1866

£#AUB

Correct-by-Construction Techniques in the BIP Context J

American University of Beirut

Faculty of Arts & Sciences - Department of Computer Science

May 17, 2017

(AUB) May 17, 2017 1/ 43

Context
Context

Computer systems are everywhere,

(AUB) May 17, 2017 2/ 43

Challenges

Systems become more and more complex and the adoption of them is
increasing exponentially.

Existing solutions
@ Software engineering: verification, test, simulation,

@ Programming and modeling languages: C/C++, Java, UML, GME,
Simulink, .Net, SystemC, ...

(AUB) May 17, 2017 3/ 43

Challenges

Systems become more and more complex and the adoption of them is
increasing exponentially.

Existing solutions
@ Software engineering: verification, test, simulation,

@ Programming and modeling languages: C/C++, Java, UML, GME,
Simulink, .Net, SystemC, ...

But!?

Building correct and efficient systems is still time-consuming and hardly
predictable

(AUB) May 17, 2017 3/ 43

Programming and Modeling Languages

We can distinguish two different types of programming and modeling
languages:

© High-level design and modeling languages (Simulink, UML, ...)

e ++ Validation, simulation, . ..
o —— Efficient implementation

@ Low-level modeling languages (C/C++, Java, SystemC, ...)

e ++ Efficient implementation
e —— Validation

Still there is no language that encompasses everything !

(AUB) May 17, 2017

4/ 43

Challenges
Programming and Modeling Languages

We can distinguish two different types of programming and modeling
languages:

© High-level design and modeling languages (Simulink, UML, ...)

e ++ Validation, simulation, . ..
o —— Efficient implementation

@ Low-level modeling languages (C/C++, Java, SystemC, ...)

e ++ Efficient implementation
e —— Validation

Still there is no language that encompasses everything !

Is it possible to define a unified modeling language such that: ++
validation, ++ simulation, ++ efficient implementation ?

(AUB) May 17, 2017 4 / 43

Requirements
Requirements

Requirements for building efficient and correct implementations for
complex systems.

© Component framework (components + composition operators)

@ Abstraction (high-level primitives for modeling behaviors and
communications)

© Expressiveness (powerful primitives for modeling coordination between
components)

@ Automated generation of correct and efficient implementations.

(AUB) May 17, 2017 5/ 43

Requirements
Requirements

Requirements for building efficient and correct implementations for
complex systems.

© Component framework (components + composition operators)

@ Abstraction (high-level primitives for modeling behaviors and
communications)

© Expressiveness (powerful primitives for modeling coordination between
components)

@ Automated generation of correct and efficient implementations.

Difficulties
@ Abstraction reduces efficiency

@ Preserving equivalence between high-level model and implementation

v

(AUB) May 17, 2017 5/ 43

Solution (in general)

Formal Method

Engineerin
and Theory J ?

(AUB) May 17, 2017 6/ 43

Correct-by-Construction

Correct-by-Construction method for automatically generating correct and }

efficient implementations starting from a high-level model.

nunmZ-4OmARO

»

ZO—QpPpAAnTp

High-level Component—based Design Language

Transformation

l Source—to—Source l

Low-level Efficient Impl

int () {

send(a,b):
i+

i

dim

int () {
send(ab);
i

}

o

int f(..) {
send(ab);
i+

= /

(AUB)

May 17, 2017

7/43

Correct-by-Construction

efficient implementations starting from a high-level model.

Correct-by-Construction method for automatically generating correct and }

nunmZ-4OmARO

»

ZO—QpPpAAnTp

High-level Component—based Design Language

l

Transformation

Source—to—Source l

Low-level Efficient Impl

ion

i

i

int () {
send(ab):

int () {
send(ab):
I++;
/ y /

int f(..) {
send(ab);
i+

= /

(AUB)

BIP Framework

@ Component-based framework (BIP)
@ High-level primitives + Expressiveness
@ Rigorous semantics

@ Strong theoretical backing

May 17, 2017 7 /43

Correct-by-Construction

efficient implementations starting from a high-level model.

Correct-by-Construction method for automatically generating correct and }

nunmZ-4OmARO

»

ZO—QpPpAAnTp

High-level Component—based Design Language

l

Transformation

Source—to—Source l

Low-level Efficient Impl

ion

i

i

int () {
send(ab):

int () {
send(ab):
I++;
/ y /

int f(..) {
send(ab);
i+

= /

(AUB)

BIP Framework

@ Component-based framework (BIP)

High-level primitives 4 Expressiveness

o
@ Rigorous semantics
o

Strong theoretical backing

@ Efficient implementation (centralized,

distributed).

Correct-by-Construction Transformation.

May 17, 2017

7/43

E—
Outline

@ Motivation

© The BIP Component-based Framework

© Transformation for Generating Centralized Implementations
@ Transformation for Generating Distributed Implementations

© Conclusions and Perspectives

(AUB) May 17, 2017 8/ 43

Outline

© The BIP Component-based Framework

(AUB) May 17, 2017 9/ 43

Overview of BIP
Overview of BIP

BIP is a component framework for modeling heterogeneous systems)

Priorities (scheduling)
Interactions (collaborations) |

oL dA v Jo)

BIP: Layered Component Model
@ Behavior - petri net extended with data and communication ports
@ Interactions - set of interactions (interaction = set of ports)

@ Priorities - partial order on interactions

(AUB) May 17, 2017 10 / 43

The BIP Component-based Framework OISR E=Iod
Behavior

It is a Petri net extended with data, it is
composed of:

b
Atomic Component \
b

@ a set of ports, e.g, {a, b}

@ a set of control locations, e.g, {h, h} C

/ |
O
. /
@ a set of variables, e.g, {x} ’ \

@ a set of transitions

return x p;

b

(AUB) May 17, 2017 11 / 43

Overview of BIP
Connector

Connector
A connector is defined by:
@ its port p and the associated variable x;
@ its interaction defined by a set of ports, e.g, {p1, p2}

@ upward update function U (specifying the flow of data upstream)

@ downward update function D (specifying the flow of data downstream)

<

plx] / G : true
U: x := max(x1, x2);
plal gl | Dixi=xn =y

(AUB) May 17, 2017 12 / 43

The BIP Component-based Framework OISR E=Iod

Connector

Connector
A connector is defined by:
@ its port p and the associated variable x;
@ its interaction defined by a set of ports, e.g, {p1, p2}

@ upward update function U (specifying the flow of data upstream)

@ downward update function D (specifying the flow of data downstream)

<
G : true
U x := max(x1, x2);
D:xy :=x;x:=x;

: true
1 x1 = max(x3, xa);
X3 = XX = XL

O <o)

(AUB) May 17, 2017 12 / 43

Overview of BIP
Connector

Connector
A connector is defined by:
@ its port p and the associated variable x;
its interaction defined by a set of ports, e.g, {p1, p2}

°
@ upward update function U (specifying the flow of data upstream)
°

downward update function D (specifying the flow of data downstream)

< Bliudze and Sifakis
Ria G : true
0 U x := max(x1, x); @ Strong formalization of the
D:ixi:=xix:=x Algebra of Connectors

: true
1 x1 = max(x3, xa);
X3 = X1 X =X

@ Interactions and priorities
encompass the universal glue

O <o)

(AUB) May 17, 2017 12 / 43

_____ The BIP Component-based Framework JILALUEEY
Composite component

Composite component
A composite component is constructed from:
@ existing components, e.g, {C, G, G5}
@ a set of connectors specifying interactions between components, e.g, {v1,72,73}

© a set of exported ports, e.g, {p1,p2}

P1

72

C2 C3

@D mlojz|llalala

(AUB) May 17, 2017 13/ 43

Overview of BIP
Composite Component Example

Start;

Start,

finish

fail start

start
counter := counter +1;

fail
counter :=0

Controller

start fail finish exec reset
start exec

fail

Tasko

Start; < Start,

TasksControlled

(AUB)

May 17, 2017

14 / 43

The BIP Component-based Framework

BIP Tool-chain

Overview of BIP

SEEE

[Sou rce2source transformers]

er) BIP

Language

BIP Executable

BIP Engine Runtime|

Platform

Language |BIRR COMPILERY
Factory Parser
BIP -
- _ Meta-Model @e' F
DFinder|< — % Transformers

Validation &R BIP Modelye]
Code Generation & Y
Runtimes C++ Generator | |Distributed BIP

(engine based) Generator

«— ¥V —

BIP BIP
Executable Executable
Communication Primitives (Send/Receive)

BIP
Executable

.\@

Distributed Platform

(AUB)

May 17, 2017

15 / 43

Transformation for Generating Centralized Implementations
Outline

© Transformation for Generating Centralized Implementations

(AUB) May 17, 2017 16 / 43

Problem Statement
Problem statement

Engine
A\
Engine Protocol ‘ T T
e Atoms notify the engine of their active ports; T

e The engine enumerates the allowed interactions; Priorities (SChEdU“ng) J

Q s ot o s e il

Picks one among those left; - =
o Interactions (coIIaboratlons)J

Q ot te soms. FHATT 111 1T 0
o DEE

(AUB) May 17, 2017 17 / 43

Problem Statement
Problem statement

Engine
& \
Engine Protocol ‘ T T
e Atoms notify the engine of their active ports; T

e The engine enumerates the allowed interactions; Priorities (SChEdU“ng) J

Q s ot o s e il

Picks one among those left; - =
o Interactions (coIIaboratlons)J

Q ot te soms. FHATT 111 1T 0
o DEE

Problem
@ clarity of models may be at the detriment of efficiency

@ significant overhead in execution time wrt monolithic code

(AUB) May 17, 2017 17 / 43

RICUE I BT R TSNV RGN [P M IS N INIENIIER Source-to-Source Transformations

Source-to-Source transformations

g

Soa] i [l — 51 i i
|

PP TR R

v !
I

Component flattening, Connector flattening, Component composition)

(AUB) May 17, 2017 18 / 43

Sourceto-Source Transformations
Component flattening

This transformation replaces each non atomic component C; of C by its
content (C is a composite component of {C;}ic).

.

(AUB) May 17, 2017 19 / 43

Sourceto-Source Transformations
Component flattening

This transformation replaces each non atomic component C; of C by its
content (C is a composite component of {C;}ic).

.

(AUB) May 17, 2017 19 / 43

Sourceto-Source Transformations
Component flattening

This transformation replaces each non atomic component C; of C by its
content (C is a composite component of {C;}ic).

.

@> HEIE B

(AUB) May 17, 2017 19 / 43

Sourceto-Source Transformations
Connector flattening

This transformation flattens hierarchical connectors. It takes two
connectors ; and «y; with v; — 7; and produces an equivalent one.
G : true
‘ U x := max(x, x); ’
plx] D:x :=x;x:=Xx;
S plx]
P1[X1] Pz[Xz] l I l
p3lx] pi[x] Pl palxa] palx]
G : true c
U : x1 = max(x3, xa); o : true .
D:xsim x: % = X U : x := max(max(x3, xa), x2);
D:x3:=x;x4 := X, % = X,

(AUB) May 17, 2017 20/ 43

Sourceto-Source Transformations
Connector flattening

This transformation flattens hierarchical connectors. It takes two
connectors ; and «y; with v; — 7; and produces an equivalent one.

[]

(AUB) May 17, 2017 20 / 43

Sourceto-Source Transformations
Connector flattening

This transformation flattens hierarchical connectors. It takes two
connectors ; and «y; with v; — 7; and produces an equivalent one.

[0

(AUB) May 17, 2017 20 / 43

Sourceto-Source Transformations
Connector flattening

This transformation flattens hierarchical connectors. It takes two
connectors ; and «y; with v; — 7; and produces an equivalent one.

O A

(AUB) May 17, 2017 20 / 43

RICUE I BT R TSNV RGN [P M IS N INIENIIER Source-to-Source Transformations

Component composition

This transformation consists in " glueing” together transitions from atomic
components that are synchronized through connector.

GIQ U12 D12
L g "
%1 P2 P = p1p2
&1 82 _> _— 812
f f fi2

g2=GoAgAg
fio = Ura; D1o; (AU)

(AUB) May 17, 2017 21/ 43

BIP2BIP tool

BIP language

Model

\
\
\ [Component

Composition

Flat Model

Code generator

(AUB) May 17, 2017 22 / 43

Transformation for Generating Centralized Implementations Experimental Results

Example - MPEG video encoder

@ collaboration with STMicroelectronics (GaloGiC project)
o embedded video encoder

Oﬁ%“ =

camera input frames

macroblock

[1ool1]o[1]1]1]o[1]o]o] ...

bitstream
(encoded frame)

video encoder

Transform the monolithic sequential program (12000 lines of C code) into
a componentized one:

@ ++ reusability, schedulability analysis, reconfigurability

@ —— overhead in memory and execution time

(AUB) May 17, 2017 23/ 43

Experimental Results
MPEG video encoder

@ GrabFrame: gets a frame and produces macroblocks
@ Encode: encodes macroblocks

@ OutputFrame: produces an encoded frame

fin fout 12 T T T T T
f ont T monolithic code from BIP (without Engine)
" outfn foutfin fout IS Handwritten monolithic Code - 1
Qu[pmmme componentized code from BIP (with Engine) -~
GrabFrame ~ Encode \ OutputFrame 10 - . B
-7 1 ol i
-7 \

= ° =
— - == 2 g

g

exity in § 7

&= Max r 1

ci=0 e

g 6

- O/_‘ £

5
S S T< Max e 5l 4

~ grabMacroBlock() 2

N ci=ctl 8
= 4r —
/ 3+ 1

IQuant

0 L L L L L L L L
0 50 100 150 200 250 300 350 400 450

Number of frames

n
Intraprediction
our
n
Gut

MAX = (W *H)/256
W = width of frame
H = height of frame

(AUB) May 17, 2017 24 / 43

Transformation for Generating Distributed Implementations
Outline

@ Transformation for Generating Distributed Implementations

(AUB) May 17, 2017 25 / 43

Transformation for Generating Distributed Implementations Motivation
Motivation

Increase of computing power requires distributed
platforms:

o Computer networks
@ Multi-core processors

@ Networks on chip

(AUB)

(nteD)

(afp? 5
Xty
sy |

May 17, 2017 26 / 43

Transformation for Generating Distributed Implementations Motivation
Motivation

Increase of computing power requires distributed
platforms:

o Computer networks
@ Multi-core processors

@ Networks on chip

Motivation

Deriving from the high-level BIP model a
correct and efficient distributed
implementation, that allows:

@ Parallelism between components

@ Parallel execution between
interactions

(AUB)

(nteD)

(afp? 5
Xty
sy |

May 17, 2017 26 / 43

Transformation for Generating Distributed Implementations Motivation

Motivation

Increase of computing power requires distributed

platforms:
o Computer networks
@ Multi-core processors

@ Networks on chip

(nteD)

(afp? 5
Xty
sy |

Motivation

Deriving from the high-level BIP model a
correct and efficient distributed
implementation, that allows:

@ Parallelism between components

@ Parallel execution between
interactions

(AUB)

Challenges

Adding implementation details involves
many subtleties:

@ Inherent concurrency
@ Non-determinism

@ Non-atomic actions of distributed
systems

May 17, 2017 26 / 43

Transformation for Generating Distributed Implementations Motivation

Motivation

Application Software

Distributed Platform

Source—to—Source

'

intf(.) { DN intf(.) { DN int f(...) {
_send(a,b); §end(a,b); gend(a,b);
i+ i++; i+

, \/ , \/ , \/

Distributed Implementation

(AUB)

May 17, 2017

27 / 43

Transformation for Generating Distributed Implementations Motivation

Send /Receive-BIP

BIP is based on:
@ Global state semantics, defined by operational semantics rules, implemented by the Engine

@ Atomic multiparty interactions, e.g. by rendezvous or broadcast

Send/Receive-BIP
Translate BIP models into observationally equivalent Send/Receive-BIP
@ Collection of independent components intrinsically concurrent - No global state
@ Atomicity of transitions is broken by separating interaction from internal computation

© Point to point communication by asynchronous message passing

@ Translation is correct-by-construction

(AUB) May 17, 2017 28/ 43

Motivation
Straightforward solution

B o b

v

‘H

[+ +—

WG IIET conmtiedengine

(AUB) May 17, 2017 29 / 43

Transformation for Generating Distributed Implementations Motivation

Straightforward solution

RiEisane
LN N

v

‘H

c]
]
(@

I [N

~

TTTHITIIe
Centralized Engine

PN

RS a AT

ay 17,
AUB May 17, 2017 29 /43

Motivation
Straightforward solution

c]
]
(@

®

TTTHITIIe
Centralized Engine

I [N

>
—
—>
—
—>
—
—>
—
—>
—
—>
—
—>
—>
—
—>

g

Congestion and no parallelism between interactions !)

(AUB) May 17, 2017 29 / 43

Motivation
Distributed engines - Challenges

(AUB) May 17, 2017 30/ 43

Motivation
Distributed engines - Challenges

LI

ERPIEREEA |

CICICIC]

mZ—~Q0zZm

(AUB) May 17, 2017 30/ 43

Motivation
Distributed engines - Challenges

LI

IR

Sl

mZ—~Q0zZm

(AUB) May 17, 2017 30/ 43

Motivation
Distributed engines - Challenges

LI

IR

ni[mm[ne

mZ—~Q0zZm

(AUB) May 17, 2017 30/ 43

Distributed engines - Challenges

LI

mmﬁﬁ

ﬁmq

ma‘,

11000

Distributed engines - Challenges

LI

mmﬁﬁ

S

Sl

Motivation
Distributed engines - Challenges

LI

IR

mZ—~Q0zZm

ni[mm[ne

S

RS

" conflicts”

B

Semantics Violation

Decentralization requires separate engines: need to take care ofJ

May 17, 2017 30/ 43

Transformation for Generating Distributed Implementations Motivation

Conflicting interactions
h b h h

I1 and I, are using both sides I and I, share a common
ports of a choice in a componentJ port J

(AUB) May 17, 2017 31 /43

Transformation for Generating Distributed Implementations Motivation

Conflicting interactions
h b h h

I1 and I, are using both sides J I and b share a commonJ

ports of a choice in a component port

i and k, are conflicting (h # h) J

(AUB) May 17, 2017 31 /43

Conflict-Free Distributed Engines
Conflict-free distributed engines

Distributed Engines Conflict-Free by Construction, by grouping
interactions according to the transitive closure of the conflict relation # J
I I 3
U P W o h#h#l
olleoolleolly o Iy #l5#ls
L T JTL T

(AUB) May 17, 2017 32 / 43

Conflict-Free Distributed Engines
Conflict-free distributed engines

Distributed Engines Conflict-Free by Construction, by grouping
interactions according to the transitive closure of the conflict relation #

[
[
[
[
*—
[

o h#h#h
o Lo o Iy #ls #ls J

—e
Lo
—e
Lo
e
o

(AUB) May 17, 2017 32 / 43

Conflict-Free Distributed Engines
Conflict-free distributed engines

Distributed Engines Conflict-Free by Construction, by grouping
interactions according to the transitive closure of the conflict relation #

[
[
[
[
*—
[

o) loolleoll e o Iy #ls #ls

o h#h#h J

Drawbacks

Grouping conflicting interactions according to the transitive closure
reduces drastically parallelism between interactions.

(AUB) May 17, 2017 32 / 43

3 Tier Architecture
3—Tier architecture

Atomic Components

@ Send offers

@ Wait for notifications

@ Execute local computations

(AUB) May 17, 2017 33 / 43

Transformation for Generating Distributed Implementations EECEERIS@VANe,li{eTTe

3—Tier architecture

Interaction Protocol

@ Determined by a partition of the
interactions

@ Executes interactions

1Py

1P,

Atomic Components
@ Send offers
@ Wait for notifications

@ Execute local computations

(AUB)

May 17, 2017

33 /43

3 Tier Architecture
3—Tier architecture

Conflict Resolution Protocol

Conflict Resolution Protocol
Resolves conflict between engines J

Interaction Protocol

@ Determined by a partition of the A\ A\
interactions 1Py - 1P, h

@ Executes interactions

Atomic Components

@ Send offers

@ Wait for notifications

@ Execute local computations

(AUB) May 17, 2017 33 / 43

8= Tier Architecture
Transforming atomic components

P1 P2
@
loffer(py, p2)
pi P> _>
v ® ®
offer p1 P2
Partial state model
Global state model @ sends an offer indicating the available
) i ports
Choice made by the global engine . . o
@ it waits for a notification to execute the
corresponding transition
(AUB)

May 17, 2017 34 /43

Transformation for Generating Distributed Implementations EECEERIS@VANe,li{eTTe

Interaction protocol

Communication with
| Contlict Resolution Layer |

AReserve;

a0k

1Py

b

aFaik
L 4

h
o—0—6
offer{ offel{ oﬁsr{

ARGAE

[Communication with
Atomic Component Layer

© Receives offers

@ Detects enabled interactions and tries to execute:

@ interactions with only local conflicts (immediate execution)

(@

offer,

O

) O

offer, offers

O

O

Reserve;

@ interactions with external conflicts (request to the conflict resolution layer)

© Notifies atomic components

(AUB)

May 17, 2017

35 /43

3—Tier Architecture
Conflict resolution protocol

Each engine needs to reserve components in order to execute an externally
conflicting interaction.

Conflict Resolution Protocol

i, o] e J b E%: Reserve(Gs) Reserve(G3)

C C G || ¢ \
! 2 3 ¢ LIP 1P,
h h I

The protocol resolves conflict between Interaction Protocols (Engines) J

(AUB) May 17, 2017 36 / 43

3—Tier Architecture
Conflict resolution protocol

Each engine needs to reserve components in order to execute an externally
conflicting interaction.

Conflict Resolution Protocol

i, o] e J b E%: Reserve(Gs) Ok Reserve(G3)

C C G || ¢ \
! 2 3 ¢ LIP 1P,
h h I

The protocol resolves conflict between Interaction Protocols (Engines) J

(AUB) May 17, 2017 36 / 43

3—Tier Architecture
Conflict resolution protocol

Each engine needs to reserve components in order to execute an externally
conflicting interaction.

Conflict Resolution Protocol

L—‘]f’z,,,, In.m L—” 77777 o Reserve(Cs) | Ok Reserve(Cs) | Fail

C C G || ¢ \

! 2 3 ¢ LIP 1P,
h h I

The protocol resolves conflict between Interaction Protocols (Engines) J

(AUB) May 17, 2017 36 / 43

Transformation for Generating Distributed Implementations 3—Tier Architecture

Conflict resolution protocol variations

Centralized version
X . X X Conflict Resolution Protocol
one component is responsible for solving all conflicts
° °
¥ Reserve T 0k ™ Fail

(AUB) May 17, 2017 37 / 43

Transformation for Generating Distributed Implementations EECEERIS@VANe,li{eTTe

Conflict resolution protocol variations

Centralized version

one component is responsible for solving all conflicts

Token ring
@ Each component corresponds to an externally
conflicting interaction
@ A token circulates through all these components

@ Only the owner of the token can confirm/deny
reservation

(AUB)

Conflict Resolution Protocol

& @
¥ Reserve Ok Fail
CRP, [— CRP, |—¥ CRP;
o—o o—o o—o
\ 4 *—o v —& v *—o
Reserve Ok Fail Reserve Ok Fail Reserve Ok Fail

May 17, 2017

37 /43

3—Tier Architecture
Conflict resolution protocol variations

Centralized version
X . X X Conflict Resolution Protocol
one component is responsible for solving all conflicts
° o
¥ Reserve T 0k ™ Fail
Token ring
@ Each component corresponds to an externally ¢
conflicting interaction
@ A token circulates through all these components CRE CRip CRPs
) v—o—o v—eo—o v—eo—o
@ Only the owner of the token can confirm/deny Reserve Ok Fail Reserve Ok Fail — Reserve Ok Fail
reservation
v
Dining philosophers
@ Each component corresponds to an externally \ CRP,
conflicting interaction P v o—o
@ Two interactions share a fork if they are Reserve Ok Fail
conflicting CRPy
a a 7 CRP;
@ To confirm/deny reservation, all forks from the R M b 4 ~_—~
g v eserve Ok Fail v—o—o
neighborhood are required Reserve Ok Fail
v

(AUB) May 17, 2017 37 / 43

Transformation for Generating Distributed Implementations EECEERIS@VANe,li{eTTe

3—Tier architecture

N Py Py CRP, CRP, CRP;
3 mo PP o0 o—6
> v *—& v —o *—@
Iy -~ Reserve Ok Fail Reserve Ok Fail

A
Reserve Ok Fail

Partition

Interaction Reie’ve Ok Fail Reie’ ve Ok Fail
‘ I O
h h h Iy
% . .

v e v
@ offer notif offer notif

offer notif offer notif offer notif offer notif offer notif

allell all all &

BIP and BIP3~Ti" are Observationally equivalent when using Centralized protocol and we have
Trace equivalent when using Token ring and Dining philosophers protocols

(AUB)

May 17, 2017 38 /43

Transformation for Generating Distributed Implementations Experimental Results

Design Methodology and code generator

Partition ™,
. Interaction

o

C/Socket
Network

l

l

C/MPL]

C/PThread

F[

Network or Multicor

[

Multicore

J

May 17, 2017

39 /43

Experimental Results
Example - UTOPAR

@ Industrial case study of the Combest Project

@ UTOPAR is an automated transportation system managing various requests for
transportation

departure

UCar(N)

posChanged.

H & E &M
2 &E 8 E

enters 11
l:l ‘ (CallingUnit(M x M) L requesty i-1cunn

(AUB) May 17, 2017 40 / 43

Experimental Results
UTOPAR - Benchmarks

5 x 5 calling units and 4 cars and 29 7 x 7 calling units and 4 cars and 53
Engines (Interaction protocols) J Engines (Interaction protocols)

2 70 g 150
% g 145
Y o 140
£ E 135
8 § 130
3 g 125
b g 120
s g 115 .y py .y
= e E & = e E &

8 g g 8 g 8

8 - 8

Scenario Scenario
Performance of responding 10 requests per calling unit J

ay 17,
AUB May 17, 2017 41 / 43

Experimental Results
UTOPAR - Benchmarks

5 x 5 calling units and 4 cars and 29 7 x 7 calling units and 4 cars and 53
Engines (Interaction protocols) J Engines (Interaction protocols)
2 70 g 150
% g 145
Y o 140
£ E 135
8 5 130
3 g 125
b 2 120
= g 115 .y py .y
= e E & = e E &
] & Q] g g
8 - 8
Scenario Scenario
Performance of responding 10 requests per calling unit J
@ Dining philosophers protocol outperforms other protocols
@ Fully automated distributed C is generated J

ay 17,
AUB May 17, 2017 41 / 43

Outline

© Conclusions and Perspectives

(AUB) May 17, 2017 42 / 43

Conclusions and Perspectives Conclusion

Conclusion

It is possible to reconcile component-based incremental design and efficient
code generation by applying a paradigm based on the combined use of: J

@ A high-level modeling language, BIP, based on
o a well-defined operational semantics, and
e supporting powerful mechanisms for expressing structured coordination
between components
@ Using the D-Finder tool, to generate and/or check invariants of the
components and validate their properties
© ‘“Correct-by-Construction” transformations that allows to
automatically generate efficient centralized or distributed
implementations

(AUB) May 17, 2017 43 / 43

