
Correct-by-Construction Techniques in the BIP Context

American University of Beirut
-

Faculty of Arts & Sciences - Department of Computer Science

May 17, 2017

(AUB) May 17, 2017 1 / 43

Motivation Context

Context

Computer systems are everywhere,

and are for all ages,

(AUB) May 17, 2017 2 / 43

Motivation Challenges

Challenges

Systems become more and more complex and the adoption of them is
increasing exponentially.

Existing solutions

Software engineering: verification, test, simulation, . . .

Programming and modeling languages: C/C++, Java, UML, GME,
Simulink, .Net, SystemC, . . .

But!?

Building correct and efficient systems is still time-consuming and hardly
predictable

(AUB) May 17, 2017 3 / 43

Motivation Challenges

Challenges

Systems become more and more complex and the adoption of them is
increasing exponentially.

Existing solutions

Software engineering: verification, test, simulation, . . .

Programming and modeling languages: C/C++, Java, UML, GME,
Simulink, .Net, SystemC, . . .

But!?

Building correct and efficient systems is still time-consuming and hardly
predictable

(AUB) May 17, 2017 3 / 43

Motivation Challenges

Programming and Modeling Languages

We can distinguish two different types of programming and modeling
languages:

1 High-level design and modeling languages (Simulink, UML, . . .)

++ Validation, simulation, . . .
−− Efficient implementation

2 Low-level modeling languages (C/C++, Java, SystemC, . . .)

++ Efficient implementation
−− Validation

Still there is no language that encompasses everything !

Is it possible to define a unified modeling language such that: ++
validation, ++ simulation, ++ efficient implementation ?

(AUB) May 17, 2017 4 / 43

Motivation Challenges

Programming and Modeling Languages

We can distinguish two different types of programming and modeling
languages:

1 High-level design and modeling languages (Simulink, UML, . . .)

++ Validation, simulation, . . .
−− Efficient implementation

2 Low-level modeling languages (C/C++, Java, SystemC, . . .)

++ Efficient implementation
−− Validation

Still there is no language that encompasses everything !

Is it possible to define a unified modeling language such that: ++
validation, ++ simulation, ++ efficient implementation ?

(AUB) May 17, 2017 4 / 43

Motivation Requirements

Requirements

Requirements for building efficient and correct implementations for
complex systems.

1 Component framework (components + composition operators)

2 Abstraction (high-level primitives for modeling behaviors and
communications)

3 Expressiveness (powerful primitives for modeling coordination between
components)

4 Automated generation of correct and efficient implementations.

Difficulties

Abstraction reduces efficiency

Preserving equivalence between high-level model and implementation

(AUB) May 17, 2017 5 / 43

Motivation Requirements

Requirements

Requirements for building efficient and correct implementations for
complex systems.

1 Component framework (components + composition operators)

2 Abstraction (high-level primitives for modeling behaviors and
communications)

3 Expressiveness (powerful primitives for modeling coordination between
components)

4 Automated generation of correct and efficient implementations.

Difficulties

Abstraction reduces efficiency

Preserving equivalence between high-level model and implementation

(AUB) May 17, 2017 5 / 43

Motivation Our approach

Solution (in general)

(AUB) May 17, 2017 6 / 43

Motivation Our approach

Correct-by-Construction

Correct-by-Construction method for automatically generating correct and
efficient implementations starting from a high-level model.

Implementation

O
R
R
E
C
T
N
E
S
S

A
B
S
T
R
A
C
I
O
N

Transformation
Source−to−Source

int f(...) {
send(a,b);
i++;....

}

int f(...) {
send(a,b);
i++;....

}

int f(...) {
send(a,b);
i++;....

}

High−level Component−based Design Language

EfficientLow−level

C
BIP Framework

Component-based framework (BIP)

High-level primitives + Expressiveness

Rigorous semantics

Strong theoretical backing

Correct-by-Construction Transformation.

Efficient implementation (centralized,
distributed).

(AUB) May 17, 2017 7 / 43

Motivation Our approach

Correct-by-Construction

Correct-by-Construction method for automatically generating correct and
efficient implementations starting from a high-level model.

Implementation

O
R
R
E
C
T
N
E
S
S

A
B
S
T
R
A
C
I
O
N

Transformation
Source−to−Source

int f(...) {
send(a,b);
i++;....

}

int f(...) {
send(a,b);
i++;....

}

int f(...) {
send(a,b);
i++;....

}

High−level Component−based Design Language

EfficientLow−level

C
BIP Framework

Component-based framework (BIP)

High-level primitives + Expressiveness

Rigorous semantics

Strong theoretical backing

Correct-by-Construction Transformation.

Efficient implementation (centralized,
distributed).

(AUB) May 17, 2017 7 / 43

Motivation Our approach

Correct-by-Construction

Correct-by-Construction method for automatically generating correct and
efficient implementations starting from a high-level model.

Implementation

O
R
R
E
C
T
N
E
S
S

A
B
S
T
R
A
C
I
O
N

Transformation
Source−to−Source

int f(...) {
send(a,b);
i++;....

}

int f(...) {
send(a,b);
i++;....

}

int f(...) {
send(a,b);
i++;....

}

High−level Component−based Design Language

EfficientLow−level

C
BIP Framework

Component-based framework (BIP)

High-level primitives + Expressiveness

Rigorous semantics

Strong theoretical backing

Correct-by-Construction Transformation.

Efficient implementation (centralized,
distributed).

(AUB) May 17, 2017 7 / 43

Outline

1 Motivation

2 The BIP Component-based Framework

3 Transformation for Generating Centralized Implementations

4 Transformation for Generating Distributed Implementations

5 Conclusions and Perspectives

(AUB) May 17, 2017 8 / 43

The BIP Component-based Framework

Outline

1 Motivation

2 The BIP Component-based Framework

3 Transformation for Generating Centralized Implementations

4 Transformation for Generating Distributed Implementations

5 Conclusions and Perspectives

(AUB) May 17, 2017 9 / 43

The BIP Component-based Framework Overview of BIP

Overview of BIP

BIP is a component framework for modeling heterogeneous systems

B E H A V I O R

Interactions (collaborations)

Priorities (scheduling)

BIP: Layered Component Model

Behavior - petri net extended with data and communication ports

Interactions - set of interactions (interaction = set of ports)

Priorities - partial order on interactions

(AUB) May 17, 2017 10 / 43

The BIP Component-based Framework Overview of BIP

Behavior

Atomic Component

It is a Petri net extended with data, it is
composed of:

a set of ports, e.g, {a, b}
a set of control locations, e.g, {l1, l2}
a set of variables, e.g, {x}
a set of transitions

return ∗ p;

while (...) {

b

x := f (x)
x > 0

l1

l2

a

a b

x

int f (int x) {
int ∗ p;

. . . ;

}

}

(AUB) May 17, 2017 11 / 43

The BIP Component-based Framework Overview of BIP

Connector

Connector

A connector is defined by:

its port p and the associated variable x ;

its interaction defined by a set of ports, e.g, {p1, p2}
upward update function U (specifying the flow of data upstream)

downward update function D (specifying the flow of data downstream)

p2[x2]p1[x1]

p[x] G : true
U : x := max(x1, x2);
D : x1 := x ; x2 := x ;

Bliudze and Sifakis

Strong formalization of the
Algebra of Connectors

Interactions and priorities
encompass the universal glue

(AUB) May 17, 2017 12 / 43

The BIP Component-based Framework Overview of BIP

Connector

Connector

A connector is defined by:

its port p and the associated variable x ;

its interaction defined by a set of ports, e.g, {p1, p2}
upward update function U (specifying the flow of data upstream)

downward update function D (specifying the flow of data downstream)

G : true
U : x1 := max(x3, x4);
D : x3 := x1; x4 := x1;

p2[x2]p1[x1]

p4[x4]p3[x3]

p[x] G : true
U : x := max(x1, x2);
D : x1 := x ; x2 := x ;

Bliudze and Sifakis

Strong formalization of the
Algebra of Connectors

Interactions and priorities
encompass the universal glue

(AUB) May 17, 2017 12 / 43

The BIP Component-based Framework Overview of BIP

Connector

Connector

A connector is defined by:

its port p and the associated variable x ;

its interaction defined by a set of ports, e.g, {p1, p2}
upward update function U (specifying the flow of data upstream)

downward update function D (specifying the flow of data downstream)

G : true
U : x1 := max(x3, x4);
D : x3 := x1; x4 := x1;

p2[x2]p1[x1]

p4[x4]p3[x3]

p[x] G : true
U : x := max(x1, x2);
D : x1 := x ; x2 := x ;

Bliudze and Sifakis

Strong formalization of the
Algebra of Connectors

Interactions and priorities
encompass the universal glue

(AUB) May 17, 2017 12 / 43

The BIP Component-based Framework Overview of BIP

Composite component

Composite component

A composite component is constructed from:

1 existing components, e.g, {C1,C2,C3}
2 a set of connectors specifying interactions between components, e.g, {γ1, γ2, γ3}
3 a set of exported ports, e.g, {p1, p2}

p1

C1 C2 C3

γ3

γ1

γ2

p2

(AUB) May 17, 2017 13 / 43

The BIP Component-based Framework Overview of BIP

Composite Component Example

start execstart exec

finishexec fail startreset

finish

failreset

exec resetfinishfailstartstartfailfinish

finish

failreset

counter := counter +1;

finish

fail

start

counter := 0

Start2

Start1 Start2

l0

l3

l0

l3
Task1 Task2

l1

l2

l1

l2

TasksControlled

Controller

l0 l1

Start1<

(AUB) May 17, 2017 14 / 43

The BIP Component-based Framework Overview of BIP

BIP Tool-chain

C++ Generator
(engine based)

BIP Executable

BIP Engine Runtime

Platform

DFinder

nesC DOL SimuLink

Source2source transformers

BIP COMPILER

C Lustre

Distributed Platform

C++
C /

C++
C /

C++
C /

Transformers

C++

BIP
Executable

BIP
Executable

BIP
Executable

Communication Primitives (Send/Receive)

BIP BIP
Language

Language
Factory

Code Generation &
Runtimes

Validation

Parser

S/R BIP Model

BIP Model
BIP
Meta-Model

Distributed BIP
Generator

(AUB) May 17, 2017 15 / 43

Transformation for Generating Centralized Implementations

Outline

1 Motivation

2 The BIP Component-based Framework

3 Transformation for Generating Centralized Implementations

4 Transformation for Generating Distributed Implementations

5 Conclusions and Perspectives

(AUB) May 17, 2017 16 / 43

Transformation for Generating Centralized Implementations Problem Statement

Problem statement

Engine Protocol
1 Atoms notify the engine of their active ports;

2 The engine enumerates the allowed interactions;

3 filters out low priorities ones;

4 Picks one among those left;

5 Notifies the atoms.

B E H A V I O R

Interactions (collaborations)

Priorities (scheduling)

Engine

Problem

clarity of models may be at the detriment of efficiency

significant overhead in execution time wrt monolithic code

(AUB) May 17, 2017 17 / 43

Transformation for Generating Centralized Implementations Problem Statement

Problem statement

Engine Protocol
1 Atoms notify the engine of their active ports;

2 The engine enumerates the allowed interactions;

3 filters out low priorities ones;

4 Picks one among those left;

5 Notifies the atoms.

B E H A V I O R

Interactions (collaborations)

Priorities (scheduling)

Engine

Problem

clarity of models may be at the detriment of efficiency

significant overhead in execution time wrt monolithic code

(AUB) May 17, 2017 17 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Source-to-Source transformations

Petri NetPetri Net Petri NetPetri Net

Component flattening, Connector flattening, Component composition

(AUB) May 17, 2017 18 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Component flattening

This transformation replaces each non atomic component Cj of C by its
content (C is a composite component of {Ci}i∈I).

(AUB) May 17, 2017 19 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Component flattening

This transformation replaces each non atomic component Cj of C by its
content (C is a composite component of {Ci}i∈I).

(AUB) May 17, 2017 19 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Component flattening

This transformation replaces each non atomic component Cj of C by its
content (C is a composite component of {Ci}i∈I).

(AUB) May 17, 2017 19 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Connector flattening

This transformation flattens hierarchical connectors. It takes two
connectors γi and γj with γi → γj and produces an equivalent one.

D : x3 := x ; x4 := x ; x2 := x ;

p4[x4]

G : true

p3[x3]

U : x := max(max(x3, x4), x2);

p[x]

p2[x2]

G : true

D : x3 := x1; x4 := x1;
U : x1 := max(x3, x4);

G : true

U : x := max(x1, x2);
D : x1 := x ; x2 := x ;p[x]

p2[x2]

p4[x4]p3[x3]

p1[x1]

(AUB) May 17, 2017 20 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Connector flattening

This transformation flattens hierarchical connectors. It takes two
connectors γi and γj with γi → γj and produces an equivalent one.

(AUB) May 17, 2017 20 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Connector flattening

This transformation flattens hierarchical connectors. It takes two
connectors γi and γj with γi → γj and produces an equivalent one.

(AUB) May 17, 2017 20 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Connector flattening

This transformation flattens hierarchical connectors. It takes two
connectors γi and γj with γi → γj and produces an equivalent one.

(AUB) May 17, 2017 20 / 43

Transformation for Generating Centralized Implementations Source-to-Source Transformations

Component composition

This transformation consists in ”glueing” together transitions from atomic
components that are synchronized through connector.

g12 = G12 ∧ g1 ∧ g2

p

p = p1p2

g12

f12

f12 = U12; D12; (f1 ∪ f2)

G12 U12 D12

p2p1

p2p1

f1

g1

f2

g2

(AUB) May 17, 2017 21 / 43

Transformation for Generating Centralized Implementations Experimental Results

BIP2BIP tool

BIP2BIP

flattening
Connector

Composition
Component

flattening
Component

C++

BIP EngineC/C++

Flat Model

BIP language

Code generator

Code generator

parser

Model

(AUB) May 17, 2017 22 / 43

Transformation for Generating Centralized Implementations Experimental Results

Example - MPEG video encoder

collaboration with STMicroelectronics (GaloGiC project)

embedded video encoder

camera

01 0 0 1 0 1 1 1 1 0 0

bitstream
(encoded frame)

. . .

macroblock

frame

video encoder

Quant();
. . .
Coding();input frames

DCT();
MotEst();

. . .

Transform the monolithic sequential program (12000 lines of C code) into
a componentized one:

++ reusability, schedulability analysis, reconfigurability

−− overhead in memory and execution time

(AUB) May 17, 2017 23 / 43

Transformation for Generating Centralized Implementations Experimental Results

MPEG video encoder

GrabFrame: gets a frame and produces macroblocks

Encode: encodes macroblocks

OutputFrame: produces an encoded frame

fout

c := c + 1
in

out

IDCT()

W = width of frame
H = height of frame

MAX = (W * H) / 256

reconstruction()
c := 0
c = MAX

MotionEstimation

c := c+1
grabMacroBlock()

c < Max

out

c = Max
c := 0
exit fin

fout

IQuant

in1 in2

fin

fout
fin

fout
c < MAX

fout

grabFrame()
GrabFrame

fin finfin

outputFrame()

fout
fout

fin

Encode OutputFrame

in

in

in

in

in

in

in

out

out

out

out

out

out

out

out

GrabMacroBlock

Coding

Intraprediction

Quant

IDCT

Reconstruction

DCT
in

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 50 100 150 200 250 300 350 400 450

M
ea

su
re

d
Ti

m
e

(S
ec

on
ds

)

Number of frames

monolithic code from BIP (without Engine)
Handwritten monolithic Code

componentized code from BIP (with Engine)

(AUB) May 17, 2017 24 / 43

Transformation for Generating Distributed Implementations

Outline

1 Motivation

2 The BIP Component-based Framework

3 Transformation for Generating Centralized Implementations

4 Transformation for Generating Distributed Implementations

5 Conclusions and Perspectives

(AUB) May 17, 2017 25 / 43

Transformation for Generating Distributed Implementations Motivation

Motivation

Increase of computing power requires distributed
platforms:

Computer networks

Multi-core processors

Networks on chip

Motivation

Deriving from the high-level BIP model a
correct and efficient distributed
implementation, that allows:

Parallelism between components

Parallel execution between
interactions

Challenges

Adding implementation details involves
many subtleties:

Inherent concurrency

Non-determinism

Non-atomic actions of distributed
systems

(AUB) May 17, 2017 26 / 43

Transformation for Generating Distributed Implementations Motivation

Motivation

Increase of computing power requires distributed
platforms:

Computer networks

Multi-core processors

Networks on chip

Motivation

Deriving from the high-level BIP model a
correct and efficient distributed
implementation, that allows:

Parallelism between components

Parallel execution between
interactions

Challenges

Adding implementation details involves
many subtleties:

Inherent concurrency

Non-determinism

Non-atomic actions of distributed
systems

(AUB) May 17, 2017 26 / 43

Transformation for Generating Distributed Implementations Motivation

Motivation

Increase of computing power requires distributed
platforms:

Computer networks

Multi-core processors

Networks on chip

Motivation

Deriving from the high-level BIP model a
correct and efficient distributed
implementation, that allows:

Parallelism between components

Parallel execution between
interactions

Challenges

Adding implementation details involves
many subtleties:

Inherent concurrency

Non-determinism

Non-atomic actions of distributed
systems

(AUB) May 17, 2017 26 / 43

Transformation for Generating Distributed Implementations Motivation

Motivation

}

Distributed Platform

Application Software

Source−to−Source

Distributed Implementation

int f(...) {
send(a,b);
i++;....

}

int f(...) {
send(a,b);
i++;....

}

int f(...) {
send(a,b);
i++;....

(AUB) May 17, 2017 27 / 43

Transformation for Generating Distributed Implementations Motivation

Send/Receive-BIP

BIP is based on:

Global state semantics, defined by operational semantics rules, implemented by the Engine

Atomic multiparty interactions, e.g. by rendezvous or broadcast

Send/Receive-BIP

Translate BIP models into observationally equivalent Send/Receive-BIP

1 Collection of independent components intrinsically concurrent - No global state

2 Atomicity of transitions is broken by separating interaction from internal computation

3 Point to point communication by asynchronous message passing

4 Translation is correct-by-construction

(AUB) May 17, 2017 28 / 43

Transformation for Generating Distributed Implementations Motivation

Straightforward solution

Centralized Engine

Congestion and no parallelism between interactions !

(AUB) May 17, 2017 29 / 43

Transformation for Generating Distributed Implementations Motivation

Straightforward solution

Centralized Engine

Congestion and no parallelism between interactions !

(AUB) May 17, 2017 29 / 43

Transformation for Generating Distributed Implementations Motivation

Straightforward solution

Centralized Engine

Congestion and no parallelism between interactions !

(AUB) May 17, 2017 29 / 43

Transformation for Generating Distributed Implementations Motivation

Distributed engines - Challenges

Decentralization requires separate engines: need to take care of
”conflicts”

(AUB) May 17, 2017 30 / 43

Transformation for Generating Distributed Implementations Motivation

Distributed engines - Challenges

N
E

E
N
G
I

Decentralization requires separate engines: need to take care of
”conflicts”

(AUB) May 17, 2017 30 / 43

Transformation for Generating Distributed Implementations Motivation

Distributed engines - Challenges

N
E

E
N
G
I

Decentralization requires separate engines: need to take care of
”conflicts”

(AUB) May 17, 2017 30 / 43

Transformation for Generating Distributed Implementations Motivation

Distributed engines - Challenges

N
E

E
N
G
I

Decentralization requires separate engines: need to take care of
”conflicts”

(AUB) May 17, 2017 30 / 43

Transformation for Generating Distributed Implementations Motivation

Distributed engines - Challenges

N
E

E
N
G
I

Decentralization requires separate engines: need to take care of
”conflicts”

(AUB) May 17, 2017 30 / 43

Transformation for Generating Distributed Implementations Motivation

Distributed engines - Challenges

N
E

E
N
G
I

Decentralization requires separate engines: need to take care of
”conflicts”

(AUB) May 17, 2017 30 / 43

Transformation for Generating Distributed Implementations Motivation

Distributed engines - Challenges

Semantics Violation

N
E

E
N
G
I

Decentralization requires separate engines: need to take care of
”conflicts”

(AUB) May 17, 2017 30 / 43

Transformation for Generating Distributed Implementations Motivation

Conflicting interactions

I2

p q

qp

I1 I2 I1

I1 and I2 are using both sides
ports of a choice in a component

I1 and I2 share a common
port

I1 and I2 are conflicting (I1 # I2)

(AUB) May 17, 2017 31 / 43

Transformation for Generating Distributed Implementations Motivation

Conflicting interactions

I2

p q

qp

I1 I2 I1

I1 and I2 are using both sides
ports of a choice in a component

I1 and I2 share a common
port

I1 and I2 are conflicting (I1 # I2)

(AUB) May 17, 2017 31 / 43

Transformation for Generating Distributed Implementations Conflict-Free Distributed Engines

Conflict-free distributed engines

Distributed Engines Conflict-Free by Construction, by grouping
interactions according to the transitive closure of the conflict relation #

I1 I3

I5 I6I4

I2

I1 #I2 #I3

I4 #I5 #I6

(AUB) May 17, 2017 32 / 43

Transformation for Generating Distributed Implementations Conflict-Free Distributed Engines

Conflict-free distributed engines

Distributed Engines Conflict-Free by Construction, by grouping
interactions according to the transitive closure of the conflict relation #

I1 I3

I5 I6I4

I2

I1 #I2 #I3

I4 #I5 #I6

I5

I 1

I2

I3 I 4

I6

(AUB) May 17, 2017 32 / 43

Transformation for Generating Distributed Implementations Conflict-Free Distributed Engines

Conflict-free distributed engines

Distributed Engines Conflict-Free by Construction, by grouping
interactions according to the transitive closure of the conflict relation #

I1 I3

I5 I6I4

I2

I1 #I2 #I3

I4 #I5 #I6

Drawbacks

Grouping conflicting interactions according to the transitive closure
reduces drastically parallelism between interactions.

(AUB) May 17, 2017 32 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

3−Tier architecture

Conflict Resolution Protocol

Resolves conflict between engines

Interaction Protocol

Determined by a partition of the
interactions

Executes interactions

Atomic Components

Send offers

Wait for notifications

Execute local computations

(AUB) May 17, 2017 33 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

3−Tier architecture

Conflict Resolution Protocol

Resolves conflict between engines

Interaction Protocol

Determined by a partition of the
interactions

Executes interactions

Atomic Components

Send offers

Wait for notifications

Execute local computations

IP1 IP2

(AUB) May 17, 2017 33 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

3−Tier architecture

Conflict Resolution Protocol

Resolves conflict between engines

Interaction Protocol

Determined by a partition of the
interactions

Executes interactions

Atomic Components

Send offers

Wait for notifications

Execute local computations

Conflict Resolution Protocol

IP1 IP2

(AUB) May 17, 2017 33 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

Transforming atomic components

?p1 ?p2

p2p1

p2p1

s !offer(p1, p2)

s

offer p1 p2

Global state model

Choice made by the global engine

Partial state model

1 sends an offer indicating the available
ports

2 it waits for a notification to execute the
corresponding transition

(AUB) May 17, 2017 34 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

Interaction protocol

Atomic Component Layer

Communication with
Conflict Resolution Layer

Communication with

I1
C1 C2 C3

I1 I2

offer1 offer2 offer3 p1 p2 p3 p4

Reserve2 Ok2 Fail2

IP1
p1 p2 p3 p4

offer1 offer2 offer3

p1 p2 p3 p4

Reserve2

Ok2

Fail2

I1 I2

1 Receives offers

2 Detects enabled interactions and tries to execute:

interactions with only local conflicts (immediate execution)
interactions with external conflicts (request to the conflict resolution layer)

3 Notifies atomic components

(AUB) May 17, 2017 35 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

Conflict resolution protocol

Each engine needs to reserve components in order to execute an externally
conflicting interaction.

Conflict Resolution Protocol

IP2IP1

I1 I2 I3

C3

p2 p3 p4

C1

p1

I3
Reserve(C3) Reserve(C3)

C4

p5

I1 I2

C2

The protocol resolves conflict between Interaction Protocols (Engines)

(AUB) May 17, 2017 36 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

Conflict resolution protocol

Each engine needs to reserve components in order to execute an externally
conflicting interaction.

Conflict Resolution Protocol

IP2IP1

I1 I2 I3

C3

p2 p3 p4

C1

p1

I3
Reserve(C3) Reserve(C3)

C4

p5

I1 I2

C2

Ok

The protocol resolves conflict between Interaction Protocols (Engines)

(AUB) May 17, 2017 36 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

Conflict resolution protocol

Each engine needs to reserve components in order to execute an externally
conflicting interaction.

Conflict Resolution Protocol

IP2IP1

I1 I2 I3

C3

p2 p3 p4

C1

p1

I3
Reserve(C3) Reserve(C3)

C4

p5

I1 I2

C2

Ok Fail

The protocol resolves conflict between Interaction Protocols (Engines)

(AUB) May 17, 2017 36 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

Conflict resolution protocol variations

Centralized version

one component is responsible for solving all conflicts

Token ring

Each component corresponds to an externally
conflicting interaction

A token circulates through all these components

Only the owner of the token can confirm/deny
reservation

Dining philosophers

Each component corresponds to an externally
conflicting interaction

Two interactions share a fork if they are
conflicting

To confirm/deny reservation, all forks from the
neighborhood are required

Conflict Resolution Protocol

Reserve FailOk

(AUB) May 17, 2017 37 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

Conflict resolution protocol variations

Centralized version

one component is responsible for solving all conflicts

Token ring

Each component corresponds to an externally
conflicting interaction

A token circulates through all these components

Only the owner of the token can confirm/deny
reservation

Dining philosophers

Each component corresponds to an externally
conflicting interaction

Two interactions share a fork if they are
conflicting

To confirm/deny reservation, all forks from the
neighborhood are required

Conflict Resolution Protocol

FailOkReserve FailOkReserveFailOkReserve

CRP1 CRP2 CRP3

Reserve FailOk

(AUB) May 17, 2017 37 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

Conflict resolution protocol variations

Centralized version

one component is responsible for solving all conflicts

Token ring

Each component corresponds to an externally
conflicting interaction

A token circulates through all these components

Only the owner of the token can confirm/deny
reservation

Dining philosophers

Each component corresponds to an externally
conflicting interaction

Two interactions share a fork if they are
conflicting

To confirm/deny reservation, all forks from the
neighborhood are required

Conflict Resolution Protocol

CRP2

FailOkReserve

CRP3

Ok Fail

CRP1

Ok Fail
Reserve

Reserve

CRP1

FailOkReserve FailOkReserveFailOkReserve

CRP2 CRP3

Reserve FailOk

(AUB) May 17, 2017 37 / 43

Transformation for Generating Distributed Implementations 3−Tier Architecture

3−Tier architecture

+
Interaction

CRP

Partition

S2S

S2S
S2S

Ok Reserve OkFail

CRP3

Fail

CRP1 CRP2

Reserve Ok FailReserve

p5 p7 p8

I4

I1 I2 I3

p2

p6 p9

C3

p3 p4

C1 C2

p1

C5C4

I1 I2

IP1

Reserve Ok Fail

notifoffer

C1 C2 C3 C4 C5

offer notif offer notif offer notif offer notif offer notif

I3 I4

IP2

Reserve Ok Fail

notifoffer

BIP and BIP3−Tier are Observationally equivalent when using Centralized protocol and we have
Trace equivalent when using Token ring and Dining philosophers protocols

(AUB) May 17, 2017 38 / 43

Transformation for Generating Distributed Implementations Experimental Results

Design Methodology and code generator

+

Partition
Interaction+

CRP

Partition
Component+

Code

S2S
S2S

S2S

S2S
S2S

S2S

Generator
Code

Network

Generator

Network or Multicore

C/Socket C/MPI

Generator
Code

Multicore

C/PThread

FailOkReserve OkReserve FailOkReserveFail

CRP1 CRP2 CRP3

C1 C2 C3 C4 C5

offer notif offer notif offer notif offer notif offer notif

I3 I4

IP2

Reserve Ok Fail

notifoffer

C1 C2

p1

C5C4

p5 p7 p8

I4

I1 I2 I3

p2

p6 p9

C3

p3 p4

I1 I2

IP1

Reserve Ok Fail

notifoffer

(AUB) May 17, 2017 39 / 43

Transformation for Generating Distributed Implementations Experimental Results

Example - UTOPAR

Industrial case study of the Combest Project

UTOPAR is an automated transportation system managing various requests for
transportation

calling unit

Central Station

CentralStation

departurei=1,N

openi=1,N

awakei=1,N

destinationi=1,N

posChangedi=1,N

arrivali=1,N

closei=1,N

enterk,l=1×M,1×M

requestk,l=1×M,1×M

request
enteri=1,N

departure

open

awake

UCar(N)

CallingUnit(M ×M)

close

arrival

posChanged

destination

(AUB) May 17, 2017 40 / 43

Transformation for Generating Distributed Implementations Experimental Results

UTOPAR - Benchmarks

5× 5 calling units and 4 cars and 29
Engines (Interaction protocols)

 45

 50

 55

 60

 65

 70

(2
9,

CE
NT

)

(2
9,

TR
)

(2
9,

DP
)

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Scenario

7× 7 calling units and 4 cars and 53
Engines (Interaction protocols)

 115
 120
 125
 130
 135
 140
 145
 150

(5
3,

CE
NT

)

(5
3,

TR
)

(5
3,

DP
)

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Scenario

Performance of responding 10 requests per calling unit

Dining philosophers protocol outperforms other protocols

Fully automated distributed C is generated

(AUB) May 17, 2017 41 / 43

Transformation for Generating Distributed Implementations Experimental Results

UTOPAR - Benchmarks

5× 5 calling units and 4 cars and 29
Engines (Interaction protocols)

 45

 50

 55

 60

 65

 70

(2
9,

CE
NT

)

(2
9,

TR
)

(2
9,

DP
)

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Scenario

7× 7 calling units and 4 cars and 53
Engines (Interaction protocols)

 115
 120
 125
 130
 135
 140
 145
 150

(5
3,

CE
NT

)

(5
3,

TR
)

(5
3,

DP
)

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Scenario

Performance of responding 10 requests per calling unit

Dining philosophers protocol outperforms other protocols

Fully automated distributed C is generated

(AUB) May 17, 2017 41 / 43

Conclusions and Perspectives

Outline

1 Motivation

2 The BIP Component-based Framework

3 Transformation for Generating Centralized Implementations

4 Transformation for Generating Distributed Implementations

5 Conclusions and Perspectives

(AUB) May 17, 2017 42 / 43

Conclusions and Perspectives Conclusion

Conclusion

It is possible to reconcile component-based incremental design and efficient
code generation by applying a paradigm based on the combined use of:

1 A high-level modeling language, BIP, based on

a well-defined operational semantics, and
supporting powerful mechanisms for expressing structured coordination
between components

2 Using the D-Finder tool, to generate and/or check invariants of the
components and validate their properties

3 “Correct-by-Construction” transformations that allows to
automatically generate efficient centralized or distributed
implementations

(AUB) May 17, 2017 43 / 43

