
Antonio Corradi

Academic year 2016/2017

Group issues and policies

University of Bologna

Dipartimento di Informatica –

Scienza e Ingegneria  (DISI) 

Engineering Bologna Campus

Groups issues & policies     1

Class of  Computer Networks M or

Infrastructures for Cloud 

Computing and Big Data

Semantics: use of selective retransmissions? How many times?

primitive semantic depends on these choices

GROUP COMMUNICATION

Waiting for  

Servers

t
i
m
e

Clients

multiple requests

all answers 

ack1

ack2

ack4

new request for 3 

reply from 3

reply from 3

reply1

reply2

reply3

reply4

Selective solicitation

vs. 

Global solicitation

Positive confirmation

vs.

Negative confirmation

Groups issues & policies     2



MULTICAST SEMANTIC

The multicast action could make the multiple group sending
operations atomic, but they can try to associate a different and
more suitable meaning

GROUP COMMUNICATION

sender

R1

R2

R3

R4

Motivations of the interest 

• object copy location 

inside a system

• fault tolerance

• use of data replication 

and streaming

• multiple changes on 

group entities

Groups issues & policies     3

TWO aspects of MULTICAST SEMANTICS are
intertwined and can be untangled

Reliability
group members message reception

reliable � guaranteed delivery

unreliable � only 1 attempt (Chorus)

Atomicity
message reception for all group members

with possible different ordering for different actions

The two aspects can and must be considered in separation

Essential Element

We must think not only to the semantics of a single action,
but also to message ordering in a multiple action
occurrence (and consider their synchronization)

GROUP COMMUNICATION

Groups issues & policies     4



Reliability can be achieved if some occurrences cause no
problems

– sender crash

– receiver crash

– message omission

Necessity of fault identification and recovery through

monitoring of multicast and group actions

– check of every ongoing communication

– eventual retransmissions

– removal of failed components

– protocol to re-enter in the group

The additional costs for identification and recovery must be
considered and they apply in case of failures

RELIABLE MULTICAST

Groups issues & policies     5

Implementation

- Dispatch all message to the group members support and
delay before passing them to the applications

timeout and retransmission (who checks the protocol?)

- How long to wait? problems with efficiency

- If controller fails?

Quis custodiet ipsos custodes? (Juvenal / Giovenale)

hold-back � the support holds a message until it is sure
that all previous others reached the destination in order

In case of dense numbering, a message is delayed until all previous
ones appeared (if is the number 3, it must appear after and 2)

negative ack � the support sends an ack only in case of
losses, to highlight those events (in selective way)

RELIABLE MULTICAST

Groups issues & policies     6



The other aspect of ATOMICITY is connected to semantic
connected properties

with atomicity we focus on the reception order of messages
by any alive members of the group

In distributed systems sometimes we are not so interested in
obtaining a very tight synchronization of copies

No Ordering � the multicast messages coming from any
sending process to all receivers can present a different
ordering in any copy

The No ordering policy is very nice to support

It has no cost and you do not have to synchronize copies in
any way and they are free of operating on their own

ATOMICITY   VS. NO ORDERING

Groups issues & policies     7

We have many situations in which we want to require some
connections between copy scheduling

FIFO Ordering � from the same sending process to all
receivers for a sequence of successive multicast messages

In case of FIFO ordering, two multicast messages from the same
sender reach any group member in the same order

For example, m1 and m2 from S1, and m3 and m4 from S2 reach
everyone respecting sending order of the two senders

many sequences are compatible m1 m2 m3 m4, m1 m3 m2 m4,

m1 m3 m4 m2, m3 m4 m1 m2, m3 m1 m2 m4, …

We can use supports that already guarantee FIFO

Otherwise� we need to achieve it

An easy way is message numbering for that specific sender

FIFO ORDERING

Groups issues & policies     8



Compliance with FIFO ordering guarantees that every
message to the group from the same sender (and its
requests) are received in the same order in which are sent
from the group (only related with same sender multicasts)

Compliance with FIFO ordering do not guarantees a
feature that we tend to consider considering more than one
sender

A sends a news Na

B receives the news and sends a response to Nb

C receives first Nb then Na (Nb before Na)

D receives first Na then Nb (Na before Nb)

We need to consider cause/effect relationships between
different (two or more) senders

FIFO ORDERING LIMITATIONS

Groups issues & policies     9

CAUSE-EFFECT ordering can connect events from
different senders process

CAUSAL ordering � events that are correlated with a
cause-effect relationship outside the group must be
acknowledged by the group and the group must achieve
consistency about them (to be delivered to everyone)

first the cause than the effect (Cause before Effect)
In case of CAUSAL ordering, two multicast messages in the causal
relationship must be considered in the right order from everyone

For example, m1 and m2 from S1, and m3 and m4 from S2, and m1
causes m3. So they must reach copies respecting FIFO and CAUSAL
ordering. Many sequences are compatible

m1 m2 m3 m4, m1 m3 m2 m4, m1 m3 m4 m2 NOT m3 m1 m4 m2

There are no supports that guarantee CAUSAL ordering

How can we guarantee it?

CAUSAL ORDERING

Groups issues & policies     10



Compliance with CAUSAL ordering guarantees that
messages from different senders in cause-effect relationship
are received in the causal order by the group

Compliance with CAUSAL ordering for just one sender is
similar to FIFO and it is easy to implement

Compliance with CAUSAL ordering do not catch real
world situations that we tend to take for granted in case of
more then one operations

A requests an action to Na; B requests an action to Nb

These actions are not related

C receives first Nb and then Na, D receives first Na then Nb

So copies have different internal decisions of scheduling

CAUSAL ORDERING

Groups issues & policies     11

No external relations imposes a scheduling, but the group 
should act in a coordinated and reasonable way, with all the 
members the operate in the same order

ATOMIC ordering guarantees that all messages are 
received in the same order by all group members (so 
related actions can occur in the same order in all copies)

Often no predetermined order is likely, but it is necessary 
to agree on one and it should be the same for all

If a copy C decides to receive first Nb then Na, all copies
must follow that decision

Nb may ask to compute an interest on a bank account, 
Na intends to make a withdrawal

Obviously, many  different atomic orderings exists that we 
can consider with group operations

ATOMIC ORDERING

Groups issues & policies     12



In a distributed environment the introduction and the and
enforcing of orderings is costly

(coordination between group entities or numbering support)
and tend to enforce it only when necessary
Minimum cost: no ordering � each one group member work in a free 
and independent way

FIFO and CAUSAL ordering ore orderings that we tend to
enforce only for some specific events in the system

Partial orderings

ATOMIC ordering is an ordering that we tend to enforce on
every event within the group in the system

Total or global ordering

ATOMIC ORDERING

Groups issues & policies     13

Obviously, given a group and a set of events coming from outside,
we may have many different atomic orderings
How many? 

ATOMIC orderings

Among many atomic orderings, some of them can follow
CAUSAL and FIFO ordering, some only FIFO, some only
CAUSAL, and some of other none of them

Costs for atomic orderings can be very different

ATOMIC ORDERING

A B

Groups issues & policies     14



FIFO multicast with ordering only from the same sender

messages from the same sender arrive with sender and ordering
number and are delivered in that order (only for the same sender)

CAUSAL multicast with causal ordering (logic)

messages arrive and are delivered to the group in order to respect
the relationship if the event A causes the event B

Lamport ordering

ATOMIC multicast requires the same order (any order) for all
messages to the group members

ATOMIC multicast imposes a total or global ordering for
messages that arrive to the group and must be delivered with
the same order to all correct members of the group

We stress that an atomic order does not necessarily subsume
the other two or anyone of them: any order can be decided
inside the group

MULTICAST ORDERING

Groups issues & policies     15

ATOMIC multicast needs the same order
A simple way to implement it is to have an entry element (a front
end) inside the group and it is the one that orders messages while
they arrive and imposes an increasing numbers before sending
them to all other members of the group

Every member receives messages and must send them in the
agreed order to the application layers

Disadvantages of this implementation are
Problems in case of coordinator fault (that defines and rules the policy)

Unfair management: the coordinator neighbors or preferred ones can
be favored and scheduled always before others (that have made their
requests before)

Low cost solution, but very unfair

� mobile coordinator (circulating token) 

Many other solution even more dynamic (Lamport, ring, etc.)

MULTICAST IMPLEMENTATION

Groups issues & policies     16



Synchronization means to impose orderings on events,
typically …there are

Constraints on temporal ordering of some events inside a
distributed system

It is necessary to provide a consistent view of the system to
the entire set of communicating processes

Communication and Synchronization are often correlated, for
example:

• synchronizing sender / receiver of a message

• check on cooperating activities

• serialization of access to shared resources

• N processes in access to a resource (mutually exclusive)

so, ordering on important events must be enforced

SYNCHRONIZATION

Groups issues & policies     17

Synchronization by using PHYSICAL TIME and
PHYSICAL CLOCK

Unique time can be determined, if we assume that either

1) a unique clock is available on every node or

2) one clock for any node, and all of them perfectly in sync

This work assumption is perfectly admissible in concentrated
or limited systems, but absolutely not feasible and easy to be
granted in distributed and global environments

It has been defined Universal Coordinated Time (UTC) that
is based on the transmission of the value and on local correction

Some systems are based on coordination clock

A node verifies the time of all group members, computes the
average and distributes it to all as the group time (Berkeley time)

CLOCK SYNCHRONIZATION

Groups issues & policies     18



NTP - Network Time Protocol introduces a protocol based on UTC
and on synchronization to achieve an agreement on clocks

NTP tries to overcome possible transmission delay of the common
time through statistical filtering policies based on historic
behavior of servers

Starts with a higher server hierarchy, where every node transmit
time to lower-level neighbors (its subtree)

The primary nodes are more accurate and going farther from the
root, accuracy decreases, of course

The NTP tries to make actions to recover from server fault

The problem that can occur, by using clocks not perfectly in synch,
is that an event happened afterwards maybe labeled and
considered before an event that precedes it in time (that may
produce a wrong time synchronization)

CLOCK SYNCHRONIZATION

Groups issues & policies     19

Synchronization via PHYSICAL TIME clashes with the
difficulties of guaranteeing synching of clocks and a high
implies a high overhead and also may present errors

Precision requires to coordinate continuously the
clocks, and it is impossible to avoid conflicts and
clock drifting with limited overhead

Typically distributed synchronization is not based on complex
algorithms of physical clock agreement but based on different
strategies that can restrict the sync requirements and focus only on
a subset of global system events

The idea is to work on a subset of events (considering only some
interesting events) and to create an agreement only on them

The assumption of a limiting focus and a reduced group can limit the
overhead and protocol cost

SYNCHRONIZATION

Groups issues & policies     20



Several Distributed Synchronization Methods
Ordering of logical time of Lamport

We can use timestamps (time indicator) to label relevant
events and to order them � logical clocks and "happened
before“ relationship

Token passing LeLann ring strategies

We can use authorizations, and the token can pass in a logical
ring to order events

Events based on priority

We can use process priority to order correlated events

Used in real-time systems and unfair

SYNCHRONIZATION STRATEGIES

Groups issues & policies     20

Lamport aim at to ordering some events in a distributed
system, by excluding physical time

Only some events are considered in the distributed system with a
scenario constituted by processes that have their internal history
and can exhibit a behavior based on two kinds of events:

1) local: local events

2) remote: interprocess event, generated by sending messages
form one process to another process

We limit the actions of interest

The ordering must consider only some ‘relevant’ events and
aims at creating a simple ordering policy, on which to
eventually establish a correct synchronization with adequate
costs and not very expensive to implement

LAMPORT RELATIONSHIP

Groups issues & policies     22



Events ordering for a set of processes that communicate
through message passing based on cause-effect
relationship introduced by process actions

1) If a and b are events of the same process and a occurs
before b, then a � b (local order)

2) If a is the sending of a message of one process and b the
receiving event within another process, then a � b
(communication interprocess order)

3) If a � b and b � c, then a � c (transitivity)

The relation� introduce a partial ordering in systems
events and it exists only among some systems events and
not available among all events (it is not a total ordering)

Two events are concurrent � if not a � b and not b � a

HAPPENED-BEFORE RELATIONSHIP�

Groups issues & policies     22

HAPPENED-BEFORE RELATIONSHIP�

a1 c1

c2

b3

b1

b2
a2

a3

Pa Pb Pc

a1 � a2, a1 � a3

a1 � b1, a1 � b2, a1 � b3

c1 � c2

c1 � b2, c1 � b3, c1 � a3

Concurrent events

a1� c1, a1�c2, …

a2� b2, a2 � b3, …

Groups issues & policies     23



The happened-before relationship allows to work in a
distributed system in which only � is enough for ordering

We do not assume a unique global clock (global time), but
allow for a set of local clocks (local time)

We assume also to work in an asynchronous assumption,
that considers possible any transmission delay for
messages, variable and unlimited, in principle, so higher
than any significant possible delay

� We may need several ordering strategies, also global
or total to synchronize

We want to build a logical time system built on the �

relationship that is based on logical clocks and not on
physical clocks

HAPPENED-BEFORE RELATIONSHIP �

Groups issues & policies     24

We need to construct a clock system (system timestamp) to
assign a simple indicator, a ‘number’, to order events

The happened_before relationship is only partial

We define a function TS(i), a logical time-based function (called
timestamp) that must assign a value to any relevant event

If a � b in the system, than the logical timestamp of events must
respect the law TS(a) < TS(b)

If need a clock condition, if we want to infer the global logical
clock function LC for system events related to processes Pi

Clock condition (Logical Clock - LC)

Given a and b, if a � b, than LC(a) < LC(b)

NOTE: it is not true that, if LC(a) < LC(b), than a � b

LOGICAL CLOCKS and TIMESTAMP

Groups issues & policies     26



Any process Pi has a logical clock LCi(c) (an integer counter)

C1. For ∀a and b, if a � b inside the same process Pi,
then LCi(a) < LCi(b)

C2. For ∀a and b, if a is the sending of a message in the
process Pi and b the reception in the process Pj, then
LCi(a) < LCi(b)

I1. Every process Pi increments LCi between any two events

I2. For ∀a, sending of a message in process Pi, the message
contains a clock as timestamp TS = LCi(a)

I3. For ∀b, reception of a message in process Pj, the process
put the logical clock at the greater value between current
clock and timestamp LCj = max (TSreceived, LCicurrent) + 1

These rules introduce a partial order relationship

Many events concurrent a� b with equal timestamp

LOGICAL CLOCKS and TIMESTAMP

Groups issues & policies     27

WHO DOESN’T RECIVE, DON’T UPDATE

a1 c1

c2

b3

b1

b2
a2

a3

Pa Pb Pc

The � relationship allows to 

order events according with 

a logical cause-effect relation

but the sender has initiative 

and forces the update the 

logical clock of the 

receiver, but not its own…

(it is the receiver that has to 

update clock to sender, with 

a transmission eventually)

26

25 23 8

27
9

28
10

27

29

30

Groups issues & policies     28



HAPPENED-BEFORE � PARTIAL

a1 c1

c2

b3

b1

b2
a2

a3

Pa Pb Pc

The � relationship allows to 

catch cause-effect event 

ordering

But … it also make you assume 

an ordering of events even 

without the � relationship

Concurrent events in real 

world – such as c1 and b1-

are considered one after the 

other … so in sequence

What is the relationship 

between the b2 and c2  events 

(same timestamp)?

6

5 6 8

7
9

10
10

11

11

12

Groups issues & policies     29

Sometimes it is necessary to introduce some total order
relationship between all process events in the system

These cases are dealt with by a global order relationship
� between all system events that is based on logical clock
and on the partial ordering of �

total order relationship �

If a is an event in process Pi and b an event in process Pj,
than a � b if and only if

R1) LCi(a) < LCj(b) or

R2) LCi(a) = LCj(b) and Pi < Pj

The total ordering assume that in case of events of the
same clock, there is an order between all processes

It is possible to use � to define an univocal and simple
ordering to create synchronization upon

TOTAL ORDERING and �

Groups issues & policies     30



The Lamport relationship � is a logical one and it is loosely
connected with the real world; it cannot be considered a
physical world relationship (it does not respect ‘reasonable’
human behavior)

In general who receive messages update its time
Those who do not receive messages may maintain a very low
timestamps and are not forced to sync logical clocks (so their
timestamps can be very favorable)

Hidden channel problem
If a process can use a external and non mapped channel to
communicate (hidden channel), that can lead to a situation that do
not respect cause / effect relationship

The effect in real world can have a timestamp more low than cause

Causality problem

Two events considered by Lamport in a causal relationship can
instead be not related

TOTAL ORDERING and REALITY

Groups issues & policies     31

HAPPENED-BEFORE � TOTAL

a1 c1

c2

b3

b1

b2
a2

a3

Pa Pb Pc

The � relationship orders 

any pair of events

it makes possible to 

consider in sequence two 

events that are instead 

concurrent in real world 

c2 and b2

are managed as in 

sequence, by considering 

first process Pb, then Pc

6

5 6 8

7
9

10
10

11

11

12

Groups issues & policies     32



There are other strategies

it is possible also to consider vector logical clocks or Vector
Clocks to order events in a process set

Processes must maintain a vector of all known clocks of
all the processes and use that in communication

Every process keep its timestamp and a vector Vi[k] of
integers of a dimension of the number of processes

A vector clock element Vi[k] contains information on what a
process knows about the clocks of the others processes

The process Pi in the vector keeps:

1) Vi[i] its timestamp (index i)

2) Vi[k] the timestamp of any other process Pk at its knowledge

So the data structure is more complex for processes and also
for the protocol to communicate and update the vector

VECTOR CLOCK ORDERING

Groups issues & policies     33

The Vector clock update protocol is based on the steps:

1. Every process Pi increments Vi[i] between two events

2. For ∀ sending of a message to process Pi, the message

contains the whole vector clock at best knowledge of Pi

after incrementing its own Vi[i] = Vi[i] + 1

3. For ∀ reception of a message, the process Pj increments

its own Vj[j] = Vj[j] + 1 and updates its vector according to

Vj[k] = max (Vj[k], Vi[k])

The receiver obtains information on the logical time of the
sender process and also on time that it knows of all others

Vectors clocks allow a better information propagation
and permits a wider information exchange and diffusion
(sometimes matrices are used)

A VECTOR CLOCK PROTOCOL

Groups issues & policies     34



The logical clock protocol produces updating of clock values at 
message reception

In case of communication � the receiver clock adapts
then all successive events are ordered with �

The main cons is that events not in the � relationship can be taken
as if they were

The vector clock protocol instead pays the cost of the propagation 
of the entire vector and requires to adjustment of the entire vector 
at the receiver

The vector clock � requires to apply to all dimension of the clock,
… so it becomes more significant and the relationship if bi-univocal

With vector clock algorithms

The events in � are recognized to be in cause effect
relationship and

the events not in that relationship, i.e., concurrent events �, are
recognized not to be in the � cause-effect sequence

LOGICAL CLOCK vs. VECTOR CLOCK

Groups issues & policies     35

VECTOR CLOCK

a1 c1

c2

b3

b1

b2
a2

a3

Pa Pb Pc

With vector clocks we can 

identify if two events are in a 

real cause-effect relationship

Not only events in relationship 

are tagged and ordered, but 

others events that are not 

cause effects are recognized 

as such 

Concurrent events in real world -

c1 and b1, a1 and c2,… -

are not considered in the 

cause effect relationship

6,0,0

5,0,0 0,6,0 0,0,8

6,7,0 0,0,9

6,8,9

0,0,10

7,0,10

6,9,9

8,9,10

Groups issues & policies     36



The simplest synchronization case is the scenario of a set of
processes that have to access a resource in a mutually
exclusive way

We have to assume that every process must access to the
resource for a limited time and release it after usage

OBJECTIVES:

Safety - only one process at a time can have access to the
resource

Liveness - every process that has done a request receives the
access after a limited delay

Fairness - different requests must be managed by a fair policy

Obviously we have many ways to realize it

We exclude fixed priorities that are unfair and can cause
starvation

SYNCHRONIZATION

Groups issues & policies     37

We can follow an approach based on a

Coordinator process

An approach completely centralized considers a unique
coordinator process known to all others processes (all
participants must not know each others – C/S model, but they
know the coordinator)

Every process that intends to access the resource sends the
request to the coordinator and after usage, notifies it

The coordinator process decides the scheduling of the resource
accesses by using its policy to grant mutual exclusion

Obviously the coordinator can decide different policies
(FIFO management or others)

We assume that the coordinator receives all requests
sent and queued in a reliable way (but with any delay)

RESOURCE SYNCHRONIZATION

Groups issues & policies     38



Protocol of the coordinator

1) a process when it intends to access to the resource sends a
request message (request) to the coordinator

2) The coordinator serves its request queue and it is free of
deciding the request to reply to (reply). Obviously, it must send
only one reply to one request at a time (typically FIFO).

3) when receiving the reply, the process can use the resource
and at the end, must send a release message to the
coordinator (release), that can decide to reply to another
request, etc., etc.

3 messages for every access to the critical section

There are several disadvantages stemming from the centralized
and unique role of the coordinator

The case of coordinator fault and of its potential unfairness

Differentiated delays in reaching the coordinator

RESOURCE COORDINATOR

Groups issues & policies     39

Lamport proposes a decentralized solution without single
failure points

A set of N processes that must access to a single resource
in mutual exclusion, without assuming any centralized role
and trying to grant that requests are served in order (in a fair
way)

Participant processes must only examine their request queue

Processes exchange messages between each other to obtain
synchronization and must use Lamport clock relationship (up to �

relationship)

Assumptions:

- messages between processes must arrive in FIFO order

- messages can be delayed but not lost

- the connection between processes is complete and direct

LAMPORT SYNCHRONIZATION

Groups issues & policies     40



Use of logical clocks and Lamport relationship

Every process has a local queue of received messages, in
which messages are queued in order of timestamps

For every process, the local queue initially contains the
message T0:P0, lesser than every clock in the system

Clock is considered a logical time, specified by an integer and with
the process identity that owns it

Every message has a timestamp that depends on both
components (process and logical clock) and allows fair ordering

A process that decides to access a resource must execute a
global coordination protocol

Every process must know any other and faults are not 
expected 

(N processes in order of index compose a  static group) 

LAMPORT PROTOCOL

Groups issues & policies     41

Protocol

1) The process Pi sends the request message Tm:Pi to every
process (even in its queue) to signal its intention to access to the
resource

2) At message Tm:Pi reception, the process Pj (and already in its

queue) sends a reply with its updated timestamp

3) The process Pi can use the resource if in its local queue:

- It has the request Tm:Pi ordered before any other request of
other processes (� relationship)

- It has at least one message coming from any other process
with a timestamp successive to Tm

4) At the release, Pi removes the message from its queue and
sends a release message with its timestamp to every process

5) Every process Pj receives the release request and removes the
request message from its queue

Mutual Exclusion PROTOCOL

Groups issues & policies     42



That solution grants that every process that executes the
protocol can receive the resource with a limited time
delay, if every process respects the constraints

Let us note that the process that requested to access, but waits
and enforces a coordination with any other participant

Every request message sent requires a response from all others

The wait for messages form any other process in the system,
allows for the arrival of other possible requests from other
processes that may precede the current one and, once arrived,
are queued ordered by timestamp

Every process queue is ordered, and so a process can pass
only when ‘previous’ requests have been served already

At least (N-1) messages sent and the same number received before
entering

RESOURCE SYNCHRONIZATION

Groups issues & policies     43

The synchronization worst case is when all processes want to
access the resource at the ‘same’ time

In case two processes make a request, they separately agree on the fact
that first to enter is the one with the lower timestamp

So there cannot be conflicts

The algorithm occurs without any centralization, but in a completely
distributed way

For every action on the critical section the number of exchanged
messages is (considering a probable broadcast as N-1 messages,
unless you can obtain lower cost)

Number of messages 3 * (N-1) or N-1 and 2 broadcast

We have a high cost due to decentralization

Heavy assumptions on the static group and no faults

SYNCHRONIZATION COST

Groups issues & policies     44



Ricart & Agrawala protocol

1) Process Pi sends the request message Tm:Pi to any process
(even it its queue) to signal its intention to access to the resource

2) At message Tm:Pi reception the process Pj sends

• an immediate approval reply if does not need the resource or the
requester has a higher priority

• Delay its reply if is using the resource or it has already asked to
enter and its has a higher priority

3) Process Pi access the resource only if receive N-1 approval
messages

4) At release, Process Pi must send approval to all arrived requests

5) The requests are deleted after approval

Only one process can have N-1 approval responses and

only a process can access the resource at a time

OTHER M.E. PROTOCOL

Groups issues & policies     45

For every action in the critical section, the number of exchanged
messages is (a possible broadcast costs as N-1 messages)

Number of messages 2 * (N-1)

So, there are N-1 messages from requester and N-1 from everyone else

difficult to foresee a coordination at lower cost

These algorithms are based on variations of Lamport relationship

are completely distributed (no unique manager)

fair and free from deadlock and starvation

But they may

have high costs in terms of exchanged messages for coordination

have high costs due to decentralization

Heavy assumptions of messages not lost and static group without faults

R.A. - SYNCHRONIZATION

Groups issues & policies     46



Distributed implementation of atomic multicast can be less
centralized than the obvious one with a unique coordinator

CATOCS

CAusal & Totally Ordered Communication operations Support

based on a by-need dynamic coordination of a set of managers
that decide internally the request order

The group does not have a unique central manager, but
coordinates on need and create a unique vision: it is possible to
have a manager selected for every request that negotiate with
others and obtains all the requests to synch with others

Realization not scalable and implementation of different
efficiency (?) or at least efficient only in specific cases

Availability of a broadcast at a low level can solve many
implementation problems and enhance efficiency (we also need a
support that grant the assumption of not losing messages, connecting
all processes, … etc.)

ATOMIC MULTICAST

Groups issues & policies     47

ISIS appeared in the 1990… for CATOCS

ISIS is system based on groups with active replication and with
necessity of a vision with different degrees of coordination of
group components

The system obtains coordination with many different forms of
group multicast (called broacast)

Many different multicast forms are available (BCast)

FBCast (Fifo BCast)

CBCast (Causal BCast)

ABCast (Atomic BCast) GBCast (Group BCast)

Providing also support to the case of no copy coordination

In general, there are no assumptions on group central roles, but
any operation need a manager, typically chosen dynamically
according to any kind of policy (closeness, … )

ATOMIC MULTICAST - ISIS

Groups issues & policies     48



ISIS ABCast (Atomic BCast) …. and its cost 3*(N-1)

That CATOCS uses a queue for every corresponding component of
the group and Lamport relationship

The messages that arrives to any group element are tagged with an
initial arriving timestamp and only considered if labeled as final in
the right order for Lamport relationship

Every arrived message requests a coordination phase of the
manager (and hold-back) to determine the final timestamp
to be used by al copies to execute in the correct order

The coordinator receives the message:

• labels it, and sends it to all others (with its timestamp)

• anyone else labels the answer with its timestamp based on its time
(clock) and sends the answer back with its timestamp

• labels it as final with the received highest timestamp (is it necessary?)

• resends the message with the final timestamp to all others to
communicate the final decision

Any in the group has all messages in the same order in its
queue o to drive the execution

Problems: delay and overhead - cost in messages of 3 * (N-1)

ATOMIC MULTICAST - ISIS

Groups issues & policies     49

ISIS ABCast (Atomic BCast) achieves the total ordering of

messages for a group toward a coherent group vision

The group must reach an internal agreement and that can also not be a

compliant vision to external timestamping (not to be respected)

Group members cannot operate on one request until it is sure that
the message:

• has been seen also by everyone else (arrived to anyone)

• has been ordered with respect to any other message for the
group (arrival order)

The group is achieving consistency in operation ordering and,
so, atomicity and global order is guaranteed

• other messages not yet arrived, maybe sent before these, will be
considered only afterwards by the entire group

And if we have to guarantee causal multicast?

How do we do that? It is more or less complex?

ATOMIC MULTICAST

Groups issues & policies     50



ISIS CBCast (Causal BCast) also partial ordering

That multicast tends to consider only some external events that are
considered to be ordered respectively; all other events can be ordered
differently by group components (so limiting costs and coordination)

ABCast tends to impose an order based on timestamping decided
inside the receiver group (internal event ordering strategy)

CBcast requests a behavior decided outside the receiver group
that detects a cause-effect relationship by inferring it from
timestamps arriving from outside (internal event ordering
strategy)

The Causal Broadcast assumes a coordination between senders 
that must update their “logical clock” and send information to 
receivers (requests queued by the senders timestamps)
Group members must only respect that external ordering

If a cause would not reach the group before processing the effect?

Necessity of undo or error (!!)

CAUSAL MULTICAST - ISIS

Groups issues & policies     51

ISIS GBCast (Group BCast)

In the real world, the group of processes can dynamically change
in cardinality, so it is possible to join or to leave the group for
different reasons (possible group inconsistencies and problems)

For every concurrent multicast, the message arrive in two states:

- to every member before group changing

- to every member after a group changing

consistent ordering of any BCast events, either before or after

GBCast makes possible to order all Bcasts: the message is
received only after receiving every previous BCast still in
process (or before, in a consistent way)

GBCast requires a monitoring support for group variation events (insert
and extraction, because of fault and reinsertion, trigger one GBCast)

Every group member uses a table for other member memberships to the
group, and that table is updated by any GBCast (so all other Bcasts can
be aware of it and consistently ordered)

OTHER MULTICAST - ISIS

Groups issues & policies     52



JGROUPS
Support for reliable multicast and for group concept

Designed in Java and with user defined proprieties
JGROUPS starts with a transport level, either not connected or
connected, and it is also possible to work with JMS (Java
Message Service) for message specifications

The goal of JGROUPS is group and message delivery

ordering: it proposes a reliable implementation, intended as

delivery with message retransmission, with most common

different ordering: atomic, FIFO, causal, etc.

For the group property, groups are dynamic and managed in

membership: every group element benefits from group

messages, both from outside that from inside the group

Possibility of security, like encryption and other secure support 

protocols

JGROUPS – RELIABLE MULTICAST

Groups issues & policies     53

To overcome the problem of one central coordinator, the
synchronization can be deployed by changing the coordinator

without a fixed role, but varying the responsibility

The synchronization is associated with a token dynamically passed
between N different participants

SYNCHRONIZATION by using TOKEN

1

2

3

4

5

6

7

8 token

The nodes are organized in a
logical ring (ON), where every
node knows the next one
(successor and predecessor)

Every node acts as the group
manager when it owns the token
that it must keep for a while, then
must pass to the next one

The token circulates among the
N different participants

Groups issues & policies     54



A logical RING connects all N participants and the token current
owner is the manager of ME

Protocol to access to the resource: who has the token,

- verifies that it is the expected recipient and

- uses the token for a time period with a maximum detention

(it manages ME to access resources for all N nodes)

- addresses it to the following

Only one process at a time can access ME resources, only one
process has the token at a time and no conflicts can arise
Starvation is not possible, if the token moves in the ring in one
direction only

Number of messages N for complete token passage

The working scheme is typically proactive: the token must
circulate even without requests

Problem if the token is lost (failure of the node that has it)

RING SYNCHRONIZATION

Groups issues & policies     55

The case of losing the token or having more than one must be
avoided (since they are unsafe for ME)

In case of failure of the node that has the token, it is necessary
to regenerate it
Token loss must be prevented (due to fault on manager node)

Every node, sending the token in the ring, activates a timeout
interval (depending on N and on maximum permanence of token in
a node) that is reset at token return

SYNCHRONIZATION in a RING

1

2

3

5

6

7

8

9 token

In case the timeout is
triggered, the node starts a
recovery procedure to
regenerate the token

Note that more than one node
can start this procedure

Groups issues & policies     56



Election protocol to decide who must become the manager
(by generating a unique new token) based on static priority

- At timeout, the process creates an election token (ET) with his
name and enter an election state until the token returns

- If the process receives the normal token before the generated
ET is back, the election is considered useless and terminated

(ET destroyed at return)
- If the process receive an ET from another process, it is

registered on an election list together with identity of process
that generated it, and it is passed inside the ring
if it has already generated an ET token, verifies the static
priority and decides who has highest priority in the election

- If the process receive its ET, removes it and verify registration
list
The process generate a new token, if the it is the node with
minimum index (top priority) inside the registration list

ELECTION REQUIREMENT in a RING

Groups issues & policies     57

The RING architecture allows to execute very simple recovery
algorithms in case of single fault with limited duration
Obviously, any node must execute some local neighbor
correctness checks to re-create the ring and overcome failure in
case of neighbor failure
Any node must also know the further following node

ELECTION in a RING

1

2

3

5

6

7

8

9

token
election

3

1
9

In this case, the token can 
be regenerated from the 
node with higher priority 
among the considered ones 
(here the number 1)

The election token become 
the new token

Groups issues & policies     58



The election protocols are used any time an agreement among
participants must be found without a predefined policy

They are typically necessary in case of fault and recovery in a

group to obtain distributed and easy agreement on a decision
In many cases, it is based on a potential static order of
participants

BULLY algorithm

Every participant Pi that detects necessity of an election (event

local to everyone) or a recovery for a management role can do it

Three types of messages are considered
• message Election
• answer Answer
• announcement IAmCoordinator

How many phases there are in election protocols?

ELECTION PROTOCOLS

Groups issues & policies     59

1) sends an election message to processes with

higher priority (Election)

1’- in case of election message from a lower 

priority process, sends an answer to block and 

a new election is started

2) after some time, …

Answer coordination messages from superior

nodes can arrive

- if they arrive, the low priority process stops

- if no message arrives from higher priority 

processes, it becomes a coordinator and

3) signals its presence with the message

IAmCoordinator to lower priority nodes that

are advised

BULLY ELECTION

1

Election

2

I-1

I+1

I

Answer

IAmCoordinator

Every participant can start the election at any time
triggered by some timeout events

Groups issues & policies     60



Optimist: A distributed system is a collection of independent 

computers that appears to its users as a single coherent 

system

Pessimist: “You know you have one problem when the crash 

of a computer you have never heard of stops you from getting 

any work done” (Lamport)

Academics like point of view:

Clean abstractions, Strong semantics, Things that are formally 

provable and that are smart

Users like point of view:

Systems that work (most of the time), Systems that scale well, 

Consistency not important per se

TWO PERSPECTIVES

Groups issues & policies     61

The idea of granting the maximum of consistency is embodied by 

the ACID properties typically considered in

• Concurrent execution of multiple transactions

• Recovery from failure

� Atomicity: Either all operations of the transaction are properly 

reflected in the database (commit) or none of them are (abort)

� Consistency: If the database is in a consistent state before 

starting a transaction, it must be in a consistent state at the end of 

the transaction

� Isolation: Effects of ongoing transactions are not visible to 

transactions that executed concurrently

Basically “we’ll hide any concurrency”

� Durability: Once a transaction commits, updates can not be lost or 

their effects rolled back

ACID PROPERTIES

Groups issues & policies     62



A “serial” ACID execution is one where there is at most one 

transaction running at a time, and it completes via commit or abort 

before another starts: “serializability” is the “illusion” of a serial 

execution but with heavy costs

The costs of transactional ACID model on replicated data can be 

surprisingly high in some settings 

Let us think to two cases:

• Embarrassingly easy ones: transactions that do not conflict at all 

(like Facebook updates by a single owner to a page that others 

only read and never change)

• Conflict-prone ones: transactions sometimes interfere and 

replicas could be left in conflicting states, if no attention is paid to 

order the updates. Scalability for this case is terrible

Solutions must involve ad hoc solutions, such as sharding and coding 

ad-hoc transactions

ACID EXECUTION and COSTS

Groups issues & policies     63

eBay researchers

• Found that many eBay employees came from 
transactional database backgrounds and were used to 
the transactional style of “thinking”

• But the resulting applications did not scale well and 
performed poorly on their cloud 

Goal was to guide that kind of programmers to a cloud 
solution that performs much better by giving new guidelines 
in designing internal applications

• BASE is the solution that reflects experience with 
real cloud applications and provide a new workflow

• “Opposite” of ACID

BASE   MOTIVATIONS

Groups issues & policies     64



Brewer’s CAP theorem:  

“you can not use transactions at large scale in the cloud”

…or in large dimension systems 

• We saw that the real issue is mostly in the highly 

scalable and elastic outer tier (“stateless tier”) close to 

the users and does not impact on the second inner layer

• In reality, cloud systems use transactions all the time, but 

they do so in the “back end”, and they shield that layer as 

much as they can from users, to avoid overload and not 

to create bottlenecks

CAP STRATEGY

Groups issues & policies     65

Basically Available: the goal is to provide fast responses

Since in data centers partitioning faults are very rare, they 

are mapped into crash failures by forcing the isolated 

machines to reboot

But we may need rapid responses even when some replicas 

can not be contacted on the critical path

Basically Available: Fast response even if some replicas are 

slow or crashed

Soft State Service: Runs in first tier

• cannot store any permanent data 

• restarts in a “clean” state after a crash

• to maintain data, either replicate it in memory in enough 

copies to never lose all in any crash (active copies in 

memory) or pass it to some other service that keeps 

“hard state”

• E?

BASE   PROPERTIES

Groups issues & policies     66



• Basically Available: Fast response even if some 
replicas are slow or crashed

• Soft State Service: No durable memory

• Eventual Consistency:  abbreviate return path by 
send “optimistic” answers to the external client

• Could use cached data (without checking for staleness)

• Could guess at what the outcome of an update will be

• Might skip locks, hoping that no conflicts will happen 

(optimistic approach)

• Later, if eventually needed, correct any 

inconsistencies in an offline cleanup activity

MORE  BASE  PROPERTIES

Groups issues & policies     67

Use transactions, but removing Begin/Commit points
• Now fragment it into “steps” that can be done in parallel, as 

much as possible

• Ideally each step is associated with a single event that triggers 

that step: usually, delivery of a multicast

The transaction Leader stores these events in a MOM (“message 

queuing middleware”) system

• Like an email service for programs

• Events are delivered by the message queuing system

• It provides a kind of ‘all-or-nothing’ behavior

Consider sending the reply to the user before finishing the 

operation

Modify the end-user application to mask any asynchronous side-

effects that might be noticeable, by “weakening” the semantics of 

the operation and coding the application to work properly anyhow

SOME IMPLEMENTATION

Groups issues & policies     68



Before BASE, the code was often too slow and scaled poorly, 

so end-user waited a long time for responses

With BASE

• Code itself is more concurrent, hence faster

• Eliminate locking, with early responses, all make end-

user experience snappy and positive

• But we do sometimes see oddities when we look hard

Suppose an eBay auction running fast and furious

Does every single bidder necessarily see every bid? And do 

they see them in the identical order?

Clearly, everyone needs to see the winning bid, but slightly 

different bidding histories shouldn’t hurt much, and if this makes 

eBay 10x faster, the speed may be worth the slight change in 

behavior!

BASE EFFECTS

Groups issues & policies     69

ACID

• Strong consistency for 

transactions highest 

priority

• Availability less important

• Pessimistic

• Rigorous analysis

• Complex mechanisms

BASE

• Availability and scaling 

highest priorities

• Weak consistency

• Optimistic

• Best effort

• Simple and fast

ACID  vs.  BASE

Groups issues & policies     70



What goals you might want from a large organization support 

system for sharing data globally 

Consistency, Availability, Partition tolerance

• Strong Consistency: all clients see the same view, even 

in presence of updates

• High Availability: all clients can find some replicas of the 

data, even in presence of failures

• Partition-tolerance: the system properties hold even 

when the system is partitioned and the work can go on 

without interruption

You can obtain only two out of the three properties

The choice of which feature to discard determines the nature 

of your system

ACID   +   BASE  =   CAP

Groups issues & policies     71

Providing transactional semantics requires all functioning 

nodes to be in contact with each other (and no partition is 

allowed)

When a partition occurs, no work can go on and the 

reconnection must be awaited

• Examples:

• Single-site and clustered databases

• Other cluster-based designs

• Typical Features:

• Two-phase commit

• Cache invalidation protocols

• Classic DB style

Consistency and Availability

Groups issues & policies     72



If you neglect consistency, life is much better and easy….

You can work in case of a partition and give answers, 

then you will grant reconciliation afterwards

• Examples:

• DNS

• Web caches

• Practical distributed systems for mobile environments 

are choosing like that (eBay as the pioneer)

• Typical Features:

• Optimistic updating with conflict resolution

• That is the Internet philosophy

• TTLs and lease cache management

Partition-tolerance and Availability

Groups issues & policies     73

• Strict: updates must happen instantly everywhere
• A read must return the result of the latest write on that data: 

instantaneous propagation are not so realistic

• Linearizable: updates appear to happen instantaneously at 
some point in time
• Like “Sequential” but operations ordered by a global clock

• Primarily used for formal verification of concurrent programs

• Sequential: all updates occur in the same order everywhere
– Every client sees the writes in the same order 

• Order of writes from the same client is preserved

• Order of writes from different clients may not be preserved

– Equivalent to Atomicity + Consistency + Isolation

• Eventual consistency: when all updating stops, then 
eventually all replicas will converge to the identical values

– Equivalent to CAP

SEVERAL CONSISTENCIES

Groups issues & policies     74



When all updating stops, then eventually all replicas will 

converge to the identical values

Write propagation can be implemented with two steps:

• All writes eventually propagate to all replicas

• Writes, when they arrive, are written to a log and applied in 

the same order at all replicas (timestamps and “undo-ing”)

Update propagation in two phases

1. Epidemic stage: Attempt to spread an update quickly willing 

to tolerate incomplete coverage for reduced traffic overhead

2. Correcting omissions:  this phase grants that all replicas 

that were not updated during the first stage get the update

EVENTUAL CONSISTENCY

Groups issues & policies     75

In a distributed system it is sometimes necessary to coordinate and

support a global state associated with the current situation

The state can be successively used to replay the system from

a previous point and restart execution in a safe situation

The main point is to locally coordinate the event of the single

component parts to compose a consistent view, without

paying too much for coordinating

checkpoint for recovery, distributed garbage collector

Let’s assume an asynchronous model with processes on

different nodes that can send messages reciprocally (there are

channels with only one-way communication between processes)

Processes can execute locally and also exchange messages via

channels that must grant that all nodes are reachable by any other

one (no partitioning)

GLOBAL STATE

Groups issues & policies     76



The global state stems from the private states of any participant

process, but also should keep into account exchanged messages

(currently exchanged) between different processes

The main point is to record the whole needed information to avoid a
situation in which you are losing content

The snapshot must be taken while processes are running, so it must
minimally intrude in the normal execution and be safe

Distributed snapshot

Compose the needed information in a unique meaningful state, but
acquiring it in a distributed scenario with a minimal coordination

Recall that we have to grant a safe global vision in a consistent way

how to compose every single state?

compose meaningful state and potentially consistent

excluding meaningless states (also not consistent)

GLOBAL STATES 

Groups issues & policies     77

Consistent cuts in a distributed system

Non all states are admissible and safe for snapping the shot

Consistent cuts (a) represent a safe global state and

Inconsistent cuts (b) produce an unreasonable global states

GLOBAL STATES CONSISTENCY

Groups issues & policies     78



Consistent cuts in distributed system exclude unreasonable
situations from the operation point of view

Consistent Cut or Message (a) message m3 from P1 to P2

In case of the m3 message, where we record the sending state in
the snapping of P1, and we cannot not record the arrival within the
state of the receiving node P3 – the message must be recorded

We have to keep track of that message inside the global state in case
of replay (the message is part of the snapshot process, and it is
must be recorded in the input of the receiver)

Inconsistent Cut or Message (b) message m2 from P2 to P3

In case of messages where we record the arrival in the state of the
receiver node, but not the sending in the sender node

This type of recording or cut is inconsistent, because it embodies the
message in the receiver state, but the message has not recorded in the
sender state: in case of replay, the sender will forcedly resend the
message that causes the effect of a double reception in the receiver and
an unsafe behavior (this event must be avoided)

SAFE GLOBAL STATE

Groups issues & policies     79

Distributed Global Snapshot (one at a time)
Local algorithms plaid by nodes to put together a single
organization starting from all participant states (checkpoint) and
the exchanging compatible messages (channels state)

OBJECTIVE: propagate a state snapshot wave from processes that 
individually record the local state; the wave expands to cover the 
entire system (assumption of complete reachability)

Every process is characterized 
• by IN and OUT channels in FIFO mode and enough connections

(every bidirectional channel� is separated into two channels)
• by two states and two colors and marker management messages 

white  - initial state (before snapshot)
red    - successive state (doing snapshot or completed)

Every process that becomes red makes a local snapshot and sends 
one marker message via any OUT channels
Every process that receives the marker becomes red
The marker message passes through channels in order, together 
with all other application messages

GLOBAL STATES VIA SNAPSHOT

Groups issues & policies     80



Every process organizes state to 
save in two parts:
- its local environment (state) to 

record as soon as they become 
red

- some sets of possible 
messages associated to one 
input channels 
these messages are recorded 
until a marker message arrives 
in the queue

A process become red either at a 
marker reception on an input 
channel or if it has decided to 
make a snapshot; after it remains 
red  (stability of the state)

A process completes its 
snapshot after receiving a 
marker on every input channels
(and completes the snapshot)

Distributed Global Snapshot

Groups issues & policies     81

a) The process Q receives a marker and registers its internal state 
(checkpoint)

b) The process Q sends out new markers to output queues and start 
registering all incoming messages from open input channels 
The messages are meanwhile processed and consumed

c) The process Q receives a marker on a specific input channel 
(except the one where it arrived first that is already closed)

d) The process Q closes the registration for that channel (but 
messages continue to be served)

When a process ends the snapshot on every input channel it has 
completed the node snapshot (state an all messages saved from 
input channels)

Distributed Global Snapshot Algorithm 

Groups issues & policies     82



Distributed Global Snapshot

Every process can start a snapshot (checkpoint of local state) 

and send the marker on every out channel

The snapshot global state result composed by:

- local states of every process

- state of input connection channels 

(messages sent by senders and recorded by receiver)

For the process state, it is created when a process starts the 

snapshot or receives a marker
Every process that receives the marker makes the checkpoint of its 

local state e sends a marker message in any output queue

For the channel state, every incoming message from incoming

channels is recorded until that channel gets a marker that signals

the end of the information to be recorded for that channel

The registration in that channel can then be closed (checkpoint)

STATE as union of LOCAL STATES

Groups issues & policies     83

The global state is composed by:
- local state of every process
- state of connection channels (messages sent)

- bb messages before and rr messages after the snapshot
- br messages to be recorded in the channel state
- rb messages not consistent (avoided by the protocol since the 

marker will pass beforehand and makes the node red beforehand)
Messages as rb are avoided by protocol construction

Distributed Global Snapshot

P

Q

bb rr

br

rb

Groups issues & policies     84



The process P can start a snapshot and request the 
collaboration of every other process that record their processor 
states and channel states
How it is all recorded and where?

Every process that ends can send the state to the process that 
started the snapshot or to a defined node P devoted to 
management collection and eventual replay

About snapshots management
At first snapshots are intended as rare events inside the system 
because of the cost

What happen if more snapshot are executed together?
How is it possible to execute more snapshots concurrently
and distinguish them?
Are they compatible and how?

SNAPSHOT MANAGEMENT

Groups issues & policies     85


