
Antonio Corradi

Academic year 2015/2016

Goals, Basics, and Models

University of Bologna
Dipartimento di Informatica –
Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Class of

Computer Networks M

Models 1

Models 2

ABSTRACTION …

Specially interesting in
complex systems
to focus on the right target

MODERN DISTRIBUTED SYSTEMS

They are complex but very well spread … but still there
are unsolved issues; and that is why they are interesting ☺
We have to face still many challenges and problems to
be solved toward a good design
As a few examples only of basic requirements
• Scalability and good Answer and Service time
• Predictability and Performance
But many difficulties
• partial failure overcoming
• heterogeneity (at many levels)
• integration and standard
…

Models 3

SERVICES IN SYSTEMS and QUALITY

The first point in any system is to have a vision in terms
of services to be offered . In that case, any situation of a
relationship can be qualified by the intended quality to
be provided for providers to requestors
We have to carefully define the Quality of the Service
(QoS) to be granted in any situation and to operate on it
The QoS defines the whole context of the operation
and how to quantify the operation results

Of course it is not easy to find a standard way to specify services
and their properties in a clear way
Telco providers define service levels via indicators, such as
throughput, jitter, and other measurable ones

Models 4

QUALITY of SERVICE QoS

QoS description must take into account all the possible
aspects of a service, under many perspectives
From the experience of telco, we may consider

- Correctness
- Performance
- Reliability
- Security
- Scalability
Some of the above aspects are mainly transport-related and tend
to neglect application and user experience (even if they have
a larger meaning)
Some areas are more quantity-based and easy to quantify,
while others are more subjective and descriptive

QoS should take into account all cases
Models 5

QUALITY of SERVICE INDICATORS

QoS must adapt to the different usage situations
QoS must be based on both kind of properties
- Functional properties
- Non Functional properties
The functional ones are easy to express and quantify

such as average packet delay (over a service), bandwidth,
percentage of lost packet, … for one service

The non functional ones are hard to quantify
such as long term service availability, security level for the
information, perceived user experience in video streaming, …

Sometimes we refer to Quality of Experience (QoE) in a
provided service

Models 6

AGREEMENT IN SYSTEMS: SLA

One important point is to understand how to express the
complexity and to rule the relationship between
different involved subjects
SLA Service Level Agreement

A typical indicator to reach a specific agreement between
different parties on what you have to offer and why

Of course it is not easy to find a standard way to specify
serve and its properties in a both formal and clear way

Communication providers define service levels via Mean Time
Between Failures (MTBF), for reliability and other indicators for data
rates, throughput and jitter...
Service providers must define service levels via more tailored
indicators that relates and qualify the service for users and also some
user experience

Models 7

Several principle and systems to provide and give
a scenario for business services

Middleware as a support to all operation phases in a
company, also in terms of legacy systems

Service Oriented Architecture (SOA)
All the interactions among programs and component are
analyzed in terms of services

Any service should have a very precise interface

Enterprise Application Integration (EAI)
The need of integrating the whole of the company IT
resources is the very core goal

That objective must be provided, while preserving Enterprise
values

GOOD SUPPORT to ENTERPRISE

Models 8

Modern Enterprise strategies require both existing and new
applications to fast change with a critical impact on
company assets

ENTERPRISE Information Technology

Models 9

This list is only an idea, there may be many other components
� Enterprise Resource Planning (ERP)
� Customer relationship management (CRM)
� Supply chain management (SCM)
� Warehouse and stock management
� Finance and accounting
� Document Management Systems (DMS)
� Human Resource management (HR)
� Content Management Systems (CMS)
� Web site and company presentation
� Mail marketing
� Internal Cooperation tools
And many more….

Typical different Applications in a Business

Models 10

The idea of a complete Application integration or EAI is to have
systems that produce a unified integrated scenario where all
typical Business applications programs and components can
be synergically provided

There are both:

• Legacy components to be reused

• New components to be designed and fast integrated

The easy and complete integration among all business tools has
also another important side effect

The possible control and monitor of the current
performance of any part of the whole business

• to have fresh data about performance

• to rapidly change policies and to decide fast (re-)actions

Enterprise Application Integration

Models 11

The basic interaction is via services defined as platform- and network-
independent operations that must be cleanly available and clear in
properties

Service-Oriented Architecture (SOA) is the enablin g abstract
architecture

A service must have an interface to be called and give back some
specific results
The format must be known to all users and available to the support
infrastructure

There are many ways to provide a SOA framework
SOA must offer basic capabilities for description, discovery, and
communication of services
But it is not tied to any specified technical support

Service-Oriented Architecture

Models 12

SOA is simply a model and it imposes some methodologies
to obtain its goal of a fast and easy to discover service
ecosystem
� Services are described by an interface that specifies the

interaction abstract properties (API)
� The interface should not change and must be clearly

expressed before any usage
� Servers should register as the implementers of the

interface
� Client should request the proper operations by knowing

the interface
Interaction is independent of any implementation detail,
neither platform-, nor communication-, nor network-
dependent

Service-Oriented Architecture or SOA

Models 13

Service-Oriented Architecture SOA proposes a precis e
enabling architecture with three actors

Providers are in charge
of furnishing services
Requestors are
interested in obtaining
services
Discovery agencies are
responsible to give
service information and
full description of
services

SOA actors or components

Models 14

One service is an abstraction of any business process,
resource, or application , that can be described by a
standard interface and that can be published and become
widely known (discovery)
Services are:

- reusable , in the sense that they can be applied in several
contexts (no limitation, in general anyone)

- formal , they are not ambiguous in defining the contract
specifications (clear and clean interface)

- loosely coupled , they are not based on any assumptions
on the context where they could be used

- black box , they are neither specifying the internal business
logic nor tied to any implementation details of a specific
solution

Service Conceptualization

Models 15

A service must be available by all platforms that are
publishing it to all the ones that are in need of it, if
the requestor asks for the interface in the right way
Interfaces should be widely spread and published in
some discovery agencies
Services must be:

- autonomous , they must not depend on any context and
should be capable of self managing

- stateless , the internal need of state should be minimized
(eventually stateless); the client maintains the state

- discovery-available , all service must be found via
opportune naming agents and must easy to retrieve and to
use

- composable , existing services can be put together to
produce a modular component to be invoked independently
as a novel service (composition to create new services)

SOA Design Principles

Models 16

Traditional Business Architectures

Models 17

SOA-oriented ARCHITECTURES

Models 18

V
is
ib
il
it
y

Maturity

Technology
Trigger

Peak of Inflated
Expectation

Trough of

Disillusion

Slope of
Enlightenment

Plateau of
Productivity

SoA
Cloud

GARTNER technology life cycle
Any technology has its own life cycle, with hypes connected

Evaluation and Evolution in Technologies

Cloud PaaS for
interoperability

Models 19

SOA enthusiasm

Models 20

We can understand distributed systems and their
operations only by conceptualizing a model
A distributed system consists of resources (all the
resources that may be requested during execution to
grant any visible result)
Resources can be, for instance, abstracting from our
experience of one machine:
• Physical memory (RAM),
• Disk (some levels of persistence)
• Computing (CPU, even many)
• I/O and communication support
• Other apparel and devices (sensors, actuators, etc. in a

smartphone)
We have to open up our perspective, and think to the
whole system, …
A first step is about all available applications and services

DISTRIBUTED SYSTEMS DESCRIPTION

Models 21

A distributed systems can consist of several machines
A distributed system consists of many resources , in an
organization that put together several machines in a
locality (more or less confined)

Resources can be, abstracting from our experience of a
system for an organization:
• Several computing and memory resources (and other

ones)
• Disks (for local and global persistency)
• Connecting support (network with some granted

bandwidth)
• Other & Application services (OS, Web, Applications, ad

hoc services, application define services and clients,…)
Virtual resources and also corresponding physical
resources (all the resources that may be requested during
execution to grant any visible result)

ANOTHER SYSTEMS DESCRIPTION

Models 22

A distributed systems must consider also a larger
perspective, both at a lower and at a higher level
Resources can be at lower level
• Operating systems and low level services
• Virtual resources insisting on physical ones

(not only Virtual machines and Physical ones, but a ny
kind: Virtualized connections and network)

An optimized management of that environment is hard and
to be carefully designed
Resources can be at higher level
• Application system related services of any kind, from

Web servers and services, Web containers, …
• Real application, from management software, to final ad

hoc software
An optimized management of that application environment
is even harder and must be carefully designed

MORE COMPLEXITY in SYSTEMS

Models 23

In a business perspective, a distributed system can be
hosted on premises , and in charge of the owning
organization

Many companies have an internal data center that must
take charge of all aspects , from the hosting of hardware,
installation, maintenance, operation, and also of the whole
software components and their operations
Also all human resources must be handled
Resources must be managed and handled along a
business strategy

In a business perspective, a distributed system can be
outsourced , and managed by some service provider

Many companies exploit an external data center that
must provide some business services, as if they were
internal, also in a transparent way

SYSTEMS and OPERATIONS

Models 24

Companies are used to outsourcing some parts since
long ago (also maintaining other services as internal with
the problem of their interconnection and integration)

The external data canter must be always accessible
and capable of giving service with the negotiated SLA
and the requested QoS
Some aspects are overcome, others to be solved

In recent years, Cloud has opened up more that
perspective by providing any kind of service remotely, by
producing a more organized model of all the offered
services
Access is always via web and in some agreed form

Many private people and small companies have
available many ‘low cost’ external data centers to provide
elastic, easy-to-use and pay-per-use services, in a
transparent way, as if it were internal

OUTSOURCING vs. CLOUD

Models 25

RESOURCES
In a DISTRIBUTED SYSTEM a central issue is

Resource Management
Definition of a resource

each component reusable or not, both hardware and
software, needed for the application or system

Classifications (many different properties and aspects)
• physical resources vs. virtual resources
• physical resources vs. logical resources
• static resources vs. dynamic resources
• low-level resources vs. application resources
Resources have an external and an internal organization,
based on abstraction
specification (visible interface) and implementation (not visible)
Different implementation of course, …

Concentrated & Distributed organization
toward their best service

Models 26

RESOURCE MANAGEMENT

Systems are very differentiated in requirements and
there is no magic recipe for all cases
There are many implementation models
and many different ways of operating and serving results

The design of one interaction is split into two phases
- the static that plans the operations and precede the real

operations (before running and out-of-band ☺)
- the dynamic that is the implementation of the operations

and (while running services and in-band ☺)
The concurrency among services and support actions
can produce delays and overhead

Models 27

RESOURCE SERVICES
A resource can be available for providing its services with a
typical interface (the simpler the better) as SOA
You become the client, and the service is provided to you by
the server

The interface is deployed in two forms:
Service request
Distributed file system

Service Request
The client ask explicitly the server in a Client/Server appr oach

Distributed File System or a middleware approach
Unique service available in a transparent way (allo cation
transparent)

Transparency simplifies the interaction and users are freed of
responsibility

Models 28

MANAGEMENT by AGENT (DFS)

The deployment is a coordinate agent systems to
provide a unique service

Agents must coordinate among themselves to operate and give
the best result

Any kind of negotiation is possible among agents toward the final
goal, also deciding to refuse the service

Agent

Client

Agent

Resource

ProcessesProcesses

Models 29

In Distributed systems maximum interest in real
operations, performance, distributed execution
Models preventive vs. reactive ones

Preventive behaviors avoid a priori undesired events, but often
introduce a fixed cost on the system (often computable)
Reactive Behaviors allow to introduce less support logic (and
may limit operation costs) if specified undesired events do not
occur

Models static vs. dynamic
Static behaviors do not allow to adjust the system to (even
limited) variations during execution
Dynamic Behaviors allow you to let the system evolve along
(limited) variations in execution but can cause higher costs
(overhead)

GENERAL MODELS

Models 30

Dynamic models / Static Models
User number is predefined and fixed before run

Users can be added and deleted during the execution
Process number is predefined and fixed before run

Processes can be added and deleted during the execution
Node numbers is predefined and fixed before run

Processors can be added and deleted during the execution
Clients and their number is predefined and limited before run

Client traffic can be added and deleted during the execution
Services and support are predefined and fixed before run

Servers and services can be added during the execution
Services can vary during execution

STATIC and DYNAMIC MODELS

Models 31

Some usual (logical) resources for execution
Processes as entities able of expressing execution via
- local actions on an internal and confines environment
- communication actions toward other processes by using

shared memory and message exchange
Also data can exist externally to processes themselves
(limited confinement and insufficient abstraction)

Objects as entities to express abstraction, as ability of
- enclose and hiding internal resources (data abstraction) with

externally visible interface only of operations
- act on internal resources to complete externally requested

operations
Passive Objects data abstractions with external executing entities
Active Objects entities capable of both execution and data
containment

TOWARD A RESOURCE MODEL

Models 32

CLASSES vs. INTERFACES

A trend in software architectures puts together:
- interfaces as the agreed contract of interaction, uniquely
specified and not negotiable
- classes that describe different implementations (many different
can exist also different in QoS in the same system)

Distributed systems has spread since long ago the idea of having
interfaces as contracts between different stakeholders - who also
develop independent - and of keeping these separate from
specific implementations (possibly multiple ones)
middleware are usually based on interfaces and less on classes
(and other their separate implementations, as the components)

In OO languages , that separation came later, but modern
languages have incorporated quickly, especially in languages
designed for distributed systems

Models 33

OBJECTS vs. COMPONENTS

We tend to refer to Object models , see Java and other usual
languages
The Object model is not so confined and very dependent
from the containing environment (fine-grained objects)
With the class relationship and subclassing

The distribution requires to confine better objects
boundaries and interactions with the containing
environment

The Component Model (coarser grain) succeeds
In defining more self-contained entities and more
transportable to different environment

Definition of component: static abstraction of a confined
entity communication with the external world via ports

Models 34

COMPONENTS

A component is
- Static having its own life and
being independent from application
- Abstract without any visibility of the component internal structure
by showing externally only input output ports
- Communicate only in a disciplined way by ports as the only
way to communicate to the external world (IN and OUT)
Effect of

better reusability , with easy transportability from one container to
another (no hidden interactions, only visible and declared ones)
capacity of substitution , one implementation can replace
another (dynamic replacement) without any container change

Toward SOA (Service Oriented Architecture o SOA) � ports as tag
for methods visibly accessible and easy to invoke

OUT

ININ

SOFTWARE COMPONENT

Models 35

AGAIN COMPONENTS

Again a component definition
"A component is an object in a tuxedo.
That is, a piece of software that is dressed
to go out and interact with the world"

Michael Feathers

A component typically is one entity with coarser grain than one
object, and it is typically more self-contained & capable of
operating in very different environment …
Often it should work within a container , i.e., a support server
capable of hosting the component to provide it several needed
functions; components focus only the business logic

J2EE, EJB are containers that can host components and
can provide most common support functions (initialization,
finalization, …)

OUT

ININ

COMPONENTE SOFTWARE

Models 36

COMPONENT PROPRIETIES

A component has a very disciplined interface and must
declare the contract of interaction via ports that regulate
accepted inbound requests (in ports) and the services you
can ask outward (out ports)
This interface rules precisely and statically the i nteraction with
the outside world in an explicit (and not hidden) a pproach

A component is self contained but must handle only some
features and delegate other functions to an enclosing
container that is able to reply and to manage

Interaction container component is disciplined too and governed
precisely; the container can operate autonomously

OUT OUT

ININ IN PORTS

OUT PORTS

SOFTWARE COMPONENT

Models 37

SYSTEMS with COMPONENTS

A system with components can provide several
functions to hosted components
- Life cycle; the container can activate and deactivate

components on need
- Resource sharing; resources are shared via container

provisioning and encapsulation
- Composition; the container can help in forming newe

components by putting together existing one
- Activity support; any interaction between components can be

supported via container-offered activities
- Control; the container helps in monitoring, handling, and

controlling components
- Mobility; the container has the capacity of extracting and

moving components already executing

Models 38

SYSTEMS for SERVICES

A natural evolutions of the above functions is the
possibility of doing the same while hosting services
Several environments go in the sense of offering
many functions toward operations, so easing the
duties of the applications and clients

Let us think to a system that has the capacity of providing
support for service access, usage, and composition

It can support management of services
- Access (via Web request or Web services)
- Composition (toward new services)
- Life cycle support in many forms: Control, Elasticity,

Resource sharing, Activity lifecycle, internal Optimizat ion
and Mobility, Accounting

Models 39

Modelli 40

REMOTE REFERENCES

In many local environments (in object-oriented system), we
need the capacity of referring to some external resources , in
order to coordinate different machines (virtual or physical)

A C1 on one node must refer to a remote instance, the same as if
they were local instances on the same node
To refer to a remote instance we need some intermediary support
that extends the visibility to remote nodes

In some cases,
local and remote references
are uniformed via
local intermediaries (proxies)
that play the enabling role and
typically mask support
transparently

C1 instance

S1 instance

CLASS server S1

operations

state

Middleware for the integration

S1 instance

and support to DISTRIBUTION

Models 40

Modelli 41

RMI REMOTE REFERENCES
Between two JAVA JVM systems, we can use Java Remote Method
Invocation (RMI) that build two proxies
-one from the customer (stub)
-one on the side of the servant (skeleton)

Such proxies are often
generated automatically
and make the user part
reasoning regardless of
the specific deployments

Similarly other environments
(CORBA , DCOM, etc.)
define their specific support
for OO cases

C1 instance

N1 node

S1 instance

CLASS server S1

operations

state

S1 proxyC1 proxy
N2 node

Middleware for the integration

and support to DISTRIBUTION
Models 41

REMOTE REFERENCES via PROXY

Two Java virtual machines can use PROXIES to get remote
visibility of object references

RMI support many solutions but proposes problems:
- How do you get the reference to the server? (name system)
- Where are the ancillary classes?
- How to obtain them (while running)?
- And if there are any inconsistencies?
- And if the server is not active?
- And if you don't keep the status?
About remote references :
- two references to the same object?
- two references for the same service? …

C1 instance

N1 node

S1 instance

CLASS server S1

operations

state

S1 proxyC1 proxy
N2 node

Middleware for the integration

and support to DISTRIBUTION

Models 42

REMOTE REFERENCES & MIDDLEWARE
A central point in all middlewares that abstract away and
hide details from users for remote access is how to enable
and manage a remote reference in all its aspects
A remote reference allows access to non-local entity must
surely be transparently
But costs must be considered and evaluated for each aspects
of the support mechanism
- How does the remote reference

cost?
- How is the cost of middleware to

support organization?
- How to obtain remote references?
- Are inconsistencies possible?
- What are the responsibilities

of the middleware? …
- …

Client

N1 node

REMOTE Server

operations

state

Local Client

N2 node

Local Client

Middleware to support

EASY TRANSPARENT DISTRIBUTION

Models 43

PROXY
In a communication we may
have intermediaries placed and
deployed either side, the client
and the service provider

PROXY
from client or from server

proxy
C/S stub & skeleton

interceptor
to add functions

broker
something similar to a
container

INTERMEDIARIES & PROXIES

Requests

Client Server

Operations

Proxy C Proxy S

Proxy C Proxy S

broker or link manager
to implement the entitiy dynamic binding

Requests Operations

Client Server

Models 44

CONTAINMENT
Often many features cannot be controlled directly from the
application but left as responsibilities to a delegated supervisor
entity (container) who deals with them,
- often introducing policies by default
- while avoiding typical user failures
- controlling external events

Containers (entities with many names, also called containers,
ENGINE, MIDDLEWARE , ...) can take care of automatic actions
that relieve the user responsibility from repetitive actions, that can
be easily expressed

A user can then specify only the high-level part not
repetitive, highly dependent from the application logic

CONTAINER MODELS

Models 45

CONTAINER
a service user may be
integrated in an environment
(middleware) that deals
independently of many
different aspects

See
CORBA all C/S aspects
Engine for GUI framework
Container for servlet
Support for components

MODELS FOR CONTAINMENT
CONTAINER

Requests

Client 1

Client 2

Cliente i
Client i

Client i

SUPPORTED

SIMPLIFIED

OPERATIONS

OPERATIONS

Container can host components more transportable & mobile
One goal is also to move around components between different
containers and allows that inter-container mobility

Models 46

The container can provide "automatically " many
features to support service
- Lifecycle Support
• activating the servant/deactivate/
• maintaining state
• persistence and retrieval of information (interface with D B)

- Support to the name system
• the Discovery of servant/service
• Federation with other containers

- Support to the QoS
• fault tolerance, selection among possible deployment

• control of negotiated and obtained QoS
…

DELEGATION to CONTAINER (Middleware)

Models 47

A container may also be able to facilitate the execution of
different components such as servlets, JSPs, beans of
various architectures and types

J2EE – Java 2 Enterprise Edition

Models 48

More and more new forms of containment are available
There are several tools that can not only provide the hosting,
but also allow the management of the container and the
control of the migration of components

That feature is specifically more important when you have
access to the container via web functions and describe your
components as microservices, easy to be installed and re-
installed remotely
Microservices are small components capable of being
hosted in different machines and easily managed

An OS container can host and control those components in
easy way and also can suggest advices in designing
autonomous components
Docker is tool where you can specify what you need to have
installed

NEW MODELS FOR CONTAINMENT

Models 49

DIFFERENT DESIGN MODELS
Microservices can be easily deployed and also moved from
one container to another

Models 50

Docker as a microservice language and tools for a Linux
container that allows to design, host, control, and
optimize services (both statically and dynamically)

Docker is tool with which you can specify an entire
application and its dependencies as a container (so it
becomes more portable and easy to be packaged)

Some requirements are crucial for microservice viability and
operations:
- Possibility of managing services from outside (monitoring
and handling of internal services)
- Easy deployment and limited interference (simplest
interface possible)

NEW MODELS FOR CONTAINMENT

Models 51

Modelli 52

DEPLOYMENT for an APPLICATION

Application
P1 P2

P3 P4
P5

P6

P7

P8

P9

..-

INFOS

COMMS

..- ..-
MOBILE DEVICES

System

Application resources are many
and differentiated too:
• processes
• components
• objects and classes

System resources are many and
differentiated:
• processors
• networks
• interconnected cluster
• cloud

An application consists of very different logical and concrete
resources: processors, network, and also processes, objects,
components , ..., up to service and request to them

Models 52

Models 53

APPLICATION DEPLOYMENT

An application is developed as an organization of entities, objects
components , and classes
if you are not working on a single machine, one must decide a
deployment on multiple machines that must decide on how to
- partition the application into constituent components
- rely on a support for remote references

The application is
divided into resources
that represent partition
(P1-P9) to be mapped
on the specific
deployment

P1 P2

P3
P4

P5

P6

P7

P8

P9

Possible partitioning of the resources

Application

PARTITIONS in the APPLICATIONS

An application must be deployed on a number of processors and
you have to decide how to group its components into partitions for
processors themselves

The application involves both:
Static resources (represented in previous slide) ea sy to
group as needed, so start executing with the compon ents
already allocated
Dynamic resources (previously not represented) that will
be created during the execution or may not even be
created at run time

For instance, the processes or the resources that depend on the
execution and that only some runs can create, depending on the
application state and the progress of applications

Models 54

Allocation
One application can use two different policies

either static or dynamic ones (maybe hybrid)
Static allocation: specified a configuration (deployment),
those resources are decided before runtime
Dynamic allocation: those resources are decided at runtime
���� dynamic systems that can decide at run time

Static allocation
Pros the allocation cost precede the execution
Cons the predefined allocation is inflexible
Dynamic allocation
Pros the allocation cost impact on the execution
Cons the allocation can adapt to the current situation and is

only made by need (an on need)

ALLOCATION STRATEGIES

Models 55

Allocation strategies

Static resources
always to be decided statically
and eventually optimized

Dynamic resources
either statically decided (with a policy to be actuated on need)
or decided at runtime

In dynamic systems, one can create not forecast dynamic
resources and you can think of to reallocate existing
resources (migration): resources can move around and
setting can change during execution
Heavy moment of resources re-allocation

MODELS for ALLOCATION

Models 56

- MANUAL
� the user determines each individual object and passes it on

the appropriate nodes with the proper sequence of
commands

- FILE SCRIPT APPROACH
���� you must write and run some script files (some shell

language, bash, Perl, Python, etc.) with the command
sequence to drive the configuration by steps and in phases
that usually specifies dependencies between objects

- APPROACH based on MODEL or MODEL-DRIVEN
���� automatic configuration support through declarative

languages or working models to obtain the configuration (e.g.,
SmartFrog and Radia)

DEPLOYMENT SUPPORT

Models 57

- EXPLICIT APPROACH (user driven)
� the user provides before the execution the mapping for each

resource to be potentially created

- IMPLICIT APPROACH (automatic)
� the system takes care of the application resource mapping

(both at deployment time and during execution)

- HYBRID APPROACH
� the system adopts a default policy applied to both static and

dynamic resources, initially for the allocation of new
resources and also to migrate during run

� possible user indications and advice are taken into account to
improve performance (please allocate together another
resource: 2 VMs together on the same PM)

ALLOCATION MODELS

Models 58

Models 59

MODERN DEPLOYMENT

If an application is to be supported, it must typically be deployed for
a specific configuration
Traditionally the approach is:
We define how to configure applications taking into account the
specific system resources available (you specify for the environment)
A novel approach is:
We ship together the application with its required configuration
so they can be ported to different possible support environments
(microservices and docker approach, Cloud approach)

P1 P2

P3
P4

P5

P6

P7

P8

P9

Possible partitioning of the resources

Application

..-

INFOS

COMMS

..- ..-

MOBILE DEVICES

RESOURCE HANDLING →→→→ PROCESSES
Management with different costs and different goals
Allocation & (dynamic) re-allocation of processes

LOAD SHARING ���� a priori defined, before the run
(eventually actuated afterwards, at resource creation)
Resource allocation , without moving any resource once
allocated (static allocation)
LOAD BALANCING ���� done during the execution
After a specific allocation and a first execution, already
allocated and active resources can migrate to obtain a
better global efficiency (dynamic allocation)

The static case can be studied in a more precise way, being
out-of-band, while the dynamic must compete with the
application execution

Models 60

PROCESS ALLOCATION
Specifically, the cost considerations are crucial for:

Static evaluations
In that case, we work ‘out of band’ (before the deployment)
and we can also use very precise (complex and long) algorithms
to define the best allocation
Precise algorithm for allocation face the NP-complete problem

Heuristic algorithms � Genetic, Tabu search
Often these strategies are too expensive to be applied during the
execution

Dynamic evaluations
goal � overhead reduction
Simple policies to respect the minimal intrusion
� local policies and with the lowest implementation cost

Models 61

MONITORING

MONITORING as an enabler for control & manage
To give fresh information on the system current load, observ ing
the current situation
Picking up and collecting load information on

processors, resources & communication
* by using events
* by using statistic and historical data
* by observing on limited intervals

The monitoring get info on current load, by assuming continu ity
of application behavior and limited graceful gradients
collected information used to forecast next situations of resources in
the future (continuity assumption)

There is an obvious need of limiting the cost of the informati on
collection and maintenance to limit intrusion (minimal int rusion)

Models 62

SUPPORT INTRUSION

Monitoring a component or an entire application is an exampl e
of an internal function very important to manage a system

In general purpose systems (so the ones we are
interested in) the support does not have dedicated
resources, but it has to use with the one exploited for
the application

That competition suggest lo limit to the maximum the
engagements of those resources so to limit the percentage of
them taken out to the application
The general principle stemming from the above is

the minimal intrusion principle
Any support function must limit its operation cost to the
minimum, compatibly with the achievement of its goal,
so to intrude minimally with the application

Models 63

In distributed systems we focus on all the aspects
related to execution and operations
Of course, you have to develop software, before execution

For instance, there may be classes and components that have
no influence and correspondence during run
their importance for us is very limited, because we focus on the
facets that impact during execution

We are interested in everything that has impact during at
run time and that remains significant and vital by favoring,
fostering, and enabling the distributed deployment (and
makes us understand how they do)

for example, there are classes that then become active
processes and components and will be distributed around,
during the application lifecycle: those are the entities that
interest us because they represent a part of the run-time
system architecture

We focus the dynamic architecture, and in understanding
how it is and how well it works

COURSE OBJECTIVES

Models 64

In distributed systems we seek for performance and
quality (QoS) and to grant them

For a specific architecture, we expect that there are involved
resources and particularly significant cases

For example, RMI has a very strong impact on the cost and
scalability of the overall system
the direct use of the socket and the lower level tools ensures
less overhead and greater

During execution, we are interested in bottlenecks , as the
critical points and parts that may misbehave and are
unsuitable toward a good system behavior

To adopt a tool as RMI (or an expensive remote request) instead of a
message exchange in an occasional rare communication one off
(maybe only once per run) tends to introduce a potential bottleneck to
consider and to control in a project

the architecture should be checked and rested a priori
and a posteriori on the field by quantifying execution

AGAIN for the CLASS PERSPECTIVE …

Models 65

LOAD SHARING VIA FARM
Let us refer to a pattern called Farm, with a Master and several
Workers, a pattern present extensively in many situations

Typically you have a
master that can
distribute the load to
workers that execute
in parallel and finally
get results back

Worker

Worker

Worker

Worker

Master

As in Spark where you have a
front end that distributes load
to other nodes
The Spark driver is the master
and try to find the nodes that
can work on specific searches
in parallel

Models 66

(STATIC) LOAD SHARING

If an application consists of entities (processes)

Sharing means to identify
the processes and when and where to allocate them

The static policy can apply only to process creatio n to
find the available processors

Static decision does not allow any reallocation aft er the
first decision

We may have many different allocation policies, eit her static
or dynamic, o processors

Processors in a logical ring static one

Processors in logical hierarchy static one

Processors with free links (worm) dynamic one

Models 67

LOAD SHARING
Logical Ring and token
We consider available processors in a logical ring

The ring represents the research space to find allocation for
processes before creation
To identify a dynamic role, a token allows the current owner to
become the current strategy maker: the ring must be passed
around after a maximum permanence in a node
The current manager can initially broadcast to all
processors a request for their load state and then the
load is distributed via the ring

Static and proactive organization
easy to maintain and also
to restructure fast to recover
in case of fault

token

1

2

3

4

5

6

7

8

Models 68

LOAD SHARING in MICROS

MICROS uses a logical hierarchy
The architecture is logical and the
nodes are logically connected
Organization with roles in a farm

Worker � computing duties (slave)
Manager � handling and controlling role

The level number of depends on the workers

For fault tolerance, MICROS provides
several managers and the possibility
of introducing new nodes and levels
by need
After the initial organization, the
hierachy can shrink and expand

Global Allocation

Manager

Worker

Global Allocation

Manager

Worker

Models 69

WORM LOAD SHARING

Some more dynamic approaches are novel and less
statically planned
The work strategy of allocation is based the cloning of worm
segment on different close nodes

A Worm is a set of multiple segments (each one executing a
process) who can also communicate with each other for load
sharing goal
A worm tend to colonize a node by installing a segment of the
worm in the new node (one copy only)

The worm strategy is not planned in advance but expand in a
dynamic discovery

the worm tries to expand by its segments that to find close free
nodes to clone there, by using prompts and acceptance
messages (called probes) sent by local decisions of segments
that want to expand

Models 70

LOAD BALANCING (DYNAMIC ONE)
GOALs of TRANSPARENT (to user) MIGRATION
- Better, more efficient and more correct resource usage
- Balancing of computational and communication load
- Dynamic decisions and long term policies

Requirements
Performance to use resources at the best
Efficiency limited overhead
Continuous operation minimal intrusion

In general, the migration is part of the ‘system functions’ and it is not
under user control but
Migrations can interfere with normal application execution
Transparency and automatic migration decisions toward a
minimal cost and intrusion

Models 71

MIGRATION – Some Considerations
The point is migrating or moving already established resour ces
at run time with a minimal overhead
Any entity is in principle subjected to migration
DATA, OBJECTS, COMPONENTS, … PROCESSES MIGRATION

PROCESSES move from one node to another
the point for process is that we have an initial state and many
updates when executing: which and how to move

Pre-emption
Priority to local usage

Multiple Migrations
To make in parallel many concurrent migrations

Avoid residual dependencies
The system must not have any trace of the moving of resources

Avoid thrashing
Avoid to move the same process without any execution of it

Models 72

PROBLEMS in MIGRATION (INTERNAL)

In case of migration, the process must prepare the mobility
phase and manage all resources previously available
� Environment change of the mobile resource
- State identification

the process must identify which internal resources to carry on to the
new location and begin to determine their internal state

- Block of the process itself before mobility
the process may have one part of state not transportable so to close
before moving
Actions of closing local files or code to be managed (last wishes)
Actions of storing resources that can be moved and found in the new
node to be enabled there again

- Block of activity to move
Completion of the activity on the old node and activation of
mechanisms of movement on the new node

Models 73

MIGRATION PROBLEMS (EXTERNAL)

In case of migration, during and after the migration
… there are messages to be forwarded and to be given back
���� Change of name of mobile resources
- Message redirection pessimistic/proactive strategy

The origin node keep track of the move and keep receiving messages
and forwarding them to the new location
Chain of forwarding can grow for mobile processes

- Requalifying of allocation pessimistic/proactive strategy

The origin node keep track of the move and receive messages and
forward them to the new location only during the transfer
Client nodes receiv the new location at reference

- Client Recovery optimistic/reactive strategy

The origin node does take any action.
Client messages can fail and it is client duty to find the new location

Models 74

FIRST LESSON FROM MIGRATION

DETERMINE (for processes) who, when, how, where to migrate
Some criteria
- not all processes can migrate

Fixed are acyclic (short) ones and node dependent ones
- It is opportune to have in any node a migration handler

Migration is based both on policies , and on mechanisms
MECHANISMS

Depend on the computational model and specificity of system
POLICIES

More general-purpose, independent from system

KEEP STRATEGIES AND MECHANISMS SEPARATED
The latter system tailored, the former can vary in system and
can be under user control

Models 75

MECHANISMS to ENABLE MIGRATION

Who migrates?
processes , passive objects (file), active objects, components,
servers

RESOURCE composition and organization - discovery
Initial state: code + data (initial data)
Current state: data + visible resources (local and remote)

Computation block
Block of arriving messages: messages are either refused or
forwarded

Transfer & Copy
There are two copies, an old and a new one: there is an activity
of synchronization of the two data

Obsolete references
Requalification or other strategies

Models 76

MIGRATION POLICIES

There are typically three phases
EVALUATION of load (V)

local load vs. global load
TRANSFER (T)

who to transfer and when to do it
LOCATION (L)

Where to migrate and re-insert the process

T & L are often intertwined and interdependent

NEED of integrating and interacting with local scheduling
There is an impact on the scheduling on both nodes of origin and
arrival because of the competing with common resources
The planning can ease those steps

Models 77

WHICH POLICIES of MIGRATION

STATIC predefined and a priori decided (low cost)
V fixed threshold as load (e.g., number of processes)
T moving of the "newer" process
L migration always from a source node to a predefined sink node

SEMIDYNAMIC predefined with limited dependences from current
state – also using probabilistic policies (limited cost)
V variable threshold as load
T cyclic identification among processes
L cyclic allocation on sink node

DYNAMIC strictly dependent on current state (even high cost)
V comparison of load with neighbor (dynamic average load)
T information on process state
L discovery of sink nodes via messages in the neighborhood

Models 78

MIGRATION POLICIES

POLICIES: SIMPLE vs. COMPLEX ONES
V T L for processes acyclic vs. cyclic (normal duration vs daemon)

V � fixed threshold vs. neighborhood comparison
T � process suitable for a specific neighbor or random choice
L � usage of message called probe
random, probabilistic, cyclic, shortest queue

unconditioned acceptance
probing, bidding

conditioned acceptance

probe : message to send to neighbor to ascertain possibility of moving
PROBING (T & L together)
to identify possible candidates to receive processes and pre-evaluate their
reinsertion effect

Models 79

DECISIONS in IMPLEMENTING MIGRATION

CENTRALIZED with a unique entity for controlling migration
DECENTRALIZED coordination of many different entities

implicit or explicit collection of information and distributed decision
based on compared of state information (piggybacking)
favoring local movements in a neighborohood

RESPONSIBILITY couple SENDER-RECEIVER
SENDER initiative : the overloaded node must find the potential
sink one (RECEIVER), asking for nodes receiving load
RECEIVER initiative : the underloaded node must find the potential
source one (SENDER), asking in the neighborhood for load
MIXED solutions
SENDER initiative � more suitable for low system load
RECEIVER initiative � more suitable for medium-high system

load
Models 80

MIGRATION feasibility - LESSON

IMPORTANT RESULT
Migration has a cost, … but it may be effective

Even if with simple policies one can obtain significant
enhancement in a system (compared with no
migration case)

ANOTHER IMPORTANT RESULT
More sophisticated policies does NOT obtain significant
enhancements and cannot be generally applied apart from
specific (not so common) situations

Some specific goals
- STABILITY avoid thrashing
- EFFICIENCY simple algorithm to compute and actuate
- OPTIMALITY not a real goal, but only sub optimality

Models 81

Data centers to make client life easier often offer ready-to -
use standard allocations
In traditional on premises systems, resources are allocated
exclusively and for the whole time , accounted also if not used

The Cloud model allows a less traditional perspective:
Resources are available pay-per-use
Also differentiating user type
- Expert users who have enough skill to which resources and

how to manage them (in addition and subtraction)
- Less expert users no so smart who have available standard

configurations standard and ready-to-use
Resources are available by need in an elastic and flexible
way, by following closely the requirements with a continuous
possibility of verifying current usage

OFF-THE-SHELF ALLOCATION

Models 82

In case of Cloud, resources internally must be considered in a
less traditional way
Not only you have the application mapping but you should
consider that very different execution environments and
very different choices
You can define and command:
- logical resources (already considered)
- physical resources (already considered)
- virtual resources (not only machines, but also any kind)
The degree of freedom you have are many and also from
different architectures and choices can stem very different
final behavior

So, you typically decide
how to put your logical components over virtual resources
and then also to map the virtual over the physical one

CLOUD ARCHITECTURE

Models 83

We design an application thinking to a client that obtain on-
demand services requested and obtained via Web and the
user must not worry (too) much about their manageme nt
Their management is Cloud-internally decided and provided
Virtual and physical resources for Cloud are in one data
center or in different data centers (transparently)

The user should definitely use Resources-aaS (Resources as a
Service) and should expect a very dynamic behavior from the
requested services
� On need, the data center must prepare new resources , both
physical and virtual ones, in a more or less automatic fashion
� That makes the architecture perceived by user very elastic,

adaptable and flexible
� The problems are left to the management of the data c enter

CLOUD CASE

Models 84

Models 85

The Cloud makes an important step toward transparency for
users (PaaS, SaaS)
But also makes available more low level details (IaaS)

In particular the data center complexity is visible inside
The data center has no flat net but typically hierarchical
ones that interconnect machines and that can be
optimized by exploiting specific dynamic connections

To reduce application time, the management can allocate
depending on internal data center interconnection

CLOUD ARCHITECTURE

TREE FAT-TREE VL2

Choosing a deployment instead of another
can have a big impact during the specific execution and must
be carefully evaluated and decided

Let you assume you need communication resources ,
- we must consider internode communication tools available

whether resources will be allocated to different nodes
- we must choose the most appropriate communication tools

for allocation that we are determining (in case of different and
heterogeneous architectures support)

- we also need to optimize communication tools when
resources are present on the same machine, inter-and intra-
node communications differentiating node (as they often do
the existing middleware)

- we need to verify that the deployment is suitable with
expressed communication tools and does not cause
problems (by identifying and eliminating bottlenecks and critical
cases)

INTEREST for DEPLOYMENT

Models 86

Choosing a CLOUD deployment instead of another
can have a big impact during the execution and must be
carefully evaluated and decided

Let you assume you need some resources and you do not
have considered any policy ,
- Typically you have several setting to decide among (some free,

some are most expensive, …)
- You have to decide a suitable offering by considering the

average behavior and also its quality : is it constant?, are there
peaks?, are they regular?

- Your application has specific requirements: geographic
allocation, reliability (multiple copies), QoS in terms of response
time, specific persistency constraints, …

- Any specific internal allocation constraints: some parts must
be close and heavily communicating

- Last but most important: is your application compatible wi th
the chosen Cloud?

CLOUD DEPLOYMENT

Models 87

Models 88

Client/Server for any operation request
Intrinsically distributed as a model but
the model does not consider discovery agencies

Very high level communication rules where
client knows the server and interacts synchronously
(result implied) and blocking (result awaited) by default
Model with tight coupling:

interacting parties must be co-present for some time

Obviously we are interested only in models inherent ly
distributed and deployed, and leading to deployment
really always distributed

There are many weaknesses and rigidities in C/S
typically these usage difficulties are overcome by small
variations tailored to specific needs

C/S Model as a SOA IMPLEMENTATION

Many variant of the Client/Server model
Novel variants
pull (synchronous non blocking)

(the client get afterwards the result, without waiting for it)
push (synchronous non blocking)

(the server gives the result afterwards to the client that do not wait for it)
delegation waiting for the result (synchronous non blocking)

(the delegate waits for the client and gives it the result)
notification for the result

(the delegate notifies the client that a result is arrived)
events (typically asynchronous, so non blocking)

(an event is generated from producer and advertised to consumers)
provisioning

(other parties can be interested in the call chain, apart from C/S)

ADVANCED C/S MODELS - NOT ONLY C/S

Models 89

In a synchronous non blocking model, we may have a
delegated entity fo the result
We add a new objects, typically called Poll and Call-Back
objects as intermediate entities

Poll Object Call-Back Object

Used for short operations and Even long operations and indip endent
limited response time from the client life cycle

We should define specifically the organizatn in any case

DELEGATION – GET THE RESULT…

Models 90

Model of MESSAGE exchange
very flexible but primitive, not user friendly
Sometimes the message are only for the synchronization
(signals) without any real data communication (carrying no
information)

Information exchange: properties
a/ synchronous (no / result)
a/ symmetric (the same knowledge of partner)
in/ direct (intermediate entity or not)

Implementation
non/ blocking (un /blocking of the sender)
un/ buffered (non / message queuing)
un/ reliable (with/without message loss)

Models with multiple receivers or group messages
multicast (MX) and broadcast (BX)

MESSAGE EXCHANGE

Models 91

MESSAGE EXCHANGE varies a lot in different
systems

Rendez-vous
One to one message exchange that is synchronous,
blocking, symmetric, unbuffered, coupled (more than C/S)

With an intermediate entity (channel, …)
Message exchange typically asynchronous, non blocking,
asymmetric, decoupled (less strict than C/S)

With intermediate entity & receivers group (events, …)
Message exchange typically asynchronous, non blocking,
asymmetric, decoupled and many to many

MODES of MESSAGE EXCHANGE

Models 92

C/S vs MESSAGE EXCHANGE

Models 93

Client/Server
Model with strong coupling

implies co-presence of interacting parties
Mechanism suitable for high-level and simple communication
Very high level (very suitable for application usage)
but not so flexible for differentiated situations,

no Multicast (MX) and Broadcast (BX)

Sender/Receiver message exchange
Model with loose (minimal) coupling

imposes no co-presence of interacting parties
Very flexible, primitive, and expressive mechanism, maybe not so
easy to use
Very low level (and suitable for any system potential usage):

many differentiated modes of usage , even easy support to any
kind of needed communication, e.g., any form of MX and BX

Communication tools can impose some constraints on
the interacting entities (also no imposition)

These constraints can even induce severe limitations on the interaction
and force knowledge needs sometimes not required

Different ways of coupling
- space
The interacting entities must know each other and be colocated
- time
The interacting entities must be present at the same time (they should
share some intervals of time)
- synchronization
The interacting entities must wait for each other and are subjected to
reciprocal limitations and blocks
Decoupling becomes a factor to enable greater flexi bility
and to leverage the potential distribution of the l oad in a
system

DE / COUPLING

Models 94

EVENT and PUBLISH-SUBSCRIBE

Management system
to handle and support events

produces quotes

consumes quotes

PRODUCER

CONSUMER

consumes quotes
PRODUCER

CONSUMER

produces quotes

Decoupling between interacting entities
Events are generated by producers, free of doing it when they
intend to generate events (publish or PUB) without worrying
about delivery
Consumers register their interest in specific events, topics, … (they
have subscribed SUB) and the event support is in charge of the
delivery

Producers and
consumers are
not required to be
present at the
same time

Different model than a synchronous requests of C/S t
The Framework tends to reverse the control for low level events
The user process does not wait for result but register with a handling action

Example: Windows asks all processes to provide a waiting loop to serve
with the it is going to raise to them (and send to them)
When the result is produced the event is raised an the process can go on

Responses from the framework
to the user are called
backcall or upcall
They are similar to an
asynchronous event generated
by the framework and that
application must manage
through a handler function
specified by the user

FROM LOCAL EVENTS

Classi esistenti

Available Services and Functions

ADTs

mathematical

GUI

 LOOP

handling
event

internet

database

specific logic
Application

3D rendering

BACKCALL

UPCALL

functions

system

PROGRAM

Models 96

Event systems have been modeled and designed
without any locality constraints (no coupling)

The model has its strength in the non-locality of interactin g
entities only local implementations
Local implementations are not interesting (such as using the sharing on
the same node, between producer and consumer), arbitrary, and not
meaningful downsizing of the model

Develop a system for events not taking into account
the potential decoupling, ...
means to use badly the model properties, one of the
worst things we can do to a technology

If you constrain the events to the co-residence and co-presence
of interacting entities, you produce a deployment that contrasts
with the basic event model

EVENT SYSTEMS (DISTRIBUTED)

Models 97

Event systems have been defined to model large
systems and scalable ones
Some indicators are core ones

Cost in distributing events (to limit)
Performance (to optimize)
Scalability (to keep high)
Latency (da limit in time)
Pervasivity of provided services (to keep high)
Independent develop and execution (high)
Fault tolerance (maximal possible)

When you implement event systems you start from viability , to
mean that you grant that the indicators are scalable , in other
words for all distributed implementation indicators keep
acceptable values , possibly ‘costant’ … at least tested

EVENT SYSTEMS: INDICATORS

Models 98

Primitive events
some events are on/off signals without any content information

interrupt events and signals triggered by low-level handling
functions

Events that carry contents
some contents carry information and one can also filters events
based on interest about specific information

RSS as an example, where there is interest only to specified topic
and users can register to specific interests

Events with quality - Quality of Service
These events can provide differentiated service for different
users: they can persist and be maintained for all or some users, the
delivery can be different depending on receivers, …

Persistent events : users not online do not lose any event, kept to be
delivered a.s.a.p. when they are on
Event priority , e.g., depending on the number of resources devoted to
users

EVOLUTION of EVENTS

Models 99

PUB-SUB systems are advanced distributed systems based
on the event model and message exchange to take the best
advantage of the flexibility and the decoupling of interaction
to increase scalability and distribution

The PUB-SUB model has also many other flexible aspects…
Message filtering based on
topic-based : based on a predefined topic (a specific interest
between different channels: such as a specific RSS)
content-based : based on message contents (some keywords or
also some more complex relationships)
type-based : based on message type (in case of different message
types and a selection done on them)
Quality of Servizio (QoS) over messages
Persistency, Priority, Guarantee of maintenance and duration, …

PUBLISH-SUBSCRIBE SYSTEMS

Models 100

Real PUB-SUB systems support operations for consumer
subscription
producers called also publishers provide events (they might
ask which are current subscribers)
consumers or subscriber that have subscribed must receive
events, via a notification
an infrastructure must ensure and grant the operations

PUBLISH-SUBSCRIBE SYSTEMS

Models 101

TUPLE MODEL for decoupled interaction
A general model for communication and synchronization
designed as a shared memory abstraction + communication
A tuple space is a set of structured relationships , organized as a
container for attributes and values for PUB-SUB
On a tuple space tuples can be deposited / extracted high-level
information without causing any interference or incorrectness

A possible relationship: message (from , to , body)
The space is a container of tuple values according to the defined attributes
(the attribute types, here ASCII string)

Tuple values message: {Antonio , Giovanni , msg1 }
{Giovanni , Antonio , msg1 } {Antonio , Giovanni , msg2 } …
There are no constraints on tuples that can be deposited and stay in the space
forever (almost, it is a model) so without time or space limits

MODELLI DISACCOPPIATI - TUPLE

Models 102

Operations of In e Out on the tuple space
Tuple spaces offer operation always possible and correct for readers
(In consumer) and writers (Out producers) competitors with access
based on attribute contents
Out inserts one tuple in the space and In extracts one tuple from the space

The Out operation emits a tuple on the space available for a match with
an In request and the tuple stays there until it is consumed by one
corresponding In only
The In operation extracts one matching tuple from the space, if exists If
it dose not exists, the In waits until one is received for the match that is
based on pattern on the attribute values
In case of match with multiple tuples , only one is non-deterministically
extracted

Out : message (P, Q, text1)
In: message (?from, Q, ?body)
The In may have name of attributes for larger matches
The In waits for one tuple with the second attribute the string Q, and give to
the consumer the values from (=P) e body (=text1) of the matching tuple

TUPLE - Linda (Gelernter)

Models 103

Tuple spaces
The communication is rather decoupled and asynchronous
In time

A producer can deposit tuples and go away, and only after a long time , the
consumer can arrive and get the tuples

In (reciprocal) knowledge (space & synchronization)
The consumers do not know the producers in any way, but only the tuple
contents they cannot interfere in any way with production (one in operation
extract one tuple, other in-s are queued and wait for their matching tuples and
outs operations)

In quality - QoS
Tuple spaces are persistent and their requirement is to maintain deposited
tuples without limit (in memory and time) without any preference for a specific
requesting process

Tuple spaces (local implementation) are available to favor local
communication well formed and with high level operations

Javaspaces, …

DECOUPLING TUPLE

Models 104

TRANSPARENCY (opposed to VISIBILITY)
Access homogeneous access to local and remote resources
Allocation allocation of resources independent from locality
Name name independence form the node of allocation
Execution same usage of both local and remote resources
Performance no differences in usage perception in using services
Fault capacity of providing services even in case of faults
Replication capacity of providing servicing with a better QoS via

transparent replication of resources

Is transparency always an optimal requirement to consider?
at any cost , at any system level , for any application and tool

(??) Location-awareness to provide services that strictly
depends on awareness and visibility of current allocation

TRANSPARENCY vs. VISIBILITY

Models 105

Models 106

Telecommunications Information Networking Architect ure
TINA-C - Consortium defines new service models and
availability constraints
On the external site, several service users are considered (not only two
parties, but several, a videoconference)
On the internal support, there are several other parties , in charge of some
aspects and their integration makes available the whole service
All possible providers are included, both network and service

TINA-Consortium – beyond a C/S

Another important
aspect is the
management plan,
always crucial and
core

Agreement and negotiation
between the service parties involving communications resources must also
take into account the need of doing resource management during the
service life cycle

All parties must cooperate toward a respect of a SL A over QoS
to maintain as a precise requirement

Only if the service is completely provided with the negotiated QoS
is considered compliant, successful, and to be paid

TINA-C – PROVISIONING & QoS

Models 107

In a Cloud environment, we have a similar setting
On the external site , several users are possible and they may
interact among themselves but also
- must discover services and interact with them
- can pack some resources inside the Cloud
On the internal site , there are several other aspects to be
considered
- Many services may be made available , at different levels
- Services can be temporary or persistent
- User must be able to control resource consumption
- User can command not only available services, but ship new ones

and control them and manage their lifecycle
- Any resource must be available for access, inspection,

maintenance , and changes (even in case of sharing)
- Other constraints may be part of the SLA and internal management

CLOUD PROVISIONING & QoS

Models 108

In remote environments , such as in outsourcing and in Cloud
ones , it is compulsory something to ascertain the current state of the
remote installation, not only for accounting purposes
we have to offer a very rich management interface , to allow to:
- Access to any user related resource (processing, memory,

persistent data, network, … any *-aaS)
- Control of the consumption of any user related resource (current

state, history for some periods, peaks, trends, … user-defined
indicators)

- Discovery of new services and new available resources (new
service can offer off-the-shelf ready-to-use solutions)

- Installation of special user settings and environment (new service
to be developed from composing available ones or in a more
specifically client-tailored way)

- Enlargement to federated environments for resource integration

REMOTE MANAGEMENT FOR QoS

Models 109

INTRINSIC COMPLEXITY of the algorithms

dependence from problem dimension called N
complexity in time CT(n) (abbreviated as T(N))
complexity in space CS(n)

Let us think to potentially parallel multiprocessor
solutions (with P as parallelism degree), all to be
considered for any specification and execution that can
accommodate computation (i.e., as part of computing of
the algorithm)
COMPLEXITY
T(1,N) sequential solution T1(N)
T(P,N) parallel solution with P processors TP(N)

COMPUTATIONAL MODELS

Models 110

SPEED-UP Improvement from sequential to parallel

S(P,N) = T(1,N) / T(P,N) SP(N) = T1(N) / TP(N)

EFFICIENCY in resource usage

E(P,N) = Speed-up / Number of Processor

E(P,N) = SP(N) / P EP(N) = T1(N) / P TP(N)

SP(N) up to P at most and EP(N) 1 at most

The speed-up is the potential improvement when you
introduce a variation in processor numbers , i.e., real
parallelism

SYNTHETIC INDICATORS

Models 111

We assume and consider average values
ideal both SPEED-UP and EFFICIENZA

IDEAL INDICATORS

processors

Speed-up

Ideal Speed-up

We are interested in
the full range of
results, so we
average them
bearing in mind
that there may be
specific cases of
for only special
cases depending
on the algorithm

Models 112

Grosh law
The best deployment for a program is

a sequential execution by using a unique processor

N and P correlation :
We can assume N independent from P, or dependent from P
Loading factor or L = N / P
dependent size (N function of P)
independent size (very interesting at N growing)

identity size (N == P)

GOAL
Which is the best choice and how to find the best approximation for
any algorithm we want to explore in behaviour

GROSCH LAW & LOADING FACTOR

Models 113

Which is the best speed-up possible when passing from a
sequential execution to parallel ones…
So how to get optimal advantage from parallelism

Amdhal law
the speed-up limit stems from the intrinsic sequen tial part

Any program can be split into two parts:
one (potentially) parallel part and sequential part
the latter is the limit to the speed-up

If a program consists of 100 operations with
80 ops can go parallel and
20 ops must be executed in sequence

With any number of processors, even 80 �
speed-up cannot be better than 5

Of course, it can be worse that that ….

SPEED-UP

Models 114

Considering both SPEED-UP and EFFICIENZA

We have first a linear zone at P growing (of growing in speed-up)
then, we may have a constant speed-up but lowering efficiency

MORE ON INDICATORS

processors

Speed-up

limit due to the
sequential part

We cannot exceed
the limit of speedup
due to Amdhal’s law

The speedup is
limited, as well as
the efficiency

Models 115

Is there any general low to get optimal indicators?

Heavily Loaded Limit T HL(N) = infP TP(N)

HL is for the P with which we get the least complexity of the
algorithm (i.e., in our case the minimal T)

Typically, the optimum is when N/P is very high , i.e., if all
processors are very loaded, anyone with a heavy load to
carry out (considering the limit of the limit of the sequential
part)

TP(N) = TCompP + TCommP TCompP = TCompPar + TCompSeq

TP(N) = TCompPar + TCompSeq + TCommP

Amdhal law bases on the ratio between the two parts of the
algorithm (sequential and parallel) to identify the bottleneck

SPEED-UP (OPTIMAL?)

Models 116

Models 117

Problem of dimension N by using P processors
The algorithm is the sum of N given integers
Complexity of sequential solution O(N)
Complexity of parallel model identity size (N == P)

We made available a number of processors P connected in a
binary tree: any leave machine gets two integers and pass up the
sum of them upwards; the root gets the final result by summing its
two numbers and passes it to the final user

N = 2H+1 ~= P = 2H+1-1 (N values ~= P processors in the tree)

H = O (log2 P) = O (log 2 N) i.e., H = log 2 N =~ log 2 P

TP(N) = O (H) = O (log 2 N) =~ 2 log 2 N
Values flow from leaves up to the root , and any machine in the
tree sum them up at any step when they get data (of course, we
have to consider the time for the data communication)

A small CASE STUDY (N==P)

Efficiency goes to zero

L = N / P = 1

SP(N) = T1(N) / TP(N) = O(N) / O(log2N) = O(N/ log 2N)
SP(N) = O(P/ log2P)

EP(N) = T1(N) / P TP(N) = O(1/ log2P) = O(1/ log 2N)

The larger the number of processors
(the speed-up increases) but the less is the effici ency

The processors work effectively for a fraction of the total
time, much less of the entire solution time (EP(N)
decreases with increasing P)

Again for the CASE STUDY (N==P)

Models 118

Problem of size N using P processors
If we can divide the problem, by putting together a local work
and the communication part , where the local computation
can engage all processors in any phase, we can obtain
better indicators

Any processor has some local work load factor (to compute the sum
locally) and a phase of exchange of information (Comm) to combine
the results

L = N/P
T(P,N) = O(N/P + log2 P) = O (L + log2P) ossia TComp + TComm

SP(N) = T1(N) / TP(N) = O(N/ ((N/P) + log 2P)) =

O(P/ (1 + P/N log 2P))

EP(N) = T1(N) / P TP(N) = O(1/(1+ P/N log 2P))

N>>P speed-up goes to P and efficiency goes to 1

The CASE STUDY (independent size)

Models 119

A more precise computation of indicators in the case of
the sum of N integers with P processors with both local
load and communications of data

Let us consider the same unit cost for any sum and
communication

TP(N) =~ N/P + 2 log2 P total number of nodes P = 2H+1-1

SP(N) = N /(N/P + 2 log2 P) = N P /(N + 2 P log 2 P)
EP(N) = N / (N + 2 P log 2 P)

Both indicators depends both on P and N

MORE on the CASE STUDY

Models 120

In graphical terms

SPEED-UP

0

5

10

15

20

25

1 4 8 16 32

N=64

N=192

N=320

N=512

EFFICIENZA

0

0,2

0,4

0,6

0,8

1

1,2

1 4 8 16 32

N=64

N=192

N=320

N=512

Models 121

PROBLEMS
- we consider the O() so with a constant factors
- the worst case is not considered (it can be important)
- we neglect several issues outside

We also neglect
Moving of I/O data &
mapping (specific deployment)

In the real world ����

We need also consider other communications
for the application (also before and after the
application run)

Initial transfer of data values
Print & manage of intermediate values
Harvesting and handling of final results

SPEED-UP and EFFICIENCY INDICATORS

Models 122

Complexity of the parallel model heavily loaded limit
At L growth TP HL (P,N) = O (L + log2 P) � OHL (L)

SP HL (N) = O(LP) / O(L + log2 P) � OHL (P)

EP HL(N) = O(LP) / O(LP + Plog2 P) � OHL (1)

If intuitively we overload all node
Then, the loading factor L is very high �

We can also reach both
an ideal speed-up and an ideal efficiency

by loading at the best all processors, without leaving any
node with a low level of load, and the risk of becoming idle

MORE on the CASE STUDY

Models 123

Let us assume to have made a mapping in an optimal way
(configuration and deployment)

Too often we cannot decide the best allocation
Typically we have dynamic problems in communications in
the run

We can consider a new function the Total Overhead, or T 0

To keep into account the time and resources spent in other
actions, such as communication
T1(N) sequential execution time
Tp(N) parallel execution time
T0(N) = T0 (T1, P) = P * TP (N) - T1(N) = |P * TP (N) - T1(N)|
When you work at the optimal efficiency, you have no overhead
T0(N) = 0 => P * TP (N) = T1(N)

MAPPING

Models 124

T0(N) >= 0 � T1(N) <= P * TP (N) i.e.,

P * TP (N) = T0 (N) + T1(N)
T0 indicates the lost work

TP(N) = (T0(N) + T1(N)) / P

SP(N) = T1(N) / TP(N) = P * T1(N) / (T0(N) + T1(N))

EP(N) = S / P = T1(N) / (T0(N) + T1(N))

EP(N) = 1 / (T0(N)/T1(N) + 1) = 1 / (1 + T0(N)/T1(N))

We should make very extensive campaigns of data
collections to find out the real dependencies of
T0(N) from N and from P

OVERHEAD TIME

Models 125

More, in the case of the addition of N numbers with P
processors

Let us consider unitary the cost of a sum and any
communication
TP(N) =~ N/P + 2 log2 P total number of nodes P = 2H+1-1

T0(N,P) = P TP (N) - T1(N) =~ P (N/P + 2 log2 P) – N
T0(N,P) =~ 2 P log 2 P

The T0 overhead depends mostly on the number of
engaged processors

The growth stems from the necessity of coordinating the
application workflow, bot for the initial phases, during main
execution, and after for results collecting

AGAIN for the CASE STUDY

Models 126

Models 127

Graphically for an example T o

0

40

80

120

160

200

240

280

320

1 4 8 16 32

N=512

N=320

N=132

N=64

The curves are the same

Considering the real SPEED-UP in a less ideal scenario

Typically, we have an initial linear behavior , the a constant
growth , then a slow diminishing due to the overhead

MORE REAL INDICATORS

P - # processors

SP We cannot get
for long an ideal
speed-up

The speed-up is
usually constrained
because of the
overhead

Models 128

Models 129

ISOEFFICIENCY

EP(N,P) = 1/ (T0(N)/T1(N) + 1) T1(N) as the useful work

Goal � to keep costant the efficiency
T0(N)/T1(N) = (1 – E) / E T0(N) = (1 - E) / E T1(N)

T0(N,P) = ((1 – E)/ E) T1(N,P) = K T1(N)

T0(N,P) = K T1(N) by using a constant (?) K factor

The costant K (?) is an indicator of system behavior

In the example (1 node /1 value) K non costant al all
For the tree case, K depends both on P & N
and it is approximately (2 P log 2 P / N)

Models 130

ISOEFFICIENCY FACTOR

Isoefficiency function
If we keep N constant and vary P, K can indicate whether a
parallelizable system can maintain a constant effici ency
� i.e., potentially an ideal speed-up

if K is small ���� high scalability is possible
Se K è elevata ���� less scalable system
K non constant ���� non scalable systems (mostly all)

In the tree case, K is 2 P log2 P / N
so the system is scarcely scalable (if any)

In general, all reals ystems are all non scalable (s ic ����)

Models 131

A MEDITATION CASE
Let us assume that we are a system manager of a data center
and have a general application (proposed by a user) and we
know it consists of Q processes
We have a very large number of processors available
HOW TO manage the processor allocation?

To state a policy on the processor number to be use d, you
may consider (if relevant and it is feasible):

How are the processes?
how they interact?
How to load any single node?
Application need QoS, replication, objects, classes?

the Grosh law says that the best way is to use one processor,
if it is possible

NEVER POSSIBLE!

Tyr to consider the experience of a data center where many
applications arrive to be run fast and resources must be kept
into account, and always be used at best

heavily loaded limit is a good target
good efficiency can steam from high loaded process ors

Keep in mind your experience of PC and personal users.
The Grosh law
The detail of the applications are important for efficiency?
How approximate the loading factor in terms of processes and
processors? Define an expression in term of them

But try to discuss how many processes are reasonable and
effective

A REFLECTION CASE

Models 132

