
ONs and FSs 1

Antonio Corradi

Academic year 2016/2017

ONs and Advanced Filesystems

University of Bologna

Dipartimento di Informatica –
Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Class of Computer Networks M or

Infrastructures for Cloud
Computing and Big Data

There are many situations where you want to organize a
logical connection between different entities that reside in
different locations and networks

The solution is an Overlay Network (ON) at the application
level that connects all those entities to be considered
together in an ON

Overlay networks may be very different and also enforced in
different ways, but their importance is paramount in many
situations because they answer to efficiency and scalability

One main point very important is not only organizing it, but
also to grant QoS and to respect an agreed SLA

That is the reason why there are many different solutions for different
cases, and also many different solutions and tools embodying these
requirements

OVERLAY NETWORKS

ONs and FSs 2

The main point is to create a new network at the application
level and to maintain it with specified requirements
All participants become part of it and can freely communicate
(the same as if they were in a real network connection), by
using an application neighborhood

OVERLAY NETWORKS

ONs and FSs 3

There are two main different kinds:
• Unstructured overlays
• Structured overlays
By focusing on new nodes arriving and entering the ON,
in Unstructured overlays, new nodes choose randomly the
neighbor to use to access to the ON
in Structured overlays, there is a precise strategy to let
nodes in and to organize the architectures, maintained also to
react to discontinuities and failures
ONs propose solutions for P2P applications, but also for
MOMs (even if statically-oriented)
P2P Napster, Gnutella, Kazaa, BitTorrent
Support Chord, Pastry/Tapestry, CAN
Social Nets MSN, Skype, Social Networking Support

CLASSIFICATION of OVERLAY NETWORKS

ONs and FSs 4

A good overlay network has the goal making efficient the
operations among the group of current participants
obeying the specific requirements
All participants in an overlay have a common goal of
exchanging information, for instance…
They tend to exchange data: files in a P2P application,
messages in social nets, specific application protocols in other
environments, etc.

OVERLAY NETWORKS: USAGE

ONs and FSs 5

ONs should organize the communication support and also
enable the application level management
Lookup

• To find out very fast the appropriate user information
(content/resource) on the ON

Guaranteed Throughput
• To communicate over an ON need support for content

distribution/dissemination
• To replicate content … fast, efficiently, reliably

Management
• To maintain efficiently the ON under a high rate of

connections/disconnections and intermittent failures in load
balanced approach

• To guarantee both application reliability and availability (maybe
very difficult): a self-organizing approach is typically followed

SYSTEM AND APPLICATION KEY ISSUES

ONs and FSs 6

Overlay networks imply many challenges to cope with
• Maintaining the edge links (via pointers to IP addresses?)
• Favoring the insertion in the neighborhood
• Checking link liveness
• Identifying problems and faults
• Recovering edges
• Overcoming nodes going down and their unavailability
• Re-organizing the overlay, when some nodes leave the

network and other nodes get in
• Keeping the structure, despite mobile nodes intermittent

presence (and eventual crashes or leaving)
• Creating a robust connection, independently of omissions

and crashes (QoS?)

ON MANAGEMENT PROPERTIES

ONs and FSs 7

A non-structured approach for file retrieving

Centralized Lookup
Centralized directory services deal with nodes entering

Any node connects to a Napster server

Any node uploads list of files to server

Any node gives servers keywords to search the full list with

File exchange peer to peer
Lookup is centralized from servers,
but files copied P2P

Select “best” of correct answers
(announce by ping messages)

Performance Bottleneck and
Low scalability

NAPSTER: A PIONEER P2P

ONs and FSs 8

GNUTELLA is the main representative of unstructured
ONs, by providing a distributed approach in file retrieval
Fully decentralized organization and lookup for files

There are nodes with different degrees of connections and
availability (from high-degree nodes to low-degree ones)

High-degree nodes may receive and control even more links

Flooding based lookup, obviously inefficient in terms of
scalability and bandwidth

GNUTELLA

ONs and FSs 9

Step 0: Join the network
Step 1: Determining who is on the network

• "Ping" packet is used to announce your presence on the network.
• Other peers respond with a "Pong" packet and Ping connected peers
• A Pong packet also contains:

• IP address, port number, amount of data that peer share
• Pong packets come back via same route of Ping

Step 2: Searching
• Gnutella "Query" ask other peers (N usually 7) for desired files
• A Query packet might ask, "Do you have any matching content with

the string ‘Volare’"?
• Peers check to see if they have matches & respond (if they have any

match) & send packet to connected peers if not (N usually 7)
• It continues for TTL (T specifies the hops a packet can traverse before

dying, typically 10)
Step 3: Downloading

• Peers respond with a “QueryHit” (it contains contact info)
• File transfers via direct connection using HTTP protocol’s GET method

GNUTELLA: NEIGHBOOR SCENARIO

ONs and FSs 10

T : TTL, N : Neighbors for Query

GNUTELLA REACHABILITY

An analytical estimation of reachable users
(T and N)

ONs and FSs 11

GNUTELLA different versions have adopted different
scalability protocols
Flooding based search is extremely wasteful with bandwidth
• Enormous number of redundant messages (not efficient)
• A large (linear) part of the network is covered irrespective of hits

found, without taking into account needs
• All users do searches in parallel: local load grows linearly with

size

Taking advantage of the unstructured network, some
more efficient protocols started appearing
• Controlling topology for better search

Random walk, Degree-biased Random Walk
• Controlling placement of objects

Replication

GNUTELLA SEARCH

ONs and FSs 12

A Scale-Free graph is a graph whose degree of distribution follows a
power law or an exponential law: a few highly connected nodes
and many low connected ones
Basic strategy based on high degree nodes

High degree nodes can store the index about a large portion of the
network and are easier to find by (biased) random walk in a scale-
free graph in a scenario of random offer of files
High degree nodes have a neighborhood of low-degree ones

Random walk
Moves random to avoid to visit always
already last visited node

Degree-biased random walk
• Select highest degree nodes that have

not been visited
• Walk first climbs to highest degree nodes,

then climbs down on the degree sequence
• Optimal coverage can be formally proved

GNUTELLA RANDOM WALK

10
0

10
1

10
0

10
1

10
2

number of neighbors

p
ro

p
o

rt
io

n
 o

f
n

o
d

es

data
power-law fit

τ = 2.07

The main idea is to spread copies of objects to peers so
that more popular objects can be found easier and also
launch more walks in parallel to more likely find them

Replication is both in sense of more copies of data and
also in terms of more walkers to launch in parallel
Replication strategies
Replicate with i when qi is the number of queries for object i
Owner replication

• Produce replicas in proportion to qi

Path replication
• Produce replicas over the path with replication as square root

to qi

Random replication
• Same as path replication to qi, only using the given number of

random nodes, not the path
…but it is still difficult to find rare objects

GNUTELLA REPLICATION

ONs and FSs 14

To go deep into ON organization…

• Unstructured P2P networks allow resources to be placed
at any node spontaneously
The network topology is arbitrary and the growth is free but
some worst cases and bottlenecks

• Structured P2P networks simplify resource location and
load balancing by defining a topology and rules for
resource placement to obtain efficient search for rare
objects

Which strategies and rules???

Distributed Hash Table (DHT)

UNSTRUCTURED VS STRUCTURED

ONs and FSs 15

Distributed Hash Tables use Hash principles toward a
better retrieval of data content and value

HASH TABLES

Store arbitrary keys and
connected data (value)

– put (key, value)

– value = get(key)

Lookup must be fast
• Calculate hash function h() on

key that returns a storage cell

Chained hash table

• Store keys in the overflow
chain (together with optional
value)

ONs and FSs 16

6

Hash table functions in an ON is typically P2P: lookup of
data indexed by keys can be very efficient and fast
(find the nodes where the data are kept)

Key-hash node mapping
• Assign a unique live node to any key

• Find this node quickly and cheaply in the overlay network

Support maintenance of the ON and optimization of its
current organization of nodes
• Load balancing: maybe even change the key-hash wen

the nodes change necessity of node mapping on the fly

• Replicate entries on more nodes to increase availability

DISTRIBUTED HASH TABLES

ONs and FSs 17

DISTRIBUTED HASH TABLES

Find the best node allocation depending on existing nodes

where nodes can enter and leave the ON

ONs and FSs 18

Many examples of tools for supporting Distributed
Hash Tables - DHT
• Chord

Consistent hashing ring-based structure
• Pastry

Uses an ID space concept similar to Chord
but exploits the concept of a nested group toward
acceleration

Also many other solutions
• CAN

Nodes/objects are mapped into a d-dimensional
cartesian space

…

STRUCTURED HASH TABLES

ONs and FSs 19

Hash is applied over a
dynamic ring
• Consistent hashing based

on an ordered ring
overlay of the nodes

• Both keys and nodes are
hashed to 160 bit IDs
(SHA-1)

• Keys are assigned to
nodes by using consistent
hashing
The key goes into the
successor node in the ID
space

CHORD HASH TABLES

ONs and FSs 20

Lookup query is forwarded
to the successor in one
direction (one way)
• Forward the query around

the circle
• In the worst case,

O(N) forwarding is required
• In two ways, O(N/2)

Efficiency
• CHORD may keep finger

tables to identify faster the
node (finger tables as
caches for the successors)

CHORD PRIMITIVE LOOKUP

ONs and FSs 21

CHORD works on the idea of making operations easier

• Consistent hashing
Randomized
• All nodes receive roughly an equal share of load
Local
• Adding or removing a node involves an O(1/N) fraction

of the keys getting new locations
• Actual lookup

Chord needs to know only O(log N) nodes in addition to
successor and predecessor to achieve O(log N)
message complexity for lookup

CHORD CONSISTENT HASHING

ONs and FSs 22

The ith-entry of a finger table
points the successor of

the key (nodeID + 2i)

A finger table has O(log N)
entries and the scalable lookup

is bounded to O(log N)

CHORD SCALABLE LOOKUP

ONs and FSs 23

A new node has to
Fill its own successor, predecessor and fingers
Notify other nodes of which it can be a successor,
predecessor and fingers

Simple way: find its successor, then stabilize
Join immediately the ring (lookup works), then modify the
structure organization – we will optimize lazely and lately

CHORD NODE JOIN

ONs and FSs 24

If the ring is correct, then routing is correct, and
fingers are needed for the speed only

Stabilization
The support monitors the structure and organizes itself
by controlling the ON freshness

• Each node periodically runs the stabilization routine

• Each node refreshes all fingers by periodically calling
find_successor(n+2i-1) for a random i

• Periodic cost is O(logN) per node due to finger refresh

CHORD STABILIZATION

ONs and FSs 25

The failure of nodes is handled by
• Replication: instead of one successor, we keep a number

of R successors
• More robust to node failure (one can find new

successor if the old one failed)
• Alternate paths while routing

• If a finger does not respond, take the previous finger, or
the replicas, if close enough

In robust DHT, keys replicate on the R successor nodes
• The stored data become equally more robust

CHORD FAILURE HANDLING

ONs and FSs 26

PASTRY is a DHT similar to CHORD in a more
organized way for efficient access

• Based on a sorted ring in an ID space (as in Chord)
Nodes and objects are assigned a 128-bit identifier

• NodeID interpreted as a sequence of digits in base 2b

In practice, the identifier is viewed in Hex (base 16)

Nested groups are the replication entities

• The node responsible for a key is the numerically
closest (not the successor)

Bidirectional sequencing by using numerical distance

• Finger-like shortcuts can speed up lookups

PASTRY

ONs and FSs 27

objId

Consistent hashing of
nodes and objects ID

128 bit circular id space

nodeIds (uniform random)

objIds (uniform random)

Invariant: nodes with
numerically closest
nodeId maintain objects

nodeIds

O2128-1

PASTRY: OBJECT DISTRIBUTION

ONs and FSs 28

PASTRY keeps

Routing tables to explore proximity and find close
neighbors numerically

Leaf sets to maintain IP addresses of nodes with
closest larger and smaller nodeIds in the close
neighborhood

Generic P2P location and a routing infrastructure
• Self-organizing overlay network

• Lookup/insert object in < log16 N routing steps (expected)

• O(log N) per-node state

• Network proximity routing

PASTRY

ONs and FSs 29

X

Route(X)

A message with key X
is routed to live nodes
with nodeId
closest to X

Problem: complete
routing table not
feasible

O2128-1

PASTRY INSERT / LOOKUP

ONs and FSs 30

Properties
• log16 N steps
• O(log N) state

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

PASTRY ROUTING TABLES

ONs and FSs 31

Simple example: nodes & keys have n-digit base-3 ids, e.g.,
02112100101022

• There are 3 nested groups for each group

• Each node knows IP address of one delegate node in some
of the other groups

• Suppose node in group 222… wants to lookup key
k= 02112100210

– Forward query to a node in 0…, then to a node in 02…,
then to a node in 021…, then so on.

PASTRY NESTED GROUPS

ONs and FSs 32

log16 N
rows

Row 0

Row 1

Row 2

Row 3

0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

PASTRY ROUTING TABLE (# 65A1FC)

ONs and FSs 33

PASTRY ROUTING TABLE …

Node ID 10233102
Leaf set

Routing Table

Neighborhood set

00
0221210202212102 11 2230120322301203 3120320331203203

1130123311301233 1223020312230203 1302102213021022
221003120310031203 1013210210132102 1032330210323302

33
33

10222302102223021020023010200230 1021130210211302
1023032210230322 1023100010231000 1023212110232121
1023300110233001

1023312010233120
102332321023323211

00
22

1302102213021022 1020023010200230 1130123311301233 3130123331301233
0221210202212102 2230120322301203 3120320331203203 3321332133213321

1023303310233033 1023302110233021 1023312010233120 1023312210233122
1023300110233001 1023300010233000 1023323010233230 1023323210233232

< SMALLER LARGER >

Contains the
nodes that are
numerically
closest to
local node
MUST BE
UP TO DATE

b=2, so node ID
is base 4 (16 bits)

m
/b

ro
w

s

Contains the
nodes that are
closest to local
node according to
proximity metric

2b-1 entries per row

Entries in the nth row
share the first n digits
with current node
[common-prefix next-digit rest]

nth digit of current node

Entries in the mth column
have m as next digit

Entries with no suitable
node ID are left empty

b=2m=16

ONs and FSs 34

Leaf set
• Set of nodes that are

numerically closest to the
node, the same as Successors
in Chord

• L/2 smaller & L/2 higher
• Replication boundary
• Stop condition for lookup
• Support reliability and

consistency
Routing table
• Provides delegate nodes in

nested groups
• Self-delegates for the nested

group where the node belongs
to

• O(log N) rows
O(log N) lookup

Base-4 routing table

PASTRY ROUTING TABLE AND LEAFSET

ONs and FSs 35

PASTRY ROUTING & TOPOLOGY

Expected node distance
increases with row
number in routing table

Smaller and smaller
numerical jumps
Bigger and bigger
topological jumps

ONs and FSs 36

Join

• Uses routing to find numerically closest nodes
already in the network

• Asks state from all nodes on the route and initializes
its own state

Error correction

• Failed leaf node: contact a leaf node on the side of the
failed node and add an appropriate new neighbor

• Failed table entry: contact a live entry with same prefix
of the failed entry until new live entry is found
if none found, keep trying with longer prefix table
entries

PASTRY JOIN AND FAILURES

ONs and FSs 37

ONs are very used inside P2P systems for file exchange
P2P Napster, Gnutella, Kazaa, BitTorrent

Social networks, for instance, need to connect fast different
users: Overlay Nets can help in preparing a support for those
communications, ready to use and always available
So, inside the infrastructure you have those organizations
dynamic and continually balanced
Social Nets MSN, Skype, Social Networking Support

Also in case of Cloud large infrastructure, to find parts of the
support, when in need of finding new zones and copies
Cloud for internal and federated discovery
…

OVERLAY NETWORK USAGE

ONs and FSs 38

ONs and FSs 39

DISTRIBUTED FILE SYSTEMS

The implementation is
transparent after the mounting
of the file systems in the client
NFS is stateless and efficient:
there is no heavy weight on the
server machines, and the load is
on the client, connections are
UDP, etc.
There are many variations
based on TCP connections,
optimizations, etc.

NFS lacks of any idea of Replication and QoS

Network File System or NFS is the pioneer C/S file system and the
most diffused network file system
It is based on the idea of client machines that interacts with server
machines where files reside

ONs and FSs 40

The implementations are optimized and the overhead very low: the
diffusion was incredibly large
No replication nor QoS are granted

DISTRIBUTED FILE SYSTEMS
Network File System had the initial goal of using RPC for the entire
communication support so it strives for efficiency and reducing
costs
The large diffusion is motivated by that choice

GLOBAL FILE SYSTEMS

Modern global systems need new tools for data storage with
the necessary quality and also with global scalability

File systems must use replication and other strategies toward
quality

Starting with traditional C/S ones to

Typically dynamic management of data in all their parts to
achieve QoS

• Distributed file systems

– Google File System for Google data GFS

– Hadoop file system HDFS

• Other solutions … later

ONs and FSs 41

Google File System (GFS)

GFS exploits Google hardware, data, and application
properties to improve performance of storage and search

• Large scale: thousands of machines with thousands of
disks

• Files are huge (normal files have multi-GB size)
• Design decision: difficult to manage billions of small files

• File access model is read/append (almost no write)
• Most reads are sequential

• Random writes practically non-existent

• Component failures are ‘normal’ events
• Hundreds of thousands of machines/disks

• MTBF of 3 years/disk 100 disk failures/day

• Additionally other failures: network, memory, power failures

ONs and FSs 42

DESIGN CRITERIA

Detect, tolerate, and recover automatically from
failures

Deal with a “limited” number of large files
Just a few millions

Each 100MB – multi-GB

Few small files

• Read-mostly workload
Large streaming reads (multi-MB at a time)

Large sequential append operations
• Provide atomic consistency to parallel writes with low overhead

• High-sustained throughput more important than low
latency

ONs and FSs 43

DESIGN NOVEL STRATEGIES

Files stored as chunks kept with their descriptions
(metadata) and stored as local files on Linux file system

• Reliability through replication (at least 3+ replicas)

• Single master coordinates access and keeps metadata

Simple centralized design (one master per GFS cluster)

Global knowledge to optimize chunk placement and
replication decisions using no caching

Large data set/streaming reads render caching useless

Clients cache meta-data (e.g., chunk location)

Linux buffer cache allows keeping interesting data in
memory for fast access

ONs and FSs 44

ONs and FSs 45

Read operation

GFS ARCHITECTURE

One master server (backups replicate its state replicated) and
many chunk servers (100s – 1000s) over linux

Chunk: 64 MB portion of file, identified by 64-bit, globally unique IDs

Chunks are spread across racks for better throughput & fault tolerance

Many clients accessing files stored on the same cluster
Data flow: client <-> chunk server (master involved just in control)

MORE ON METADATA & CHUNKS

• Metadata (the file description)

• 3 types: file/chunk namespaces, file-to-chunk

mappings, location of replicas of any chunk

• All in memory (< 64 bytes per chunk) with GFS

capacity limitation

• Large chunk have many advantages

• Fewer client-master interactions and reduced size of

metadata

• Enable persistent TCP connection between clients and

chunk servers

ONs and FSs 46

MUTATIONS, LEASES, VERSION NUMBERS

• Mutation: operation that changes either the contents (write,
append) or metadata (create, delete) of a chunk

• Lease: mechanism used to maintain consistent mutation
order across replicas
• Master grants a chunk lease to one replica (primary chunk server)

• Primary picks a serial order to all mutations to the chunk (many
clients can access chunk concurrently)

• All replicas follow this order when applying mutations

• Chunks have version numbers to distinguish between up-
to-date and stale replicas
• Stored on disk at master and chunk servers

• Each time master grants new lease, increments version & informs all
replicas

ONs and FSs 47

Mutations step-by-step

1. Identities of primary chunk server

holding lease and the secondaries

holding the other replicas

2. Reply

3. Push data to all replicas for

consistency (see next slide for details)

4. Send mutation request to primary,

which assigns it a serial number

5. Forward mutation request to all

secondaries, which apply it according

to its serial number

6. Ack completion

7. Reply (an error in any replica results in

an error code & a client retry)

ONs and FSs 48

DATA FLOW

Client can push the data to any replica

Data is pushed linearly along a carefully picked chain
of chunk servers

• Each machine forwards data to “closest” machine in
network topology that has not received it

• Network topology is simple enough that “distances” can be
accurately estimated from IP addresses

• Pipelining: servers receive and send data at the same
time

Method introduces delay, but offers good bandwidth
utilization

ONs and FSs 49

CONSISTENCY MODEL

• File namespace mutations (create/delete) are atomic

• State of a file region depends on

Success/failure of mutations (write/append)

Existence of concurrent mutations

• Consistency states of replicas and files:

Consistent: all clients see same data regardless of replica

Defined: consistent & client sees the mutation in its entirety

• Example of consistent but undefined: initial record = AAAA

concurrent writes: _B_B and CC_C;

result = CBAC (none of the clients sees the expected result)

Inconsistent: due to a failed mutation

• Clients see different data function of replica

ONs and FSs 50

UNDEFINED STATE AVOIDANCE

Traditional random writes would require expensive
synchronization (e.g., lock manager)
• Serializing writes does not help (see previous slide)

Atomic record append: allows multiple clients to append
data to the same file concurrently
• Serializing append operations at primary solves the problem

• The result of successful operations is well defined: data is
written at the same offset by all replica with an “at least
once” semantics

• If one operation fails at any replica, the client retries;
as a result, replicas may contain duplicates or fragments

• If not enough space in chunk, add padding and return error and Client
retries

ONs and FSs 51

RECORD APPEND SEMANTICS

The applications must deal with record append semantics

for specific cases

Applications using record append should include checksums

in writing records

• Reader can identify padding/record fragments using

checksums

• If application cannot tolerate duplicated records, should

include unique ID in record

• Readers can use unique IDs to filter duplicates

ONs and FSs 52

HDFS (another distributed file system)

Master/slave architecture
• NameNode is master (meta-data operations, access control)

• DataNodes are slaves: one copy per node in the cluster

• Files are stored in blocks in several DataNodes

Inspired by
GFS

ONs and FSs 53

ROLES AND PRINCIPLES OF HDFS

Hadoop Distributed File System is based on low cost hardware
but with high fault tolerance and high availability

Applications access with write-once-and-read-many so the
consistency model is similar to GFS and computation is
moved close to the related data to operate upon

• NameNodes execute file system NameSpace operations
like open, close, directories,…and decide on mapping

• DataNodes execute read write operations requested from
Clients and operates on block of data

HDFS is written in Java and must work on normal hardware
to store very large files on different machines so to minimize
the probability of faults by using replication

Any file can decide its block size and replication degree

ONs and FSs 54

HDFS REPLICATION

Applications can
decide
dynamically
the replication
factor

ONs and FSs 55

Again master/slave architecture: NameNode receives heartbeats
and block reports from DataNodes

• Hearbeats grant the operation state of DataNodes

• Block reports give the current block situations of DataNodes

