
Docker Ecosystem and Tools
Bologna, 26/05/2017

↘ Speakers: Luca Acquaviva
↘ Filippo Bosi

↘ Stefano Monti
↘ Maria Seralessandri

Agenda

1. Containers & Docker ecosystem

1.1. Docker basics

1.2. Docker basics - hands on

1.3. Docker-compose

1.4. Docker-compose - hands on

2. Docker for developers

2.1. Integrating Maven and Docker - repeatable and scalable

development/testing infrastructure

2.2. Integrating Maven and Docker - hands on

3. Scaling to a (private, open-source) cloud

2

Reference templates

3

git clone
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

http://git.imolinfo.it/Unibo/docker-seminar-templates.git
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

Agenda

1. Containers & Docker ecosystem

1.1. Docker basics

1.2. Docker basics - hands on

1.3. Docker-compose

1.4. Docker-compose - hands on

2. Docker for developers

2.1. Integrating Maven and Docker - repeatable and scalable

development/testing infrastructure

2.2. Integrating Maven and Docker - hands on

3. Scaling to a (private, open-source) cloud

4

Virtualization vs Containerization

5

PHYSICAL INFRASTRUCTURE

HOST OS

HYPERVISOR

GUEST
OS

LIBS/BIN

APP

GUEST
OS

LIBS/BIN

APP

GUEST
OS

LIBS/BIN

APP

VIRTUAL
MACHINE

Virtualization vs Containerization

6

PHYSICAL INFRASTRUCTURE

HOST OS

HYPERVISOR

GUEST
OS

LIBS/BIN

APP

GUEST
OS

LIBS/BIN

APP

GUEST
OS

LIBS/BIN

APP

PHYSICAL INFRASTRUCTURE

LINUX OS

DOCKER ENGINE

LIBS/BIN

APP

LIBS/BIN

APP

LIBS/BIN

APP

VIRTUAL
MACHINE

Virtualization vs Containerization

7

PHYSICAL INFRASTRUCTURE

HOST OS

HYPERVISOR

GUEST
OS

LIBS/BIN

APP

GUEST
OS

LIBS/BIN

APP

GUEST
OS

LIBS/BIN

APP

PHYSICAL INFRASTRUCTURE

LINUX OS

DOCKER ENGINE

LIBS/BIN

APP

LIBS/BIN

APP

LIBS/BIN

APP

VIRTUAL
MACHINE

CONTAINER

Docker flavors

8

PHYSICAL INFRASTRUCTURE

LINUX OS

DOCKER ENGINE

LIBS/BIN

APP

LIBS/BIN

APP

LIBS/BIN

APP

CONTAINER

PHYSICAL INFRASTRUCTURE

MAC OS - WIN OS

DOCKER ENGINE

LIBS/BIN

APP

LIBS/BIN

APP

CONTAINER

HYPERVISOR

VIRTUAL MACHINE

LINUX OS

Containerization vs Virtualization

9

▪ containers include an application/service together with its dependencies

▪ containers share kernel with other containers

▪ containers run as isolated processes

▪ higher efficiency w/r to virtualization

▪ images are the cornerstone in crafting declarative/automated, easily repeatable,

and scalable services and applications

What is Docker?

An open platform for distributed applications for
developers and sysadmins

Docker allows you to package an application with all of
its dependencies into a standardized unit for software
development.

https://docs.docker.com/engine/

10

https://docs.docker.com/engine/
https://docs.docker.com/engine/

Docker inception

11

▪ 2013: Docker comes to life as an open-source project at dotCloud Inc.

▪ 2014: company changed name to “Docker Inc.” and joined the Linux Foundation

▪ 2015-2016: tremendous increase in popularity

▪ Thoughtworks technology radar strongly promotes Docker adoption

https://www.thoughtworks.com/radar/platforms

▪ 2,5x Docker image pulls in 3 months, up to

▪ 5 billion pulls (as of August 2016)

▪ average 13000 pulls per minute (as of August 2016)

https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls/

https://www.thoughtworks.com/radar/platforms
https://www.thoughtworks.com/radar/platforms
https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls/
https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls/

Docker - Under the hood

▪ Libcontainer Specification

▪ an abstraction/unification layer to decouple Docker from kernel-specific

container features (e.g. LXC, libvirt, ...)

▪ The Docker Image Specification

▪ copy-on-write filesystems (e.g. AUFS)

▪ The Go programming language

▪ a statically typed programming language developed by Google with syntax

loosely based on C

12

Docker key concepts

Docker images

A Docker image is a read-only template. For example, an image could contain an Ubuntu operating system
with Apache and your web application installed. Images are used to create Docker containers. Docker
provides a simple way to build new images or update existing images, or you can download Docker
images that other people have already created. Docker images are the build component of Docker.

Docker containers

Docker containers are similar to a directory. A Docker container holds everything that is needed for an
application to run. Each container is created from a Docker image. Docker containers can be run, started,
stopped, moved, and deleted. Each container is an isolated and secure application platform. Docker
containers are the run component of Docker.

Docker registries

Docker registries hold images. These are public or private stores from which you upload or download
images. The public Docker registry is provided with the Docker Hub. It serves a huge collection of existing
images for your use. These can be images you create yourself or you can use images that others have
previously created. Docker registries are the distribution component of Docker. For more information, go
to Docker Registry and Docker Trusted Registry.

13

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

LOCAL HOST

14

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

CONTAINER A1 CONTAINER A2

CONTAINER B CONTAINER C

LOCAL HOST

15

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

CONTAINER A1 CONTAINER A2

CONTAINER B CONTAINER C

DOCKER REGISTRY

LOCAL HOST

REPOSITORY

REPOSITORY

IMAGE 1 IMAGE 2

IMAGE N IMAGE M

DOCKER HUB

16

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

CONTAINER A1 CONTAINER A2

CONTAINER B CONTAINER C

DOCKER REGISTRY

LOCAL HOST DOCKER HUB

REPOSITORY

REPOSITORY

IMAGE 1 IMAGE 2

IMAGE N IMAGE M

DOCKER HOST

DOCKER DAEMON

IMAGE 6 IMAGE 7

CONTAINER X

CONTAINER Y

DOCKER REGISTRY

REMOTE HOST PRIVATE REGISTRY

REPOSITORY

IMAGE 6 IMAGE 7

17

Docker Container Lifecycle

18

Docker images

19

ubuntu:15.04

d3a1f33e8a5a 188.1 MB

c22013c84729 194.5 KB

d74508fb6632 1.895 KB

91e54dfb1179 0 B

Random UUID holds all container-specific
writes and deletes

Cryptographic
content-based
hashes

IMAGE
LAYERS (R/O)

CONTAINER
LAYER (R/W)

Docker Images

20

▪ Docker images are read-only stacks of layers → copy-on-write approach

▪ each layer is uniquely identified by a cryptographic content-based hash (>=v.1.10)

▪ collision detection mitigation

▪ strong and efficient content comparison mechanism

▪ This approach is hugely beneficial

▪ efficient disk usage

▪ each new layer keeps only differences from preceding layers

▪ layers can be shared among images, e.g. “base” layers such as OS layers

(fedora:latest, ubuntu:latest)

▪ ease of modification

▪ new images may be built by simply stacking new layers on top of

preceding ones, leaving the below layers unmodified

Docker Images - Naming convention

21

[hostname[:port]]/[username]/reponame[:tag]

Hostname/port of registry holding the image. If missing, defaults
to Docker Hub public registry.

Username. If missing, defaults to library username on Docker
Hub, which hosts official, curated images.

Reponame. Actual image repository.

Tag. Optional image specification (e.g., version number). If
missing, defaults to latest.

Docker images

22

docker pull hello-world
docker history hello-world
docker run hello-world

Docker Images

23

Browse to: https://hub.docker.com/explore/

https://hub.docker.com/explore/

▪ docker run - runs a command in a new container, based on a specific image
$ docker run hello-world
runs the default command on a newly created container, based on the public hello-world image

$ docker run -it ubuntu /bin/bash
runs the bash command interactively on a newly created container, based on the public ubuntu image

$ docker run -d tomcat:8.0
runs the default command (catalina.sh) on a newly created container, based on the public tomcat V.8.0

image, and detaches (-d) it to background

▪ docker restart - re-runs a previously stopped container, preserving run options

(such as port forwarding)
$ docker restart containerId
restarts a container identified by containerId

▪ docker exec - runs a command in an already running container
$ docker exec -it containerId /bin/bash
runs the bash command interactively on container containerId

Docker CLI

24

Docker CLI

25

▪ docker build - builds an image from a Dockerfile

$ docker build .
builds a new image based on a Dockerfile located on the current directory (.)

$ docker build -t imagename .
builds a new image based on a Dockerfile located on the current directory (.) and names that image as

imagename

▪ docker images - shows (locally) available images

$ docker images

Docker CLI

26

▪ docker ps - lists running/available containers
$ docker ps lists running containers

$ docker ps -a lists all containers (including stopped ones)

▪ docker stop - stops a running container
$ docker stop containerId
stops container identified by containerId

▪ docker rm - removes containers
$ docker rm containerId
removes container identified by containerId

▪ docker rmi - removes images
$ docker rmi imageId
removes image identified by imageId

Docker CLI

27

docker run hello-world
docker ps
docker rm

Dockerfile example - PostgreSQL

28

FROM ubuntu

MAINTAINER SvenDowideit@docker.com

RUN apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-keys B97B0AFCAA1A47F044F244A07FCC7D46ACCC4CF8

RUN echo "deb http://apt.postgresql.org/pub/repos/apt/ precise-pgdg main" > /etc/apt/sources.list.d/pgdg.list

RUN apt-get update && apt-get install -y python-software-properties software-properties-common postgresql-9.3 postgresql-client-9.3

postgresql-contrib-9.3

USER postgres

RUN /etc/init.d/postgresql start &&\

 psql --command "CREATE USER docker WITH SUPERUSER PASSWORD 'docker';" &&\

 createdb -O docker docker

RUN echo "host all all 0.0.0.0/0 md5" >> /etc/postgresql/9.3/main/pg_hba.conf

RUN echo "listen_addresses='*'" >> /etc/postgresql/9.3/main/postgresql.conf

EXPOSE 5432

VOLUME ["/etc/postgresql", "/var/log/postgresql", "/var/lib/postgresql"]

CMD ["/usr/lib/postgresql/9.3/bin/postgres", "-D", "/var/lib/postgresql/9.3/main", "-c",

"config_file=/etc/postgresql/9.3/main/postgresql.conf"]

Dockerfile Reference

29

▪ FROM: sets the base image for subsequent instructions
▪ MAINTAINER: reference and credit to image author
▪ RUN: runs a command and commits changes to a layer on top of previous image layers; the committed image

will be visible to the next steps in the Dockerfile
▪ ADD: copies files from the source on the host (or remote URL) into the container's filesystem destination
▪ COPY: copies files from the source on the host into the container's filesystem destination (no URL, no automatic

archive expansion support)
▪ CMD: provides the default command for an executing container
▪ ENTRYPOINT: sets/overrides the default entrypoint that will (optionally) execute the provided CMD
▪ ENV: sets environment variables
▪ EXPOSE: instructs Docker daemon that containers based on the current image will listen on the specified

network port
▪ USER: sets the user name or UID to use when running the image and for any RUN, CMD and ENTRYPOINT

instructions that follow it in the Dockerfile
▪ VOLUME: creates a mount point for external data (from native host or other containers)
▪ WORKDIR: sets the working directory for any RUN, CMD, ENTRYPOINT, COPY and ADD instructions that

follow it in the Dockerfile
▪ LABEL: adds metadata to an image

Dockerfile Reference

30

▪ FROM: sets the base image for subsequent instructions
▪ MAINTAINER: reference and credit to image author
▪ RUN: runs a command and commits changes to a layer on top of previous image layers; the committed image

will be visible to the next steps in the Dockerfile
▪ ADD: copies files from the source on the host (or remote URL) into the container's filesystem destination
▪ COPY: copies files from the source on the host into the container's filesystem destination (no URL, no automatic

archive expansion support)
▪ CMD: sets the default command for an executing container
▪ ENTRYPOINT: sets/overrides the default entrypoint that will (optionally) execute the provided CMD
▪ ENV: sets environment variables
▪ EXPOSE: instructs Docker daemon that containers based on the current image will listen on the specified

network port
▪ USER: sets the user name or UID to use when running the image and for any RUN, CMD and ENTRYPOINT

instructions that follow it in the Dockerfile
▪ VOLUME: creates a mount point for external data (from native host or other containers)
▪ WORKDIR: sets the working directory for any RUN, CMD, ENTRYPOINT, COPY and ADD instructions that

follow it in the Dockerfile
▪ LABEL: adds metadata to an image

Dockerfile reference - CMD vs ENTRYPOINT

31

Both CMD and ENTRYPOINT instructions define what command gets executed when running a container. There are
few rules that describe their co-operation.

▪ Dockerfile should specify at least one of CMD or ENTRYPOINT commands.
▪ ENTRYPOINT should be defined when using the container as an executable.
▪ CMD should be used as a way of defining default arguments for an ENTRYPOINT command or for executing an

ad-hoc command in a container.
▪ CMD will be overridden when running the container with alternative arguments

No ENTRYPOINT ENTRYPOINT exec_entry p1_entry ENTRYPOINT [“exec_entry”,

“p1_entry”]

No CMD error, not allowed /bin/sh -c exec_entry p1_entry exec_entry p1_entry

CMD [“exec_cmd”,

“p1_cmd”]

exec_cmd p1_cmd /bin/sh -c exec_entry p1_entry

exec_cmd p1_cmd

exec_entry p1_entry exec_cmd

p1_cmd

CMD [“p1_cmd”,

“p2_cmd”]

p1_cmd p2_cmd /bin/sh -c exec_entry p1_entry

p1_cmd p2_cmd

exec_entry p1_entry p1_cmd

p2_cmd

CMD exec_cmd

p1_cmd

/bin/sh -c

exec_cmd p1_cmd

/bin/sh -c exec_entry p1_entry

/bin/sh -c exec_cmd p1_cmd

exec_entry p1_entry /bin/sh -c

exec_cmd p1_cmd

Docker networking

32

▪ docker networking provides full isolation for containers
▪ isolation can be overwritten to make containers communicate with each

other
▪ docker engine creates 3 default networks

▪ bridge → default network for containers; points to docker0 (virtual)
network interface

▪ none → container lacks network interfaces; only loopback address is
available

▪ host → adds container to the host network stack

▪ docker allows users to create user-defined networks

docker network ls
docker network inspect bridge

HOST

Docker networking - Bridge

33

Container1

eth0
172.17.0.2

lo
127.0.0.1

docker0
172.17.0.1

Container2

eth0
172.10.0.3

lo
127.0.0.1

lo
127.0.0.1

ifconfig docker0
docker inspect --format '{{ .NetworkSettings.IPAddress }}'
containerId

eth0
192.168.X.Y

default gw

HOST

Docker networking - port forwarding

34

Container1

eth0
172.17.0.2

lo
127.0.0.1

docker0
172.17.0.1

Container2

eth0
172.10.0.3

lo
127.0.0.1

lo
127.0.0.1

docker run -d -p 8080:8080 tomcat:8.0

8080

8080 8080

eth0
192.168.X.Y
8080

default gw

Docker volumes - container data persistence

35

▪ Container filesystem is visible and persistent as long as the container is
available (running/stopped/restarted).

▪ Docker volumes
▪ can be shared/reused among different containers
▪ persist even after container deletion

$ docker run -d -v /webapp tomcat:8.0
mounts a specific host directory (usually, in the /var/lib/docker/… FS tree) to
/webapp mountpoint within the container

$ docker run -d -v /host_fs_folder:/webapp tomcat:8.0
mounts /host_fs_folder host directory to /webapp mountpoint within the
container

Agenda

1. Containers & Docker ecosystem

1.1. Docker basics

1.2. Docker basics - hands on

1.3. Docker-compose

1.4. Docker-compose - hands on

2. Docker for developers

2.1. Integrating Maven and Docker - repeatable and scalable

development/testing infrastructure

2.2. Integrating Maven and Docker - hands on

3. Scaling to a (private, open-source) cloud

36

Container

1.1 - Web Hello World

Goals

▪ HTTPD (a.k.a. APACHE) Web Server up and running on standard HTTP port 80, and host-accessible

▪ the default HTML page (index.html) greets users with a HELLO WORLD

Hints

▪ Docker Hub hosts publicly available images

▪ COPY statement in a Dockerfile allows to copy content from host to container filesystem

Docker - Hands-on

37

git clone http://git.imolinfo.it/Unibo/docker-seminar-templates.git
cd docker-seminar-templates/Exercise1-Docker/1.1-HelloWeb/

HTTPD
80

index.html

https://hub.docker.com/explore/
https://hub.docker.com/explore/
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

1.2 - Real-world JEE Application Server

Goals

▪ JBoss Wildfly JEE AS Server up and running on standard HTTP port 8080, and host-accessible

▪ MySQL datasource configured

▪ check datasource connectivity via CLI

Hints

▪ Docker Hub hosts publicly available images

▪ default JBoss Wildfly image comes with a stock configuration file that uses an embedded database

→ example configuration files are provided in the exercise template

▪ COPY statement in a Dockerfile allows to copy content from host to container filesystem

Docker - Hands-on

38

git clone http://git.imolinfo.it/Unibo/docker-seminar-templates.git
cd Exercise1-Docker/1.2-WildflyMysql/

Container

JBoss Wildfly

8080

MySQL
datasource

https://hub.docker.com/explore/
https://hub.docker.com/explore/
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

Agenda

1. Containers & Docker ecosystem

1.1. Docker basics

1.2. Docker basics - hands on

1.3. Docker-compose

1.4. Docker-compose - hands on

2. Docker for developers

2.1. Integrating Maven and Docker - repeatable and scalable

development/testing infrastructure

2.2. Integrating Maven and Docker - hands on

3. Scaling to a (private, open-source) cloud

39

Complex distributed applications are typically composed of a number of interacting

services and layers (e.g.: database, cluster of application servers, load balancers,

etc…)

Docker promotes encapsulation of reusable pieces of application logic

▪ coarse-grained (e.g., 1 container - N services) containers are easily manageable

but fall short on reusability

▪ fine-grained (e.g., 1 container - 1 service) containers are highly reusable (thus

generally preferable) but require a higher level of orchestration (e.g., starting up

all containers serving an application, in the right order)

Right service granularity requires tradeoff between modularity and manageability

Docker shortcomings

40

Docker-compose

Docker-compose allows to orchestrate fine-grained (e.g., single service) containers

into a complex application

▪ single container composition definition file (docker-compose.yml)

▪ single command to build and run a composition of containers

▪ containers still available as single atomic units of deployment

https://docs.docker.com/compose/

41

https://docs.docker.com/compose/
https://docs.docker.com/compose/

Docker-compose example

42

version: '2'
services:
 db:
 image: mysql:5.7
 volumes:
 - "./.data/db:/var/lib/mysql"
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: wordpress
 MYSQL_DATABASE: wordpress
 MYSQL_USER: wordpress
 MYSQL_PASSWORD: wordpress

 wordpress:
 depends_on:
 - db
 image: wordpress:latest
 links:
 - db
 ports:
 - "8000:80"
 restart: always
 environment:
 WORDPRESS_DB_HOST: db:3306
 WORDPRESS_DB_PASSWORD: wordpress

43

Docker-compose CLI

▪ up
$ docker-compose up .
builds, (re)creates, starts, and attaches to containers for a service; services definition is expected to be

on a docker-compose.yml file in the current directory (.)

$ docker-compose up -d .
builds, (re)creates, starts, and attaches to containers for a service; services definition is expected to be

on a docker-compose.yml file in the current directory (.); containers run in background

▪ build - builds or rebuilds services
$ docker-compose build .
builds/rebuilds the services (containers) specified on a docker-compose.yml file in the current directory

(.)

▪ start
$ docker-compose start .
starts existing containers for a service composition

▪ ps
$ docker-compose ps
show running containers

Docker-compose networking

44

Docker-compose networking extends docker networking model as follows

▪ a new, reserved virtual network is created to host all containers (services)

declared in the composition

▪ containers within the new virtual network can reach each other via their logical

service names

Suppose we are building the previous docker-compose.yml file from

/home/user/wordpressmysql/docker-compose.yml

▪ A network called wordpressmysql_default is created

▪ A container is created using db configuration. It joins the network

wordpressmysql_default under the name db.

▪ A container is created using wordpress configuration. It joins the network

wordpressmysql_default under the name wordpress.

▪ Both containers can reach each other via db, wordpress names

Agenda

1. Containers & Docker ecosystem

1.1. Docker basics

1.2. Docker basics - hands on

1.3. Docker-compose

1.4. Docker-compose - hands on

2. Docker for developers

2.1. Integrating Maven and Docker - repeatable and scalable

development/testing infrastructure

2.2. Integrating Maven and Docker - hands on

3. Scaling to a (private, open-source) cloud

45

2.1 - Real-world JEE Application Server (cont’d...)

Goals

▪ JBoss Wildfly JEE AS Server up and running on standard HTTP port 8080, and

host-accessible

▪ MySQL datasource configured

▪ MySQL server up and running on standard MySQL port

Hints

▪ Docker Hub

▪ docker-compose to ease service composition/orchestration

Docker-compose: Hands-on

46

git clone
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

cd Exercise2-DockerCompose/
Container

JBoss Wildfly

8080

MySQL
datasource

Container

MySQL
Database

https://hub.docker.com/explore/
https://hub.docker.com/explore/
http://git.imolinfo.it/Unibo/docker-seminar-templates.git
http://git.imolinfo.it/Unibo/docker-seminar-templates.git

Agenda

1. Containers & Docker ecosystem

1.1. Docker basics

1.2. Docker basics - hands on

1.3. Docker-compose

1.4. Docker-compose - hands on

2. Docker for developers

2.1. Integrating Maven and Docker - repeatable and scalable

development/testing infrastructure

2.2. Integrating Maven and Docker - hands on

3. Scaling to a (private, open-source) cloud

47

48

Rationale

Building a complex, real-world application usually requires coordinating a set different

moving parts

Typical N-tier applications consist of layers of

▪ persistence → relational/NoSQL database

▪ middle-tier (business logic) → JEE application servers, messaging systems (e.g.,

JMS-compliant queue managers)

▪ mediation/integration layers → ESBs

▪ presentation → APACHE HTTPD front-end, SW/HW Load Balancer/Reverse

proxies, etc…

49

Rationale

Docker/Docker-compose allow developers to tame architecture/infrastructure

complexity

Containers integrate into traditional development/build/test cycles to make build

processes easily scalable and repeatable → e.g., no dependency on external server

configuration

DEV

DEV/QA ENV

Traditional build environment

50

CODE COMPILE/
PACKAGE

UNIT/INTEGRATION
TESTS

INFRASTRUCTURE
SETUP&TUNING

ARTIFACT
DEPLOYMENT

ARTIFACT

PROD ENV

USER ACCEPTANCE
TESTS PERFORMANCE TESTSQA

OPS

ARTIFACT
DEPLOYMENTOPS

CONTAINERIZED
INFRASTRUCTURE

AUTOMATED CONTINUOUS INTEGRATION/CONTINUOUS DELIVERY
ENVIRONMENT

Containerized build environment

51

CODE COMPILE/
PACKAGE

UNIT/INTEGRATION
TESTS

INFRASTRUCTURE
SETUP&TUNING

ARTIFACT
DEPLOYMENT

ARTIFACT

PROD ENV

USER ACCEPTANCE
TESTS PERFORMANCE TESTS

ARTIFACT
DEPLOYMENT

QA ENV

DEV ENV

Agenda

1. Containers & Docker ecosystem

1.1. Docker basics

1.2. Docker basics - hands on

1.3. Docker-compose

1.4. Docker-compose - hands on

2. Docker for developers

2.1. Integrating Maven and Docker - repeatable and scalable

development/testing infrastructure

2.2. Integrating Maven and Docker - hands on

3. Scaling to a (private, open-source) cloud

52

Integrating Maven and Docker - hands on

53

cd Exercise3-Maven/exercise3
mvn clean package docker:build
mvn docker:start
mvn docker:stop

https://fabric8io.github.io/docker-maven-plugin/

Container

JBoss Wildfly

8080

MySQL
datasource

Container

MySQL
Database

Container

JBoss Wildfly

8080

MySQL
datasource

Container

HTTPD
Load balancer

80

https://fabric8io.github.io/docker-maven-plugin/
https://fabric8io.github.io/docker-maven-plugin/

Agenda

1. Containers & Docker ecosystem

1.1. Docker basics

1.2. Docker basics - hands on

1.3. Docker-compose

1.4. Docker-compose - hands on

2. Docker for developers

2.1. Integrating Maven and Docker - repeatable and scalable

development/testing infrastructure

2.2. Integrating Maven and Docker - hands on

3. Scaling to a (private, open-source) cloud

54

▪ Private (on-premise) cloud platform based on SmartOS (a derivative of

OpenSolaris)

▪ Native VM and Docker support

▪ Runs on bare metal and allows for flexible datacenter scaling

▪ Open-source

▪ Provided by Joyent Inc. (the company behind Node.js)

▪ Available as a public service

SmartDataCenter/Triton Elastic Container

55

Docker components

DOCKER HOST

DOCKER CLI DOCKER DAEMON

IMAGE 1 IMAGE 2 IMAGE N

CONTAINER A1 CONTAINER A2

CONTAINER B CONTAINER C

DOCKER REGISTRY

LOCAL HOST DOCKER HUB

REPOSITORY

REPOSITORY

IMAGE 1 IMAGE 2

IMAGE N IMAGE M

DOCKER HOST

DOCKER DAEMON

IMAGE 6 IMAGE 7

CONTAINER X

CONTAINER Y

DOCKER REGISTRY

REMOTE HOST PRIVATE REGISTRY

REPOSITORY

IMAGE 6 IMAGE 7

56

SmartDataCenter/Triton Elastic Container

SmartDataCenter/Triton Elastic Container

HEAD
NODE

COMPUTE
NODE

COMPUTE
NODE

DOCKER ENGINE

LIBS/BIN

APP

CONTAINER

LIBS/BIN

APP

CONTAINER

DOCKER CLI

REMOTE
DATACENTER

...

LIBS/BIN

APP

CONTAINER

LIBS/BIN

APP

CONTAINER

LIBS/BIN

APP

CONTAINER

57

SmartDataCenter/Triton Elastic Container

58

Scaling to a private or public cloud

Docker allows to run single containers starting from images

Docker Compose allows to run multi-container applications
composed by multiple images on a single host

High Availability requires to deploy and run multple containers
on a multi host environment

- Scheduler/Orchestrator to distribute the containers on
different hosts

- Platform to manage applications composed by multiple
containers

59

Rancher private cloud

60

Rancher Catalog

61

CUSTOM IMAGES

Rancher Architecture

62

Image A

Image B

Image C

RANCHER HOST

RESOURCES (CLOUD, VMS, SERVERS)

NETWORK SERVICES

RANCHER CATALOG

RANCHER ORCHESTRATION AND SCHEDULING

RANCHER CONTAINER INFRASTRUCTURE

STORAGE SERVICES

CLI

DOMANDE, DUBBI, CURIOSITÀ?

Question Time

63

▪ Più di 20 anni di esperienza nell’Enterprise IT

▪ Consulenza e Skill Transfer su Architetture, Integrazione e Processo

▪ OMG Influence Member, JSR 312 Expert Group, CSI, WWISA,
OpenESB Key Partner, NetBeans Strategic Partner

▪ La comunita’ italiana dedicata a Java

▪ 10 anni di articoli, pubblicazioni, libri, eventi, training

▪ Dai programmatori agli architetti

▪ Piu’ di 1.000.000 pagine lette al mese

▪ Business partner in progetti con alto grado di innovazione

▪ Padroni in tecnologie e architetture mobile

▪ Competenti in architetture dell‘informazione, UX e Design

64

