRESS_DB_USER: wordpress

WORDPRESS_DB_PASSWORD: wordpress

volumes:

dbdata:

Docker-compose.yml - Wordpress

61

cd /home/manager/Docker/work2

docker-compose up –d

docker container ls

docker network ls

docker system events

Docker-compose networking

62

Docker-compose networking extends docker networking model as follows

▪ a new, reserved virtual network is created to host all containers (services)

declared in the composition

▪ containers within the new virtual network can reach each other via their logical

service names

Suppose we are building the previous docker-compose.yml file from

/home/user/wordpressmysql/docker-compose.yml

▪ A network called wordpressmysql_default is created

▪ A container is created using db configuration. It joins the network

wordpressmysql_default under the name db.

▪ A container is created using wordpress configuration. It joins the network

wordpressmysql_default under the name wordpress.

▪ Both containers can reach each other via db, wordpress names

Agenda

1. Containers & Docker ecosystem

1. Docker basics

2. Docker basics - hands on

3. Web GUIs (e.g Portainer) & Debug

4. Docker-compose

5. Docker-compose - hands on

2. Orchestration tools

63

2.1 - Real-world JEE Application Server (cont’d...)

Goals

▪ JBoss Wildfly JEE AS Server up and running on standard HTTP port 8080, and

host-accessible

▪ MySQL datasource configured

▪ MySQL server up and running on standard MySQL port

Hints

▪ Docker Hub

▪ docker-compose to ease service composition/orchestration

Docker-compose: Hands-on

64

git clone http://git.imolinfo.it/Unibo/docker-seminar-

templates.git

cd Exercise2-DockerCompose/

Container

JBoss Wildfly

8080

MySQL

datasource

Container

MySQL

Database

https://hub.docker.com/explore/
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

Agenda

1. Containers & Docker ecosystem

1. Docker basics

2. Docker basics - hands on

3. Web GUIs (e.g Portainer) & Debug

4. Docker-compose

5. Docker-compose - hands on

2. Orchestration tools

65

Orchestrator - Kubernetes

66

Mono-node

Mono-service

Mono-node

Multi-service

Multi-node

Multi-service

Multi-project

Orchestration

67

Application orchestration  integrating two or more applications and/or services

together to automate a process, or synchronize data in real-time (ESB)

Infrastructure orchestration (Kubernetes, Swarm, Mesos)

▪ Manage the lifecycle of execution environments (containers) in a cluster

▪ check the state of the containers in the nodes

▪ simplify the implementation of :

▪ High availability (HA) with load balancers

▪ advanced deployment strategies:

▪ blue/green deployment, canary release, ...

▪ rollback in case of problems

▪ health checks

Deployment strategies

68

Orchestrator - Kubernetes

69

Mono-node

Mono-service

Mono-node

Multi-service

Multi-node

Multi-service

Multi-project

Kubernetes – Architecture

70

Components of a Kubernetes cluster

▪ In the «Kubernetes master» cluster node:
▪ kube-apiserver

▪ kube-controller-manager

▪ kube-scheduler

▪ In each non-master cluster node:
▪ kubelet, which communicates with the Kubernetes Master.

▪ kube-proxy, a network proxy which reflects Kubernetes
networking services on each nod

▪Kubernetes Control Plane:
▪ record of all of the Kubernetes Objects in the system (etcd)

▪ runs continuous control loops to manage those objects’ state

Components of a Kubernetes cluster

https://kubernetes.io/docs/admin/kube-apiserver/
https://kubernetes.io/docs/admin/kube-controller-manager/
https://kubernetes.io/docs/admin/kube-scheduler/
https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/admin/kube-proxy/

Kubernetes resources

Kubernetes resources

▪Namespace - for isolating resource pools

▪Pod - the deployment unit for a related collection of containers

▪ Service - service discovery and load balancing primitive

▪Volume - for persistent storage

▪Controllers (higher-level abstractions):
▪ ReplicationController/ReplicaSet - maintain N pod instances
▪ DaemonSet - maintainer 1 pod instance in each node

▪ Job – an atomic unit of work scheduled asynchronously

▪ CronJob - an atomic unit of work scheduled at a specific time in the future or
periodically

▪ Deployment - manage rollout/rollback of deployments

▪ StatefulSet - manage “pets” (pods with identity)

▪ ConfigMap - distributing configuration data across service instances

▪ Secret - management of sensitive configuration data

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Pod

▪A Pod is the basic building block of Kubernetes

▪A Pod encapsulates an application container (or, in some cases,
multiple containers), storage resources, a unique network IP, and
options that govern how the container(s) should run.

▪A Pod represents a unit of deployment: a single instance of an
application in Kubernetes, which might consist of either a single
container or a small number of containers that are tightly coupled and
that share resources.

▪Docker is the most common container runtime used in a Kubernetes
Pod, but Pods support other container runtimes as well.

Containers in a Pod

Container

Container

Cluster node

Container

Container

Container

Container

Container

Container

Cluster node Cluster node

Container

Container

This never happens!

• Containers of the same pod are scheduled in the

same node

Resource sharing in pod containers

Container

- Filesystem

- Processes

- hostname

Cluster node

Network stack (interfaces, routing table, iptables, arp tables)

Container

- Filesystem

- Processes

- hostname

Pod

Communication between containers of the same pod

Container

Cluster node

Pod

Container

eth0 lo

Process Process

Pod example

Cluster node

Web server

Data syncher

(es. git puller)

Monitoring adapter (es

logstash)

Cache

Policy enforcer

(es. auth proxy)

Pod

logs

Kubernetes – Replica Set

80

▪ReplicaSet is the next-generation Replication Controller.

▪ Replica Set ensures that a specified number of pod replicas are
running at any one time. In other words, Replica Set makes sure
that a pod or a homogeneous set of pods is always up and

available.
▪Replica Set create and destroy Pods dynamically

Monitoring - Probe

81

▪ Probe:

▪ livenessProbe: Indicates whether the Container is running. If the liveness probe fails, the
kubelet kills the Container, and the Container is subjected to its restart policy. If a Container
does not provide a liveness probe, the default state is Success.

▪ readinessProbe: Indicates whether the Container is ready to service requests. If the readiness
probe fails, the endpoints controller removes the Pod’s IP address from the endpoints of all
Services that match the Pod. The default state of readiness before the initial delay is Failure. If
a Container does not provide a readiness probe, the default state is Success

▪ Some examples of liveness/readiness probes

▪ HTTP connection  success= HTTP result success

▪ TCP connection  success= connection open

▪ Run a command inside the container  success= exit code=0

Failing of a readiness probe

Failing of a readiness probe

Failing of a readiness probe

Failing of a readiness probe

▪ Service fix an IP/DNS for the pods

▪ Service is used to expose application IP both outside and inside of
kubernetes

▪ Service handles the load balancing between the pods instances

▪ Service types:

▪ ClusterIP (default) - Exposes the Service on an internal IP in the cluster. This
type makes the Service only reachable from within the cluster.

▪ NodePort - Exposes the Service on the same port of each selected Node in the
cluster using NAT. Makes a Service accessible from outside the cluster using
<NodeIP>:<NodePort>. Superset of ClusterIP.

▪ LoadBalancer - fixed, external IP

▪ ExternalName - CNAME record

Kubernetes – Service

86

Service

Kubernetes – Volume

88

▪ A Kubernetes volume has an explicit lifetime - the same as the Pod that encloses it.
Consequently, a volume outlives any Containers that run within the Pod, and data is
preserved across Container restarts.

▪ When a Pod ceases to exist, the volume will cease to exist, too.

▪ Kubernetes supports many types of volumes, and a Pod can use any number of them
simultaneously.

▪ At its core, a volume is just a directory, possibly with some data in it, which is accessible to
the Containers in a Pod. How that directory comes to be, the medium that backs it, and
the contents of it are determined by the particular volume type used.

Some kinds of volumes

▪ emptyDir—A simple empty directory used for storing transient data.

▪ hostPath—Used for mounting directories from the worker node’s filesystem into
the pod.

▪ gitRepo—A volume initialized by checking out the contents of a Git repository.

▪ nfs—An NFS share mounted into the pod.

▪ gcePersistentDisk (Google Compute Engine Persistent Disk), awsElastic-BlockStore
(Amazon Web Services Elastic Block Store Volume), azureDisk (Microsoft Azure
Disk Volume)—Used for mounting cloud provider-specific storage.

▪ cinder, cephfs, iscsi, flocker, glusterfs, quobyte, rbd, flexVolume , vsphere-Volume,
photonPersistentDisk, scaleIO—Used for mounting other types of network
storage.

▪ configMap, secret, downwardAPI— Special types of volumes used to expose
certain Kubernetes resources and cluster information to the pod.

▪ persistentVolumeClaim —A way to use a pre- or dynamically provisioned
persistent storage.

Kubernetes – Persistent volume

90

DOMANDE, DUBBI, CURIOSITÀ?

Question Time

91

▪ Più di 20 anni di esperienza nell’Enterprise IT

▪ Consulenza e Skill Transfer su Architetture, Integrazione e Processo

▪ OMG Influence Member, JSR 312 Expert Group, CSI, WWISA,
OpenESB Key Partner, NetBeans Strategic Partner

▪ La comunita’ italiana dedicata a Java

▪ 10 anni di articoli, pubblicazioni, libri, eventi, training

▪ Dai programmatori agli architetti

▪ Piu’ di 1.000.000 pagine lette al mese

▪ Business partner in progetti con alto grado di innovazione

▪ Padroni in tecnologie e architetture mobile

▪ Competenti in architetture dell‘informazione, UX e Design

92

