
Luca Foschini

Academic year 2016/2017

Global Stream Processing

University of Bologna

Dipartimento di Informatica –

Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Class of Computer Networks M or

Infrastructures for Cloud

Computing and Big Data

Stream Processing

There is more and more interest on stream

processing … so

More and more set of tools are available to express

and design a complex streaming architecture to

be immediately deployed

• Apache Storm

• Yahoo S4

…

• Large amounts of data �

Need for real-time views of data

– Social network trends, e.g., Twitter real-time search

– Website statistics, e.g., Google Analytics

– Intrusion detection systems, e.g., in most datacenters

• Process large amounts of data

with latencies of few seconds

with high throughput

Stream Processing Challenge

The out-of-line workflow is not suitable at all

The typical Batch Processing � Need to wait

for entire computation on large dataset before

completing

In general those approaches are not intended for

long-running stream-processing

Not MapReduce

Stream processing model

Stream processing manages:

• Allocation

• Synchronization

• Communication

Applications that benefit

most of the streaming

model with

requirements:

• High computation

resource intensive

• Data parallelization

• Data time locality

kernel

kernel

kernel

kernelkernel

kernel

kernel

INPUTS

Classifier

Stream processing support functions

We need available some basic functions that can help

in mapping the concepts we need to express

Storm is fast in processing over a million tuples per

second per node: it is scalable, fault-tolerant,

respecting SLA over data to be processed

Main functions must support the stream processing

model:

• Resource allocation

• Data classification

• Information routing in flows

• Management of execution/processing status

• Apache Project http://storm.apache.org/

• Highly active Java based JVM project

• Multiple languages supported via user API

• Python, Ruby, etc.

• Over 50 companies use it, including

• Twitter: for personalization, search

• Flipboard: for generating custom feeds

• Spotify, Groupon, Weather Channel, WebMD,

etc.

Storm

The Storm architecture is based on

• Tuples

• Streams

• Spouts

• Bolts

• Topologies

• …

Storm Core Components

The tuple is an ordered list of elements

• E.g., <tweeter, tweet>

– E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”>

– E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”>

• E.g., <URL, clicker-IP, date, time>

– E.g., <coursera.org, 101.102.103.104, 4/4/2014,

10:35:40>

– E.g., <coursera.org, 101.102.103.105, 4/4/2014,

10:35:42>

Tuple

Tuple

Sequence of tuples

Tuples potentially unbounded in number

• Social network example:

– <“Miley Cyrus”, “Hey! Here’s my new song!”>,

<“Justin Bieber”, “Hey! Here’s MY new song!”>,

<“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>,

…

• Website example:

– <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>,

<coursera.org, 101.102.103.105, 4/4/2014, 10:35:42>, …

Stream

Tuple Tuple Tuple

One spout is a Storm entity (process) that is a source of

streams

• Often reads from a crawler or DB

Spout

A bolt is a Storm entity (process) that

• Processes input streams

• Outputs more streams for other bolts

Bolt

A directed graph of spouts and bolts (and output

bolts)

• Corresponds to a Storm “application”

Topology

A Storm topology may define an architecture that

can also have cycles if the application needs them

Topology

Operations that can be performed

• Filter: forward only tuples which satisfy a condition

• Joins: When receiving two streams A and B, output

all pairs (A,B) which satisfy a condition

• Apply/transform: Modify each tuple according to a

function

• …And many others

But bolts need to process a lot of data

• Need to make them fast

Bolts come in many Flavors

• Storm provides also multiple processes

(“tasks”) that can constitute a bolt

• Incoming streams split among the tasks

• Typically each incoming tuple goes to one

task in the bolt

– Decided by “Grouping strategy”

• Three types of grouping are popular

Parallelizing Bolts

• Shuffle Grouping
• Streams are distributed evenly among the bolt’s tasks

• Round-robin fashion

• Fields Grouping
• Group a stream by a subset of its fields

• E.g., All tweets where twitter username starts with [A-
M,a-m,0-4] goes to task 1, and all tweets starting with [N-
Z,n-z,5-9] go to task 2

• All Grouping

• All tasks of bolt receive all input tuples

• Useful for joins

Grouping

Also failures can be mapped

• A tuple is considered failed when its topology

(graph) of resulting tuples fails to be fully

processed within a specified timeout (time

dimension)

• Anchoring: Anchor an output to one or more

input tuples

• Failure of one tuple causes one or more tuples

to be replayed

Failures behaviour

• Emit (tuple, output)
• Emits an output tuple, perhaps anchored on an input

tuple (first argument)

• Ack (tuple)
• Acknowledge that a bolt finished processing a tuple

• Fail (tuple)
• Immediately fail the spout tuple at the root of tuple

topology if there is an exception from the database, etc.

• Must Record the ack/fail of each tuple
• Each tuple consumes memory. Failure to do so results

in memory leaks.

API For Fault-Tolerance (OutputCollector)

Storm Cluster

Several components in a Cluster

Zookeeper

ZooKeeper is an open-source Distributed Coordination

Service for Distributed Applications

• ZooKeeper can propose a unique memory space to be

accessed very fast in reading and writing with quality

(QoS: replication is paramount and dynamicity too)

• ZooKeeper relieves distributed applications from

implementing coordination services from scratch

• Zookeeper exposes a simple set of primitives to implement

higher level services for synchronization, configuration

maintenance, and groups and naming

• It is easy to program and uses a data model styled after the

familiar directory tree structure of file systems. It runs in

Java and has bindings for both Java and C

Zookeeper

ZooKeeper is seen as a unique access space with avery

fast operations to read and write data with different

semantics (FIFO, Atomic, Causal, …)

Data are dynamically mapped over several nodes and their

location can be dynamically adjusted without any actions

of clients

Storm Architecture

Storm allows to:

1. First express your need in streaming via its

components you can easily define and design

2. Secondly, configure your capacity needs over

a real architecture so to produce a controlled

execution

3. Then operate it over different architectures

• Master node
• Runs a daemon called Nimbus

• Responsible for

� Distributing code around cluster

� Assigning tasks to machines

� Monitoring for failures of machines

• Worker node
• Runs on a machine (server)

• Runs a daemon called Supervisor

• Listens for work assigned to its machines

• Runs “Executors”(which contain groups of tasks)

• Zookeeper
• Coordinates Nimbus and Supervisors communication

• All state of Supervisor and Nimbus is kept here

Storm Cluster

Twitter Heron System

Fixes the inefficiencies of Storm acknowledgementing
mechanism (among other things)

By using backpressure: a congested downstream
tuple will ask upstream tuples to slow or stop sending
tuples

1. TCP Backpressure: uses TCP windowing mechanism
to propagate backpressure

2. Spout Backpressure: node stops reading from its
upstream spouts

3. Stage by Stage Backpressure: think of the topology
as stage-based, and propagate back via stages

• By using:
– Spout+TCP, or

– Stage by Stage + TCP

• Heron beats Storm throughput

S4 Platform

Simple Scalable Streaming System (S4)
S4 is a general-purpose, near real-time, distributed,

decentralized, scalable, event-driven, modular

platform that allows to implement applications for

processing continuous unbounded streams of data

Design goals:

• Scalability

• Decentralization

• Fault-tolerance (partially supported)

• Elasticity

• Extensibility

• Object oriented

S4 Platform - architecture

Comm Module

Core Module

Comm Module

Core Module

NIO Sockets

ApplicationApplicationApplicationApplication

Sender Receiver E
x
te

n
si

o
n

M
o

d
u

le
s

Written in

java

S4 Platform - components

S4 based on several simple components that can be

put together

S4 Platform - application

PE

PEPE

PE

PE

PE PE

PE

Output Output Output

Input Input Input

Stream 1

Stream 2

Stream 3

S4 Platform – overall view

ZooKeeper cluster

NIO Sockets

ApplicationApplicationApplicationApplication

Sender Receiver

E
xt

e
n

si
o

n

M
o

d
u

le
s

Nodo 1

NIO Sockets

ApplicationApplicationApplicationApplication

Sender Receiver

E
xt

e
n

si
o

n

M
o

d
u

le
s

Nodo N

NIO Sockets

ApplicationApplicationApplicationApplication

Sender Receiver

E
xt

e
n

si
o

n

M
o

d
u

le
s

Nodo 2

Load balancing module

DLock RPC

DAL

Routing table

manager

Load Index

Manager

Route reservation

manager

Initial value

generator

Load balancing support & open issues

Not really supported…

• Load sharing on cluster

nodes based on very simple

hash functions

• There is no real load

balancing support

• No guarantees of effectively

balanced load sharding

Input

Hash Evaluation

Hash mod N° nodes

output

An example: Word Count (sounds familiar?)

For details, refer to

the S4 presentation

paper: L. Neumeyer

et al., “S4:

Distributed Stream

Computing

Platform”, KDCloud

2010

