
MX, ONs, and MOMs 1

Antonio Corradi

Academic year 2015/2016

Multicast, ONs, and MOMs

University of Bologna
Dipartimento di Informatica –
Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Class of

Computer Networks M

Communication within a set of processes
Broadcast e Multicast
How to send general messages either to all currently present
processes in the system or to a subset of processes (a group)
in the system?
In a single location you can easily achieve it (in the same LAN)
On different networks and locations , you cannot easily achieve it

expressive incapacity, excess overhead, lack of QoS, ...

There are some semantic problems to solve in multicast
and broadcast
How to cope with the answers (if any)?
- no wait – asynchronous operations
- wait for one answer only
- wait for some answers only (how many?, how long?)
- wait for all answers (how many? how long? When to stop ?)

GROUP COMMUNICATION

MX, ONs, and MOMs 2

IP Broadcast
Broadcast limited and directed (inside local network)

IP Multicast heavier duty and protocol
Multicast for class D addresses

Local Multicast support and …
Internet uses Internet Group Management IGMP protocol since
long ago (RFC 1112 e 2236) to implement local multicast
Often the protocol could operate only on local subnetworks ,
and it is implemented in different and not compatible forms

Multicast (more) global support
A multicast is realized by flooding between networks
a packet can traverse a node only once (node with state) and is
sent via any output queue apart from the one where it came in
(how long to keep the state?)
Traditional way of routing with simple and low cost (!) policies

GROUP COMMUNICATION

MX, ONs, and MOMs 3

One can adopt some basic strategies with mechanisms
For example, we can use an a-priori dimensioning of time-to-live
(TTL) of datagrams (to specify penetration and cost)

TTL=0 local send TTL=1 local to connection
TTL<=32 local to area TTL<=64 local to region
TTL<=128 local to continent TTL>128 global

IP Multicast and the QoS?
How can we be sure that the message has been delivered (beyond
best-effort semantics)?
There is a limited guarantee on IGMP implementation s
that is

We do not know if messages were all delivered to all recipients
and in which order

IP GROUP COMMUNICATION

MX, ONs, and MOMs 4

IGMP as an example of local support to Multicast
(RFC 1112 e 2236)

IP multicast allows to send a unique packet to multiple receiver in
the same locality, by using class D names to identify a group, not
necessarily a local one but spanning a few local networks

The IGMP needs a support from management router
Every local network must hosts at least an IGMP router capable of
managing local incoming and outgoing traffic and it controls the group
with IGMP messages. It is possible to provide more multicast routers

IGMP v1 considers only two simple messages with C/S approach
IGMPQUERY a router periodically verifies the existence of hosts that

answer to a specific IP D address
IGMPREPORT a node signals a state change to the router related to the

group (only join the group and no leave)

GROUP COMMUNICATION

MX, ONs, and MOMs 5

IGMP v1
Routers are in charge of group management
There is only a join message, but no leave message from the group in v1
Any router has always an active role that require to regularly emit queries:
nodes reply to the query to signal their presence or do not reply (problem
with nodes that answer late to the first join query)

this version requires group operations (only one single report from a
node for a single local network)

IGMP v2 (support for join / leave)
The second version consider the capability of nodes to send a message of
explicit leave (i.e., leave the address group)

Nodes that leave the group must notify the manager

More routers can be in charge of the management
Interference between router is settled with IP numbers order

IGMP VERSIONING

MX, ONs, and MOMs 6

ROUTING MULTICAST PRINCIPLES

Multicast must employ the least resources as possib le
during data transmission to receivers
Some assumptions tend to obtain an optimal use of resources and
to avoid an excess of bandwidth
- single sender support
- variable number of receivers support (up to n), that can be

added or removed dynamically
The main idea is to maximize sharing, so to send only one
copy , instead on N ones, of the same multicast message (1
message cost) instead of different unicast (N message cost)
Derived from assumptions, protocols identify a central tree starting
from the sender with optimal shared paths from sender to
current receivers

The goal is to employ most shared hops as possible from
root to leaves
the continuously changing tree must consider only currently active receivers
and disregard the ones where there are no currently active receivers

MX, ONs, and MOMs 7

Multicast requires the identification of a (dynamic) tree from
sender to receivers for repeated forwarding
the sender is the root of the tree , the intermediate routers are
the intermediate nodes and identify subtrees, the receivers are
the leaf nodes in the tree
- an open group of nodes with a single sender
- the group membership is dynamic
- Leaves are responsible for joining the group
- shared paths optimize bandwidth

The tree is extremely dynamic
Consider the case where
an host S transmits and B and E
are in the receiver group

ROUTING MULTICAST (STABLE)

S

B

C

E F

RS

RB

RC

RE RF

RD

MX, ONs, and MOMs 8

We consider only routers as participants (no nodes) and
we want to build a tree from the interconnection gr aph

First step (request for leaf identification: root to leaves)
We want to build a tree (a spanning tree) that connects root to
known leaf nodes, typically by using unicast routing protocol
information and organizing and aggregating paths

We start sending a flooding message towards every possible
recipient with the main objective of creating a bone multicast
The root identifies shortest paths by building it from replies from
receivers

some receivers nodes are
reached through multiple paths

MULTICAST: SPANNING TREE

RS

RB

RC

RE RF

RD

MX, ONs, and MOMs 9

Second step (go back from leaves to root)
Every leaf signals direct paths (backwards) and can also identify
new paths (even not shortest) for going from root to leaves

minimal path messages are sent backward from leaves to root
only some paths are selected, other are discarded
some shortest path messages from the source are sent back in a
larger scope : they are forwarded from leaves on all exit links,
except the one where it was coming (to identify other better
paths not traversed from root to leaves)

Reverse path forwarding (backward path)
For every router reached from several
path, the root can so select the best
Re is reached from Rd but it can try to identify
other routes in order to determine
new shared parts

MULTICAST: MULTIPLE PATHS

RS

RB

RC

RE RF

RD

MX, ONs, and MOMs 10

Normal routing: normal routing operation must work
continuously while tree identification is ongoing…
Distance Vector

Next hop information must be used (or use poisoned reverse) in order to block
too long paths

Link State
All shortest path trees must be built for every node and use “tie break” rules to
settle conflicts

Reverse Path Broadcast (2 step) for
deleting Multiple Paths
Leaves send a broadcast towards the root
during normal routing operations
The root receive new paths and can
reorganize the tree trying to aggregate
several sub-paths and produce an
optimal tree

MULTICAST in ACTION

RS

RB

RC

RE RF

RD

MX, ONs, and MOMs 11

Reverse Path Broadcast allows to choose between different
paths to organize the optimal tree, while minimizing the number of
sent messages and used bandwidth

With a broadcast from leaves (the Reverse Path Multicast) it is
possible to find paths, connecting leaves with the root, that h ave not
been previously explored

It is up to the root to choose the best tree organization

Reverse Path Multicasting
(RPM) to reorganize
the tree (even with
a high cost)

REVERSE PATH BROADCAST

RS

RB

RC

RE

RD

a) RS

RB

RC

RE

b)

MX, ONs, and MOMs 12

PRUNING and GRAFT
routers that have no receivers connected are excluded with
‘cut ’ messages that flows throughout the tree
The tree must be rebuilt in case of any modificatio n

Reverse Path Multicasting
(RPM) autonomously done
by the leaves to consent
PRUNING - from a) to b)

and reinserting parts
of the tree
GRAFT - from b) to a)

MULTICAST: PRUNING and GRAFTING

RS

RB

RC

RE

RD

a) RS

RB

RC

RE

b)

MX, ONs, and MOMs 13

Reverse Path Multicasting from leaves to root (not a broadcast)
• used in a lot of multicast protocols
• keeps the state for communication per-sender , per -group
Networks with no members are pruned out from the tree and new
ones can reenter the group (explicit graft from the bottom) without
reorganizing the tree from scratch

The state (software) is
kept for a limited and
predetermined time

SOFT-STATE

The definition of the RPM
time interval is critical

REVERSE PATH MULTICAST

RS

RB

RC

RE

RD

RS

RB

RC

RE

MX, ONs, and MOMs 14

There are many different routing multicast protocols,
incompatible with each other, even in competition between
themselves and supported by different communities

DVMRP (RFC 1075) Distance Vector Multicast Routing Protocol
Employs RPM, based on a modified version of RIP and very used in
MBONE (multicast backbone)

Update messages are sent using special paths (tunnel) and using only
some nodes

MOSPF (RFC 1584) Multicast Open Shortest Path First Protocol
Extends link-state, suitable for big networks, based on RPM and soft-state

It starts from networks map and uses them to calculate shortest path to
every single destination
It optimizes the trees and removes not used paths

DIFFERENT MULTICAST PROTOCOLS

MX, ONs, and MOMs 15

PIM (RFC 2117) Protocol Independent Multicast Protocol
Uses any unicast protocol in different ways so to suit different systems
Scattered intended when there is a low probability of multiple nodes on the
same LAN and Dense where there are many neighbors routers

Scattered : removing the most number of intermediate router to simplify
the tree structure
Dense : use of flooding and prune, simplified with regard to DVMRP

CBT (RFC 2201) Core Based Trees
suitable for an organization based on core routers to choose

Some nodes are fixed (core) and trees are unified without defining a
per-sender or per-group state
It is possible to use sub-optimal tree organizations to avoid reorganizing
connection for every multicast reconfiguration

MANY STANDARD MULTICAST

MX, ONs, and MOMs 16

MULTICAST PROTOCOLS

MX, ONs, and MOMs 17

There are many situations where you want to organize a
logical connection between different entities that reside in
different locations and networks

The solution is an overlay network at the application level
that connects all those entities to be considered t ogether
in an ON

Overlay networks may be very different and also enforced in
different ways, but their importance is paramount in many
situations

One main point very important is not only organizing it, but
also to grant QoS and respect an agreed SLA

That is the reason why there are many different solutions for different
cases, and also many different solutions and tools embodying these
requirements

OVERLAY NETWORKS

MX, ONs, and MOMs 18

The main point is to create a new network at the application
level and to maintain it with specified requirements
All participants become part of it and can communicate freely
(the same as if they were in a real network connection), by
using an application neighborhood

OVERLAY NETWORKS

MX, ONs, and MOMs 19

Overlay network imply many challenges to cope with
• Maintaining the edge links (via IP pointer?)
• Favoring the insertion in the neighborhood
• Checking link liveness
• Identifying problems and faults
• Recovering edges
• Overcoming nodes going down and their unavailability
• Re-organizing the overlay , when some nodes leave the

network and other nodes get in
• Keeping the structure , despite mobile nodes intermittent

presence (and eventual crashes or leaving)
• Creating a robust connection , independently of omissions

and crashes (QoS?)

OVERLAY NETWORKS PROPERTIES

MX, ONs, and MOMs 20

There are two main different kinds:
• Unstructured overlays
• Structured overlays
By focusing on new nodes arriving and entering the ON,
in Unstructured overlays, new nodes choose randomly the
neighbor to use to access to the ON
in Structured overlays, there is a precise strategy to let
nodes in and to organize the architectures, maintained also to
react to discontinuities and failures
ONs propose solutions for P2P applications, but als o for
MOMs (even if statically-oriented)
P2P Napster, Gnutella, Kazaa, BitTorrent
Support Chord, Pastry/Tapestry, CAN
Social Nets MSN, Skype, Social Networking Apps

CLASSIFICATION of OVERLAY NETWORKS

MX, ONs, and MOMs 21

A good overlay network has the goal making efficient the
operations among the group of current participants
obeying the specific requirements
All participants in an overlay have a common goal of
exchanging information , for instance…
They tend to exchange data : files in a P2P application,
messages in social nets, specific application protocols in other
environments, etc.

OVERLAY NETWORKS: USAGE

MX, ONs, and MOMs 22

ONs should organize the communication support and al so
enable the application level management
Throughput

• Applications over an ON need content distribution /dissemination
• How to replicate content … fast, efficiently, reliably

Lookup
• How to find out very fast the appropriate user information

(content/resource) on the ON
Management

• How to maintain efficiently the ON under a high rate of
connections/disconnections and intermittent failures in load
balanced approach

• Both application reliability and availability is very difficult to
guarantee: a self-organizing approach is typically followed

SYSTEM AND APPLICATION KEY ISSUES

MX, ONs, and MOMs 23

A non structured approach for file retrieving
Centralized Lookup

Centralized directory services deal with nodes entering
Any node connects to a Napster server
Any node uploads list of files to server
Any node gives servers keywords to search the full list with

File exchange peer to peer
Lookup is centralized from servers,
but files copied P2P

Select “best” of correct answers
(announce by ping messages)

Performance Bottleneck and
low scalability

NAPSTER

MX, ONs, and MOMs 24

GNUTELLA is the main representative of unstructured
ORs, by providing a distributed approach in file retrieval
Fully decentralized organization and lookup for files

There are nodes with different degrees of connections and
availability (from high-degree nodes to low-degree ones)
High-degree nodes may receive even more links

Flooding based lookup , obviously inefficient in terms of
scalability and bandwidth

GNUTELLA

MX, ONs, and MOMs 25

Step 0: Join the network
Step 1: Determining who is on the network

• "Ping" packet is used to announce your presence on the network.
• Other peers respond with a "Pong" packet and Ping connected peers
• A Pong packet also contains:

• IP address, port number, amount of data that peer share
• Pong packets come back via same route

Step 2: Searching
• Gnutella "Query " ask other peers (N usually 7) for desired files
• A Query packet might ask, "Do you have any matching content with

the string ‘Volare’"?
• Peers check to see if they have matches & respond (if they have any

match) & send packet to connected peers if not (N usually 7)
• It continues for TTL (T specifies the hops a packet can traverse before

dying, typically 10)
Step 3: Downloading

• Peers respond with a “QueryHit ” (it contains contact info)
• File transfers via direct connection using HTTP protocol’s GET method

GNUTELLA : SCENARIO

MX, ONs, and MOMs 26

TTTT : TTL, NNNN : Neighbors for QueryQueryQueryQuery

GNUTELLA REACHABILITY

An analytical estimation of reachable users

MX, ONs, and MOMs 27

GNUTELLA Versions has adopted different scalability
protocols
Flooding based search is extremely wasteful with bandwidth

Enormous number of redundant messages (not efficient)
A large (linear) part of the network is covered irrespective of hits found,
without taking into account needs
All users do searches in parallel: local load grows linearly with size

Taking advantage of the unstructured network some m ore
efficient protocols appear
• Controlling topology for better search

Random walk , Degree-biased Random Walk
• Controlling placement of objects

Replication

GNUTELLA SEARCH

MX, ONs, and MOMs 28

Basic strategy based on high degree nodes
Scale-free graph is a graph whose degree distribution follows a
power law
High degree nodes can store the index about a large portion of the
network and are easy to find by (biased) random walk in a scale-
free graph as a situation of random offer of files
High degree nodes have a neighborhood of low degree ones

Random walk
Moves random to avoid to visit always
last visited node
Degree-biased random walk
• Select highest degree node that has

not been visited
• Walk first climbs to highest degree node,

then climbs down on the degree sequence
• Optimal coverage can be formally proved

GNUTELLA RANDOM WALK

10
0

10
1

10
0

10
1

10
2

number of neighbors

pr
op

or
tio

n
of

 n
od

es

data
power-law fit
τ = 2.07

The main idea is to spread copies of objects to peers so that
more popular objects can be found easier and, to mo re
likely find, also lunch more walks

Replication is both in sense of more copies of data and
also in terms of more walkers
Replication strategies
Replicate with i when qi is the number of query for object i
Owner replication

• Produce replicas in proportion to qi
Path replication

• Produce replicas over the path square root replication to qi
Random replication

• Same as path replication to qi, only using the given number of
random nodes, not the path

But it is still difficult to find rare objects

GNUTELLA REPLICATION

MX, ONs, and MOMs 30

To go deep into ON organization…

• Unstructured P2P networks allow resources to be placed
at any node spontaneously
The network topology is arbitrary and the growth is free

• Structured P2P networks simplify resource location and
load balancing by defining a topology and defining rules for
resource placement to obtain efficient search for rare
objects

Which strategies and rules ???

Distributed Hash Table (DHT)

UNSTRUCTURED VS STRUCTURED

MX, ONs, and MOMs 31

Distributed hash tables use Hash principles toward a
better retrieval of data content and value

HASH TABLES

Store arbitrary keys and
connected data (value)

– put (key,value)
– value = get(key)

Lookup must be fast
• Calculate hash function h() on

key that returns a storage cell

Chained hash table
• Store key in the chain

(together with optional value)

MX, ONs, and MOMs 32

Hash table functionality in an ON is typically P2P:
lookup of data indexed by keys very efficient
Key-hash � node mapping
• Assign a unique live node to one key
• Find this node in the overlay network quickly and cheaply

Support maintenance of the ON and optimization of
its current organization
• Load balancing : maybe even change the key-hash �

necessity of node mapping on the fly
• Replicate entries on more nodes to increase availability

DISTRIBUTED HASH TABLES

MX, ONs, and MOMs 33

DISTRIBUTED HASH TABLES

Find the best node allocation depending on existing nodes
Nodes can enter and leave the OR

MX, ONs, and MOMs 34

Many examples of tools for supporting DHT
• Chord

Consistent hashing ring-based structure
• Pastry

Uses an ID space concept similar to Chord
But exploits the concept of a nested group

• CAN
Nodes/objects are mapped into a d-dimensional
Cartesian space

STRUCTURED HASH TABLES

MX, ONs, and MOMs 35

Hash is applied over a
dynamic ring
• Consistent hashing based

on an ordered ring
overlay

• Both keys and nodes are
hashed to 160 bit IDs
(SHA-1)

• keys are assigned to
nodes by using consistent
hashing
– Successor in ID space

CHORD HASH TABLES

MX, ONs, and MOMs 36

CHORD works on the idea of making operations easier

• Consistent hashing
– Randomized

• All nodes receive roughly equal share of load
– Local

• Adding or removing a node involves an O(1/N)
fraction of the keys getting new locations

• Actual lookup
– Chord needs to know only O(log N) nodes in addition

to successor and predecessor to achieve O(log N)
message complexity for lookup

CHORD CONSISTENT HASHING

MX, ONs, and MOMs 37

Lookup query is forwarded
to the successor in one
direction (one way)
• Forward the query around

the circle
• In the worst case,

O(N) forwarding is required
– In two ways, O(N/2)

• CHORD may keep finger
table to identify faster the
node (finger tables as
caches for the successors)

CHORD PRIMITIVE LOOKUP

MX, ONs, and MOMs 38

The The The The iiiithththth entry of a finger table entry of a finger table entry of a finger table entry of a finger table
points the successor of the points the successor of the points the successor of the points the successor of the

key (key (key (key (nodeIDnodeIDnodeIDnodeID + 2+ 2+ 2+ 2iiii))))

A finger table has O(log N) A finger table has O(log N) A finger table has O(log N) A finger table has O(log N)
entries and the scalable lookup is entries and the scalable lookup is entries and the scalable lookup is entries and the scalable lookup is

bounded to O(log N) bounded to O(log N) bounded to O(log N) bounded to O(log N)

CHORD SCALABLE LOOKUP

MX, ONs, and MOMs 39

• A new node has to
– Fill its own successor, predecessor and fingers
– Notify other nodes for which it can be a successor,

predecessor of finger
• Simple way: find its successor, then stabilize

– Join immediately the ring (lookup works), then modify
the structure organization

CHORD NODE JOIN

MX, ONs, and MOMs 40

If the ring is correct, then routing is correct, fingers
are needed for the speed only
• Stabilization
The support monitors the structure and organizes its elf
by controlling the OR freshness

– Each node periodically runs the stabilization routine
– Each node refreshes all fingers by periodically calling

find_successor(n+2i-1) for a random i
– Periodic cost is O(logN) per node due to finger refresh

CHORD STABILIZATION

MX, ONs, and MOMs 41

Failed nodes are handled by
• Replication : instead of one successor, we keep R

successors
• More robust to node failure (we can find our new

successor if the old one failed)
• Alternate paths while routing

• If a finger does not respond, take the previous finger,
or the replicas, if close enough

At the DHT level, we can replicate keys on the r successor
nodes

• The stored data becomes equally more robust

CHORD FAILURE HANDLING

MX, ONs, and MOMs 42

PASTRY is a DHT similar to CHORD in a more
organized way
• Applies a sorted ring in ID space (as in Chord)

� Nodes and objects are assigned a 128-bit identifier

• NodeID interpreted as a sequence of digit in base 2 b

� In practice, the identifier is viewed in Hex (base 16)
� Nested groups as replication entities

• The node that is responsible for a key is numerically
closest (not the successor)
� Bidirectional sequencing and by using numerical

distance

• Applies Finger-like shortcuts to speed up lookup

PASTRY

MX, ONs, and MOMs 43

PASTRY keeps
Routing tables to explore proximity and find close
neighbors
Leaf sets to maintain IP addresses of nodes with
numerically closest larger and smaller nodeIds

Generic P2P location and routing substrate
• Self-organizing overlay network
• Lookup/insert object in < log16 N routing steps

(expected)
• O(log N) per-node state
• Network proximity routing

PASTRY

MX, ONs, and MOMs 44

objId

Consistent hashing

128 bit circular id space

nodeIds (uniform random)

objIds (uniform random)

Invariant: nodes with
numerically closest nodeId
maintain objects

nodeIds

O2128-1

PASTRY: OBJECT DISTRIBUTION

MX, ONs, and MOMs 45

X

Route(X)

Msg with key X is
routed to live node
with nodeId closest to
X

Problem: complete
routing table not
feasible

O2128-1

PASTRY INSERT / LOOKUP

MX, ONs, and MOMs 46

log16 N
rows

Row 0

Row 1

Row 2

Row 3

0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

PASTRY ROUTING TABLE (# 65A1FC)

MX, ONs, and MOMs 47

Properties
• log16 N steps
• O(log N) state

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

PASTRY ROUTING

MX, ONs, and MOMs 48

Simple example: nodes & keys have n-digit base-3 ids, e.g.,
02112100101022

• There are 3 nested groups for each group

• Each node knows IP address of one delegate node in some
of the other groups

• Suppose node in group 222… wants to lookup key
k= 02112100210

– Forward query to a node in 0…, then to a node in 02…,
then to a node in 021…, then so on.

PASTRY NESTED GROUPS

MX, ONs, and MOMs 49

Routing table
• Provides delegate nodes in

nested groups
• Self-delegate for the nested

group where the node belongs
to

• O(log N) rows
� O(log N) lookup

Leaf set
• Set of nodes that are

numerically closest to the node,
the same as Successors in
Chord

• L/2 smaller & L/2 higher
• Replication boundary
• Stop condition for lookup
• Support reliability and

consistency

BaseBaseBaseBase----4 routing table4 routing table4 routing table4 routing table

PASTRY ROUTING TABLE AND LEAFSET

MX, ONs, and MOMs 50

PASTRY ROUTING TABLE …

Node ID 10233102
Leaf set

Routing Table

Neighborhood set

00
0221210202212102 11 2230120322301203 3120320331203203

1130123311301233 1223020312230203 1302102213021022
221003120310031203 1013210210132102 1032330210323302

33
33

10222302102223021020023010200230 1021130210211302
1023032210230322 1023100010231000 1023212110232121
1023300110233001

1023312010233120
102332321023323211

00
22

1302102213021022 1020023010200230 1130123311301233 3130123331301233
0221210202212102 2230120322301203 3120320331203203 3321332133213321

1023303310233033 1023302110233021 1023312010233120 1023312210233122
1023300110233001 1023300010233000 1023323010233230 1023323210233232

< SMALLER LARGER >LARGER >

Contains the
nodes that are
numerically
closest to
local node
MUST BE UP
TO DATE

b=2, so node ID
is base 4 (16 bits)

m
/b

ro
w

s

Contains the
nodes that are
closest to local
node according to
proximity metric

2b-1 entries per row

Entries in the nth row
share the first n digits
with current node
[common-prefix next-digit rest]

nth digit of current node

Entries in the mth column
have m as next digit

Entries with no suitable
node ID are left empty

b=2m=16

MX, ONs, and MOMs 51

PASTRY ROUTING & TOPOLOGY

Expected node distance
increases with row
number in routing table

Smaller and smaller
numerical jumps
Bigger and bigger
topological jumps

MX, ONs, and MOMs 52

Join
• Uses routing to find numerically closest node already in

the network

• Asks state from all nodes on the route and initializes its
own state

Error correction

• Failed leaf node : contact a leaf node on the side of the
failed node and add an appropriate new neighbor

• Failed table entry : contact a live entry with same prefix
as failed entry until new live entry found,
if none found, keep trying with longer prefix table
entries

PASTRY JOIN AND FAILURES

MX, ONs, and MOMs 53

Message Oriented Middleware (MOM)
Data and code distribution via message exchange between
logically separated entities
Typed & un-typed message exchange with ad-hoc
tools both synchronous and asynchronous

• wide autonomy between components
• asynchronous and persistency actions
• handler (broker) with different strategies and QoS
• easy in multicast, broadcast, publish / subscribe

Example: Middleware based on messages and queues
MQSeries IBM , MSMQ Microsoft , JMS SUN

MOM MIDDLEWARE

MX, ONs, and MOMs 54

The specific deployment and the interconnection graph
(OR) is always static (without the need of a name system)
Network overlay model between different applications with
specific support in distributed environment

Necessity of high-level Routing (as in ONs, but sta tic)
Data treatment while communicating between different
environments
Predefined and static participating entities

Centralized model
MOM with a central node as hub-and-spoke that is responsible of
support and pass messages between different clients

Distributed model
MOM is located on any client node to form a static ON network,
that operate through P2P communication messages between
nodes in need of communication

MOM DEPLOYMENT

MX, ONs, and MOMs 55

MOMs provide simple and efficient services
Communication operations available
via local ad-hoc API

MOMs put together different
nodes and provide services
on different fruition nodes
arranging queues for the support
of every communication

MOMs as integrators
use of routers, their
interconnection and
format conversion

MIDDLEWARE MOM

MX, ONs, and MOMs 56

MOMs use queues local to interested nodes
Inbound and outbound queues on interested different
machines (connected in an univocal way)

Queue managers guarantee the expected operation level
and message forwarding

Routing system to connect different queues
(as an overlay network for application level routing)

MESSAGE-ORIENTED MIDDLEWARE

MOM Core

client application application tool

inbound
queue

Message-Oriented Middleware
(MOM)

queued
messages

Copyright Springer Verlag Berlin Heidelberg 2004
MX, ONs, and MOMs 57

By following a ‘Glue’ model
MOMs keep together different autonomous systems and
organize their specific interconnection

Relay are intermediate entities that allow the implementation to
scale and to organize high level routing

Message Broker are entities able to support message content
transfer between environments with different representations

The MOM operations use not only asynchronous point-to-
point messages, but also many-to-many communications

The realization cost must be limited and reduced :
the main objective is to fast integrate existent legacy systems

MIDDLEWARE MOM or GLUE

MX, ONs, and MOMs 58

MOM proposal very popular and supported
Typically, the interconnection graph (routing) is controlled
by an always static and inflexible system management (no
name servers and no dynamicity)

Application level messages are managed by a queue
manager
Processes interact through API RPC to put/extract messages
from local queues

Transfers are enabled by unidirectional channels managed
by Message Channel Agents that deal with all details
(different delivery politics, message type, etc.)

MCA coordination is offered via primitives that should
enable coordination (different activation policies, duration, maximum
allowed cost, state persistence, etc.)

MOM: MQSeries IBM

MX, ONs, and MOMs 59

For the deployment, the system administrator defines the
appropriate interconnections by using routing tables , at the
configuration time

MQSeries IBM – Websphere part

MX, ONs, and MOMs 60

To achieve the best integration, an MQ Broker can operate on
the messages by:

• modifying formats

• organizing routing based on contained information ;

• working on application information , to specify action sequence

MQSeries IBM: Broker

MX, ONs, and MOMs 61

