
CORBA 1

Antonio Corradi

Academic year 2015/2016

MIDDLEWARE - CORBA

University of Bologna
Dipartimento di Informatica –
Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Class of

Computer Networks M

CORBA 2

OMG- Object Management Group

CORBA started in 1989 with 440 company Microsoft,
Digital, HP, NCR, SUN, OSF, etc. with main objective to
create a use and management system of a distributed
architecture
Common Object Request Broker Architecture

CORBA standard v1 � 1991, v1.2 � 1992
v2 � 1996, v3 � 2000

Orbix SunOS Solaris, Iris, Windows NT,
HP/UX, AIX, OSF/1, UnixWare
DSOM IBM

General specification of an Object
(component) Middleware to use in
heterogeneous distribute systems
not tied to a specific language

MIDDLEWARE: CORBA

CORBA 3

STANDARD OPEN SYSTEM based on OBJECT
models with heterogeneous components to implement
mutual and complete interaction and integration
between such components, inside distributed
environments also objects oriented (C/S model)
CORBA requires:
• definition of a language as service interface
• definition and support to objects interaction
• integration bus for different environments objects (ORB)
• interaction between systems with different managers

• different deployment languages (language mapping)

The objective is to allow services support without posing
limits on user application lifecycle

MIDDLEWARE: CORBA

CORBA 4

Common Object Request Broker Architecture CORBA , as a
common environment, O bject Management Architecture, for
multi-architecture and multi-language scenarios, with an optimal
integration with legacy systems and best support for
differentiated projects for server and clients
Object Request Broker (ORB) is the heart of the architecture and
acts as a broker of communication , to allow both static and
dynamic links (!?) between entities

ORB behave as an always available enabler and allows:
• control of allocation and visibility of objects
• control of methods and of communication
• control of accessory services always available inside OMA for

every language mapping
• simplified management of every possible services

CORBA as third type middleware, infinite lifetime

ARCHITETTURA CORBA

CORBA 5

ORB is the center of Object Management Architecture
ORB as a bus center of an architecture that aims at the
integration among every resources of an organization

CORBA come BUS

Applications Object

Every managed
application objects
can belong to
different
environments
and must be able
to mutually
communicate
without any need
of redesign

CORBA 6

Other additional environment components

Common Facilities CF (horizontal)
Set of specific features
User Interface (client-site),
System Management, Information, Task (server-site)

Domain Interfaces (vertical)
Features dedicated to application areas, for ex.
manufacturing, telecommunications, electronic
commerce, transportation, business objects,
healthcare, finance, life science, …

Application Interfaces
Non standard in any way and application-dependent

Object Management Architecture

CORBA 7

Ambiente Object Framework

Object Management Architecture - OMA

CORBA 8

Every component can connect to every other one,
preparing link either before or during (if unknown
before) execution, using the service of one or more
ORB (known dynamically)
Set of additional environment components
Object Services or CORBA Services (Common Mw Services)
Some operations are basic for object

• naming and trading service (compatible with OO)
• event and notification service (less Object-Oriented)
In addition to further operations (or services)

For lifecycle management, relational, transactional, concurrency
control, security, …

Object Management Architecture

CORBA 9

The essential components of OMA architecture, i.e.,
CORBA, associated to an ORB:
- Object Request Broker (ORB)
- Interface Definition Language (IDL)
- Basic Object Adapter (e POA …) (BOA e POA)
- Static Invocation Interface (SII)
- Dynamic Invocation Interface (DII)
- Interface e Impl. Repository (IR e IMR)
- Integration Protocols (GIOP)
Those components are at very different level

CORBA COMPONENTS

CORBA 10

• Identify implementation of an abject as a servant to
requests (object location)

• prepare the servant to receive the request - via adapter
(object creation, activation & management)

• transfer the request from the client to the servant
• return reply to client

ORB CONTINUOUS SUPPORT
Object Request Broker (ORB) must coordinate invocation
of local and remote services (dynamically)

Application objects

 Object Request broker ORB

Client Server

RI1

Diapositiva 10

RI1 Immagine con scritte in italiano
Raffaele Ianniello; 12/04/2016

CORBA 11

Elements in action: overall user view

CORBA: DYNAMIC VISION

view of
CORBA 1.x

not changed
until CORBA 3

 Invocation
Stub

Interface
Dynamic

IDL
ORB

Client
Implementation

ORB CORE

Standard interface for any ORB implementation

Potential multiple object adaptors

One stub & one skeleton for any interface (at least)

ORB-dependent interface

interface
backup call

Skeleton
Static

Adaptor

New, introduced in CORBA 2.0

Skeleton
Dynamic Object

Component

interface
usual downcall

CORBA 12

Interface Definition Language (CORBA IDL) must identify
and coordinate requested and offered services, local and
remote (for either static or dynamic interactions)
• Both servants and clients can identify themselves to make

themselves mutually known
• Both operations request and service offers can be

optimally associated
• CORBA reuse the experience from already developed and

available IDLs for defining a general multi-language IDL

Unfortunately IDL prescribe predetermined identification and
link and statically recognized (CORBA static binding)
And if we want bindings unknown at development time?

COMMON LANGUAGE in CORBA

CORBA 13

Interface Definition Language (CORBA IDL) coordinates requested and
offered services identification , with different languages
interface Factory //OMG IDL

{ Object create (); // CORBA object or reference

};

This interface permits to refer an object of type Factory (IDL) and to request
the create operation (without in or out parameters) that returns a generic
CORBA object (type Object , that is a reference to the object of interface
Object)

IDL makes possible to define new interfaces and new general types and
abstract , by need, to make them available and registered, and eventually
concretely usable inside different language environments

CORBA does not provide any object creation (neither Factory):
the creation is inside language environments and predefined there,
outside CORBA scopes (the same as C does not provide any I/O)

CORBA IDL for MULTILANGUAGE

CORBA 14

The Interface Definition Language (CORBA IDL) allows to
generate support component (stub and skeleton), for
communication and data, inside different languages
The stub enable working on the message from the client
perspective (marshalling) and acting as client proxy

The skeleton collaborate with the ORB accepting service request
and adapting it to the server (unmarshalling), by managing requests
and responses

DEPLOYMENT
Typicsally, there is a static link between interface - client -
servant (not between client and servant , but between client -
service and service - servant)

The objects inside their different language environment s are
bound to the stub and skeleton before execution
(stub and skeleton are objects? no)

CORBA IDL -> STUB E SKELETON

CORBA 15

Adapter (Object Adapter) system component to overcome
dishomogeneity and differences among implementation of
different service environments of different servants

(the Adapter does not connect with data presentation)

The Adapter is on the server side, with typical tasks of:
• object registration functions
• object external reference generation
• object and internal process activation even on demand
• requests demultiplexing to uncouple them
• send requests (upcall) to registered objects
Firsts adapters were Basic (BOA), then Portable (POA)

(OA are also CORBA objects? no, as OA are pseudo-objects)

CORBA ADAPTER

CORBA 16

Interface Repository allows to know details about every IDL
data type and to explore interfaces , exported from existent
objects and available during execution

The interfaces are translated to different programming languages
(static binding) where components are defined and compiled
(language mapping)

IR allows to know and manage available interfaces
dynamically and to decide at runtime (dynamic binding)
what is available and convenient

Allows overcoming static approach: for example for a
gateway that allows access to CORBA interfaces of an
environment and cannot be recompiled for every new interface

IR service description system (it is not a naming system)

(IR is an object? yes)

INTERFACE REPOSITORY in CORBA

CORBA 17

In CORBA, ORB is the middle enabler of any (remote) execution
and operation request between different entities
Every request is always delivered via the ORB and then server-side
mediated BY the adapter

The ORB do not know about any type information, that are outside
his scope and contained inside stub, skeleton and language
environment

Interface Repository works as a dynamic catalogue of interfaces
(not necessarily for static stub and skeleton),

And it is present for dynamic explorations at runtime, if it is
necessary to retrieve information on dynamic interfaces
The interfaces must be always registered within the IR at their time of
use and before consultation
In the static case , the IR is generally not needed (its function is plaid
by proxies)

ORB and IR in CORBA

CORBA 18

The Implementation Repository is an internal tool of the
architecture (not so application visible) to register and store
lasting implementations of the servants
The IMR keeps track of every servant implementation and
allows recovering and making available them in case of restart

The interfaces are available inside IR, the implementations are
traced by IMR

IMR allows to know and recover servants that provide specific
interfaces (in a stable way) and allows to recover precisely the
‘corresponding objects ’

IMR is an internal repository for servant management (not a
name system)

(IMR is an object? no)

IMPLEMENTATION REPOSITORY (IMR)

CORBA 19

ORB for communication of objects (intra-ORB)
and also for communication between objects in
different ORBs (inter-ORB)

In one CORBA system or in more CORBA systems
managing different brokers

DIFFERENT ORB SYSTEMS

Application objects

 Object Request broker ORB

Client Server

Application objects

 ORB 1

Client Server

 ORB 2

CORBA 20

Definition of Inter-ORB standards to establish how to
integrate different CORBA systems without problems

Necessity of standard protocols ORB-to-ORB interoperability

General Inter-ORB Protocol (GIOP) that prescribe a standard
message format

CORBA specifies a protocol between different ORBs in terms of
architecture and data exchange

Binary Communication
protocol: data are optimized
and non user-readable
(no source)
Common Data Representation
(CDR) standard

DIFFERENT CORBA SYSTEMS

Application objects

 ORB 1

Client Server

 ORB 2

GIOP / IIOP protocols

CORBA 21

Definition (since version 2) of Inter-ORB Protocols to precisely
the interaction between different CORBA systems
ORB interoperability protocol
General Inter-ORB Protocol (GIOP) - Binary protocol

Common specification of data representation, data format,
interaction with transport messages (semantic assumptions:
reliable, connection, …)

for Internet using TCP/IP - Internet Inter-ORB Protocol (IIOP)

INTER-ORB PROTOCOL: GIOP e IIOP

Application requests

 ORB 1

Client Server

 ORB 2

GIOP / IIOP protocols

CORBA 22

Overall picture of a communication between ORBs

CORBA ARCHITECTURE

CORBA 23

Support components and pseudo-objects
Stub generated from IDL interface for a specific language
Skeleton generated from IDL interface for a specific language
These components realize the Static Invocation Interface SII
The SII consists also of other architecture component, such as
IDL interfaces (to generate stub and skeleton), (interface and
implementation) repositories to find component specifications
and implementation, and object references
The dynamic part is implemented in other pseudo-objects
DII, Dynamic Invocation Interface, or Request object

introduced for client dynamic invocation
DSI, Dynamic Skeleton Interface, or ServerRequest object

introduced for server dynamic invocation

CORBA: PSEUDO -OBJECTS

CORBA 24

ORB acts as a coordinator, as an enabler, and as a
manager of services available on the system

CORBA applications produces objects that become part
of the system beyond application lifetime
The applications and the objects are developed using
different environments to represent stable resources
that can act to request methods and execute operations

ORB intermediates any interaction and
• coordinates requests from client objects , transparently
from the position and the implementation of remote objects
• facilitates and manages communication through the use
of references to existing servant objects
• supports and controls the whole interaction

ORB base functions

CORBA 25

ORB is a fully object interaction enabler, by suggesting
a default blocking synchronous interaction
ORB limits its interaction responsibility by delegating
individual language environments for final execution
CORBA is not responsible for object creation and moving
CORBA employs external remote references that are
externally created by language implementation environments
that must define their service objects (servant)
CORBA obtains remote references via:
• conversion of string references and vice versa (objects

referred and translated into strings - stringification, and vice versa)
• use of objects directory, by using name services

(Trading e Naming service)
• Passing of reference parameters to servants

ORB functions

CORBA 26

INTERFACE DEFINITION LANGUAGE (OMG IDL) has
been introduced to grant flexibility over heterogeneous
platforms

IDL are declarative languages to specify interfaces and
involved data (for API parameters)
Many common IDL are procedural
* OSI ASN.1 / GMDO

* ONC XDR (SUN RPC)

* Microsoft IDL

CORBA IDL is an object-oriented language (derived from C++)

Obviously, different IDLs are not compatible with each other,
even if often are different only for syntax and identification
systems and entity names

CORBA IDL

CORBA 27

CORBA IDL is a purely description language for data
and method interfaces
• description of interfaces definition
• interfaces as set of method and attributes
• multiple inheritance of interfaces
• exception definition
• automatic management of attributes
• mapping for different languages and environments
The compiler can obtain automatically stubs for
clients/servants even using different languages

We must consider different language mapping for
references to servant objects (in different languages)

CORBA IDL

CORBA 28

module Stock
{exception Invalid_Stock {} ; exception Invalid_Index {} ;

const length = 100 ;

interface Quoter {
attribute float quote ; readonly attribute float quotation ;

long get_quote(in string stock_name) raises (Invalid_Stock) ;
};

interface SpecialQuoter: Quoter {
attribute float quotehistory [length] ;
readonly int index [length];
long get_next (in string stock_name) raises (Invalid_Index) ;
long get_first(in string stock_name) raises (Invalid_Index) ;

};
interface CancelQuoter: SpecialQuoter {

long cancelhistory (out float cancelledquote [length])
};

}

CORBA IDL EXAMPLE

CORBA 29

For any attribute, an automatic access function is provided
suited for permitted operations
(_get for readings and _set for writings)
attribute float quote ;
float _get_quote ();
void _set_quote (in float q);
readonly attribute ind index ;
float _get_index ();

For any exception, the state (completion_status) provides
information on behavior semantics
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

CORBA IDL SUPPORT

CORBA 30

Language to define CORBA interfaces, independently of a
specific programming language

Naturally it is necessary pass from the abstract CORBA
level to concrete specific languages (language mapping)

CORBA IDL

CORBA specifies
the need of
mapping
environments
Servant creation
is a responsibility
of each language
mapping

CORBA 31

CORBA is an environment where we use remote references
and do not move objects (static objects) because of the
heterogeneity of single deployment environment

Remote references allow to request operations to other
components with known CORBA interface

Every object has an interface (coarse granularity)

Interfaces define: attributes , methods , exceptions
(attributes accessed through get and set operations)
(operations with in or/and out arguments)

The interfaces use multiple inheritance

The interfaces can be grouped also within modules
(for logical aggregations)

CORBA IDL ENVIRONMENT

CORBA 32

module BankAccount {
struct transaction { string data; float amount;};

exception RedException {string message;};

typedef sequence <actions> list_ops;

interface Account {

float balance (in string cc);

list_ops bankStatement (in string cc);

void withdrawal (in string cc, in float amount,

out float balance) raises RossoException;

Account accountTwin (); // returns an object };

};

Parameters passed by value (CORBA objects by references)

Problem of parameter handling in out and in out

OTHER CORBA IDL EXAMPLE

CORBA 33

Types in CORBA

Object Reference (references to objects or interfaces)
vs. even with inheritance between CORBA objects

Value (values copy) and Exceptions

Basic values short, long, ushort, ulong, float, double, char, string,
boolean, octet, enum, Any

Constructed values Struct, Sequence, Union, Array

Any as general type that contains any type, primitive or from CORBA
interface (analyzable during execution)

Object by value (CORBA 3)
Objects that cannot be accessed remotely but only passed by copy from
an environment to another one overcoming heterogeneity of different
environments (no remote reference to them)

DATA in CORBA IDL

CORBA 34

TYPES in CORBA IDL

Types in CORBA IDL Types of CORBA IDL
are than translated
into types of different
programming
languages obtained
for different language
mapping

Type Object (IDL)
represents any type of
CORBA object without
any information of the
specific type

the generic type ANY
can contain any type of
 data, either primitive or

with the feature of giving
dynamically the current type

Type

Object Reference

Types

Prim. Values

Struct

Sequence

Union

Array

Short
Long
Ushort
Ulong
float
double
char
string
boolean
octet
enum

any

Exceptions

ANY generic type

Per invocare operazioni
remote su Oggetti Corba

 built and any CORBA

RI2

Diapositiva 34

RI2 immagine con testi in italiano
Raffaele Ianniello; 13/04/2016

CORBA 35

Tools allows to build from CORBA IDL different components,
essential to the project and to execution in different
language mapping

stub and
skeleton
+
file helper
and of other
help (holder)
+ other
operations

Form CORBA IDL to Languages

CORBA 36

CORBA defines
interfaces (with inheritance), exceptions , methods with objects as
parameters of different types and with different modes (in , out ,
in out)

Different languages must add concepts, to harmonize their
structures to obtain interface conformance and guarantee run-
time operations (OO languages must integrate inheritance)

Strategy for consistency of concrete language types and
possibility of integrating with the CORBA model

various transformation functions provided automatically
management of types, to put together structures in simple way,

Apart from many other support functions (naming, trading, and
suggested development methodologies) usable by user

CORBA Language mapping

CORBA 37

Use of holders in JAVA as language where are output parameters

for example

public final Class BalanceHolder …

{public float value;

public BalanceHolder () {}

float _read () {return value;}

void _write (float value) {this.value = value;}

};

for out and in out parameters (also other helps: helper)

In general, every language must create anything that is necessary
to foster development inside its environment

CORBA vs LINGUAGES: HOLDER

CORBA 38

Helper use for Language mapping: in Java functions to

• harmonize and treat language types and CORBA types

In Java the CORBA Object type is mapped in
org.omg.CORBA.Object

functions of narrow -ing that transform from the CORBA Object
type to the one defined inside the interface

functions used for managing transformations from abstract
CORBA type for the specific concrete type of interest

• implement various utility functions

functions for reading and writing a type on an object stream
(associated to CORBA interface), to treat type dynamically
during execution, …

Every language must guarantee interoperability with CORBA

CORBA HELPER

CORBA 39

Widely used and still rising
Object Broker DEC

ORB HP

DSOM IBM

Orbix IONA

Visibroker Borland

(DOM Facility)DOE Sun Studio Sun

PowerBroker ExperSoft

JacORB, ... Open source tools

Even if the learning curve is high and there is overhead in
performances

CORBA ENVIRONMENTS AVAILABILITY

CORBA 40

Most used middleware must provide answers even to i n
the small needs and further details

CORBA users expect to :

- design quickly new components

- integrate old legacy components

- use existing tools and available
assistance components

- integrate applications
with new available facility

- have a middleware capable of
host services without interruption
(QoS) and without lifetime limit

Middleware

CORBA 41

CORBA ARCHITECTURE

CORBA 42

CORBA essential components

* Object Request Broker (ORB)

* Interface Definition Language (IDL)

* Basic (e Portable) Object Adapter (POA)

* Static Invocation Interface (SII)
* Dynamic Invocation Interface (DII)

* Interface e Impl. Repository (IR e IMR)

* Protocolli per Integrazione (GIOP)

CORBA COMPONENTS

CORBA 43

Global view of the base architecture of service support

CORBA ARCHITECTURE

CORBA 44

Common interfaces must be specified by clients and servers
After the generation of stub and skeleton
Server must implement servant classes
The servant must register itself

Client must implement classes
The execution starts

Client needs remote references to find the server , the
components , …, and, in general, the entire support entities

Deployment : how many ORB? Where? How can be reached?
Or on every node (local API), or centralized ORB, or more
servers

With which QoS? And which fault-tolerance?

CORBA APPLICATION DESIGN

CORBA 45

CORBA COMPONENTS

RI3

Diapositiva 45

RI3 Immagine con testi in italiano
Raffaele Ianniello; 15/04/2016

CORBA 46

ORB can be intended as a set of class that permit a good
remote reference support

Various conversion functions
functions for transform ObjectReference (or Object
Interface) into strings (to maintain them easily) and vice versa

Interface ORB {

string object_to_string (in Object obj);

Object string_to_object (in string str); }

With stringification, we can pass from a form to another even
in different environments

Also functions for initializing different OA, to find necessary
services, base functions, etc.

ORB INTERFACE in CORBA

CORBA 47

ORB Various functions

ORB Initialize for booting
ORB ORB_init (inout arg_list arguments,

in ORBid ORB_identifier)

to initially connect to the ORB all users (clients, servants, …)

Also a set of functions to find default context and obtain
references to base services (IR, naming service, …)
typedef string ObjectID;

typedef sequence <ObjectID> ObjectIDList;

ObjectIDList list_initial_services ();

Object resolve_initial_references (in string ObjectID);

ORB INTERFACE in CORBA

CORBA 48

The function to obtain base objects (ObjectReference) in
general allows access, for example:
Object resolve_initial_references (in string ObjectID);

CORBA support objects founded through Initial Services
“RootPoa ”, “POACurrent ”, “InterfaceRepository ”,

CORBA support services
“NameService ”, “TradeService”, “NotificationService”, …

current CORBA policies
“ORBPolicyManager”, “TransactionCurrent”, “PolicyCurrent” …

An object reference into string could be:
IOR:000000000000001949444c3a696f722f53696d706c654f626a656374

3a312e3000000000000000010000000000000030000100000000000a737
465656c7261696e00079e00000018afabcafe000000023bd4cf8d000000080000000000000000

KNOWN INITIAL OBJECTS in CORBA

CORBA 49

One Object Reference allows to refer to an instance of a
remote service (a stub): OR are opaque and not internally
visible by users that can only pass around; only the ORB can
manipulate them (they potentially integrated with persistence
management)

Object References refer to CORBA Object instances

The operations provided by the Object Interface are
many to permit to work viably in a transparent way

get_implementation , get_interface ,
is_nil , non_existent , is_a , is_equivalent ,
hash , duplicate , release ,
create_request , get_domain_manager,
get_policy, set_policy_overrides, …
narrow , this , …

Object Reference in CORBA

CORBA 50

Object Reference of CORBA inherit from

CORBA::Object interface

interface Object {
// operations for objects management
Object duplicate (); void release ();
// operations for know the object
Object get_implementation (); Object get_interface ();

// operations of existence and reference

boolean is_nil ();
boolean non_existent ();
boolean is_equivalent (in Object other_object); // same obj?
boolean is_a (in string repository_id); //implements?

Object create_request (in Object); // create request object

// ...

}

Object Reference in CORBA

CORBA 51

Object Reference are opaque but right practical operations
and management functions must be available

Object Reference in CORBA

Hostc

ObjectRef

Hosts

servants1
ObjectRef

is_nil ()
duplicate()

is_equivalent
is_a()
release()
get_interface ()
…

CORBA 52

CORBA maintains essential components even in its
evolution but enriches itself with tools and components
to deal with new problems and to provide a better support
Essential components always the same goals
• Interaction between different languages environments
• Helps to use different languages environments
• Tools to obtain QoS in different languages environments
• New general utilities and for specifics domains
• New realizations and integration with different existing
development environments

CORBA 3 (2000, 2005 -…)

CORBA VERSIONS

CORBA 53

Global view of architecture implementation

CORBA ARCHITECTURE: details

CORBA 54

IR must register interfaces of every available service, IMR
servants code; Object references allow to obtain services

CORBA REPOSITORY

CORBA 55

Static Invocation Interface (SII)
The compiler and the tools enable the call before execution,
by creating stub and skeleton
Every invocation is safe and verified in advance

No dynamic control on the interface is done given that
proxies are generated statically

The client binds itself to the stub and send the request using
the reference after connection to the ORB (synchronous
invocation)
The servant is bound to the skeleton and is activated by the
object adaptor (POA) for the requests

There is no connection between client and servant : subsequent
requests can go to different servants, but with the same interface

In case the (none) servant is not active, POA activate it and
sends the request

STATIC BINDING in CORBA

CORBA 56

Normal mode is blocking synchronous
In case of malfunction or problems, the client receive an
exception expected from the interface

At-most-once semantics
In CORBA the synchronous invocation is based on static
proxies as mediator

Obviously that can be limiting

The synchronous static invocation has a ‘very limited’ cost
(if operation with coarse granularity are foreseen) but can also
produce delays

Are other modality necessary?
Oneway in IDL: no response (best effort) deprecated

CORBA SEMANTICS

CORBA 57

The Adapters are the components responsible for CORBA
flexible scheduling
The various adapters must reach the implementation of different
servants and control and manage the real execution

We call servant the passive entities that embody the real object
server functions

CORBA COMPONENTS: ADAPTER

 Method

Register the Activate Invoke Access
implementation the object the method to BOA

services

Object Implementation

 ORB

Basic Object Adapter
Skeleton

It activates the
component

CORBA 58

The Adapters supervise operation execution inside servers
through the concept of servant
SERVANT USE

A servant is the object part that makes available the code to
execute on the request of a client (entity that is highly
dependent from the programming language and from the servant
specific programming environment)
The real service implementation within a language

The POA has the assignment to compose the image of the
CORBA object server
A POA (on a node) could control:

• a unique servant
• also many different servants to provide to different reques ts
A POA decide its servants and its management policy

ADAPTER functions

CORBA 59

The Adapters control the execution of abstract server via
real servants that work on service code
MANY ACTIVATION WAYS INSIDE SERVER
activation for every request (thread_per_request)

a process is created inside the object for any service
initial pool activation (pool of threads)

every object receive its process from a process poo l initially
created, without paying any creation cost at run-ti me

per-session activation (thread_per_session)
every client has a process dedicated to interaction

Also other modes: a thread per servant (thread_per_servant)
a unique activation for more server objects
(shared server) simultaneously

CORBA COMPONENTS: ADAPTER

CORBA 60

Every request
obtains a thread
activated by-need

High activation cost
that intrudes on
every operation

THREAD-PER-REQUEST Activation

More Servers available

Client1
Client2

ObjectAdapter

thread generatione per request

ThreadA
ThreadB ThreadC

Execution capacity given by OA

Servant

CORBA 61

Every request
receives a thread
from a pool of pre-
created processes

In case they are not
available, it waits
until one is freed

Less cost, but long
wait in case of high
traffic

THREAD-POOL Activation

Client1
Client2

ObjectAdapter

thread scheduling

ThreadA
ThreadB

ThreadC

Execution capacity

Server
Thread Pool

Request Queue

Request Queue

Servers

CORBA 62

Every client
receives an active
thread at the
beginning of
working session

Service parallelism
is limited

THREAD-PER-SESSION Activation

Client1
Client2

ObjectAdapter

thread generation

Thread3
Thread1

Thread2

Generation on request

ServerRequest Queue

Request queue

Client3

More Servants

CORBA 63

Every object is
embodied by a
servant that expect
a thread from first
activation and
answer only
through that

Parallelism is
limited based on
the servant number

THREAD-PER-SERVANT Activation

Client3
Client1

Client2

ObjectAdapter

Execution capacities

ServantA ServantB ServantC

CORBA 64

CORBA is a middleware used to support and enable infinite
life cycle and time to organization resources and try to
ultimately support that perspective

Middleware for service continuity
The infrastructure stresses the idea of an interface based
contract and can optimize implementation resources based on
policy defined on specific user defined indicators

The middleware can balance servant workload for a service to
obtain a better throughput

The middleware can route requests towards other resources ,
in case of malfunction (no downtime), or to enable other
strategies (e.g., of localization, load balancing),

The middleware can also direct load towards servants in
other CORBA systems for differentiated service

MIDDLEWARE for CONTINUITY

CORBA 65

Essential CORBA components

* Object Request Broker (ORB)

* Interface Definition Language (IDL)

* Basic (e Portable) Object Adapter (POA)

* Static Invocation Interface (SII)
* Dynamic Invocation Interface (DII)

* Interface e Impl. Repository (IR e IMR)

* Integration Protocols (GIOP)

CORBA COMPONENTS

CORBA 66

Dynamic Invocation Interface (DII) and
Dynamic Skeleton Interface (DSI)
necessary to operate without static links to the interface ,
namely to connect with interfaces that do not exists at
compile time (but only defined lately)

DYNAMIC behavior
In general, the dynamic behavior allow an application to
adapt to situations not forecast during development, or
better to interfaces unknown at development time
(so to extend application lifetime)
In this case, the client and server can bind to not forecast
interfaces at the application start

DYNAMIC BINDING in CORBA

CORBA 67

Dynamic Invocation Interface (DII) and
Dynamic Skeleton Interface (DSI)

DYNAMIC behavior
Client and server, that did not provide any proxy, must use at
run-time pseudo-objects for viability
The duty of run-time checks for type safety are left to the
user code and no support is provided
The interfaces used in the dynamic case must be
registered and available for the dynamic usage
Interface repository allows to discover any detail of
knowledge of the interface (that must be present before its
usage)

DYNAMIC BINDING in CORBA

CORBA 68

DYNAMIC CLIENT behavior - DII - the client
- receives a dynamic ObjectReference , for which no proxy

has been statically produced
- creates an object Request after discovering its interface

and tailored to that interface
- uses the object Request as an interaction mediator with

the servants to ask methods from them
The Request can be used for many dynamic requests with
the same interface it has been created for
In the client case, we can assume invocation less
synchronized and constrained between client and server
(different forms of asynchronicity)

DYNAMIC CLIENT in CORBA

CORBA 69

ORB allows to create, and manage a dynamic request and
invocations via a pseudo-object Request
pseudo typedef long ORBstatus;

ORBstatus create_request {// Pseudo IDL

in Object obj // operation object

in Context ctx // operation context

in Identifier operation // operation name on object

in NVList arg_list // operation arguments

inout NamedValue res // operation result

out Request req // created request for the operation

in Flags req_flags // operation flags

}

It is always possible to prepare a Request oriented towards all the
operations for an Interface to request their invocation

When the request is available, the client can use it for the methods
the client wants to invoke

DYNAMIC BINDING in CORBA (DII)

CORBA 70

The API to compose requests by using a pseudo object
Request to incarnate the DII
pseudo interface Request {// Pseudo IDL

Status add_arg (in Identifier name, in TypeCode arg_type,
in void *value, in long len, in Flag arg_flag);

Status invoke (in Flags invoke_flags // invocation flag);

Status get_result (in Flags flags // result extraction flag);

Status send_oneway (in Flags flags // invocation flag); …

Status send_deferred (in Flags flags // invocation flag);

boolean poll_response (in Flags flags // invocation flag);

Status get_response (in Flags response_flags //response flag);

}

The invoke allows to ask for the execution of methods; results can
be waited or more asynchronously managed (see send_deferred)
The request is prepared and the dynamic call involve a higher cost
compared static synchronous operations

DII: REQUEST for DYNAMIC BINDING

CORBA 71

CORBA architecture provides some support entities called
pseudo-object: Request is one of them
The pseudo-objects are entities necessary for user to obtain
viability without becoming CORBA objects; they:
� do not have a CORBA reference (not objects)
� are confined inside specific ORB
� helper, holder, etc. in different language mapping are not

produced
Pseudo-objects are enablers that have the same CORBA
description of application entities (while being system defined)
and an application can use for its purposes
Pseudo objects can be mapped differently inside different
languages and available only in some language environments

PSEUDO OBJECT in CORBA

CORBA 72

A user must operate through a Request object by submitting it
to the ORB for operations execution. The steps are:

• request creation
• setting/check of in parameters (name, type, value)
• set of answer (type)
• set of possible exceptions
• set of possible contexts
• real invocation (also oneway o deferred)
• verification of possible exceptions (after completion)
• extraction of all request result information:

parameters of out , in out , return value
The remote reference allows to find and explore the interface
through the IR repository

DYNAMIC BINDING in CORBA (DII)

CORBA 73

The standard CORBA mode is blocking synchronous
In case of malfunction or problems, the client receives an exception from
the interface

At-most-once semantic
The static synchronous invocation introduce less steps that
corresponding dynamic

New introduced modes only for dynamic invocation :
Oneway Invocation: no response (best effort semantic)

Deferred Synchronous: the answer is expected but it is to be
found later (at-most-once)

use of get and poll for the answer

It is possible to mix static and dynamic modalities?

INVOCATION SEMANTICS in CORBA

CORBA 74

Different modalities of action on pseudo-object Request
Blocking Synchronous

invoke() … get_result()

Oneway Invocation
send_oneway()

Deferred Synchronous
send_deferred()…

/* many operations */ poll_response() …
/* get result */ get_response ();

In case of dynamic invocation, all guarantees of the static
control (stub) are not present
Clients are responsible at invocation for all necessary
checks: correct parameter types, exception, etc.

DYNAMIC INVOCATION SEMANTIC

CORBA 75

DYNAMIC SERVER behavior - DSI – The server
- decides to implement a new interface where there is not a

statically generated skeleton
- uses a pseudo-object dynamic ServerRequest as a

mediator with two fundamental tasks
- To register its service interface to the POA and the ORB

(in a preliminary way to any invocation)
- To work in mediating single request service invocations

(that are driven by a general server function named
invoke registered to the POA). The invoke must check
dynamically parameters and correctness

The ServerRequest can be used as an enabler for every
interface method

DYNAMIC SERVER in CORBA

CORBA 76

A server that intends to provide a dynamic implementation
of operations must define a Dynamic behavior via
Dynamic Skeleton Interface (DSI)
The servant uses, at run-time, the POA to register itself as a
possible and valid implementation of the interface of interest

A pseudo-object ServerRequest registers itself as an
implementation to the POA and allows the POA to consider it
as an allowed and manageable servant
The dynamic operation requests a higher correctness checks (if
possible) of parameters that have not been statically checked
from language support

Every invocation, static or dynamic, can be sent to the
new servant registered with DSI, that uses the pseudo-
object to intermediate parameters and result

DYNAMIC BINDING in CORBA (DSI)

CORBA 77

To provide its implementation, the server must use a
ServerRequest for the dynamic offer of operations
pseudo interface ServerRequest {// Pseudo IDL

readonly attribute Identifier operation_name ;

readonly attribute OperationDef operation_definition ;

void parameters (inout NVList params);

Context ctx ();

void set_result (in Any val);

void set_exception (in Any val);
};

The pseudo-object ServerRequest must be registered to
the POA and the ORB does know that a new implementation
of a specific interface exists (from the object itself)

ORB and POA play a fundamental role in DSI

DYNAMIC BINDING in CORBA (DSI)

CORBA 78

The server object must implement an invoke to be called by
the POA (to execute methods) as a callback

the ORB requests to the POA to use that invoke to obtain the
generic execution from servant; ORB and POA pass the
request to the object, that has responsibility to execute the
implmented method (using the content of the
ServerRequest)

Obviously, in DSI, the usual checks of the static case are not
done by the skeleton

the invoke method must acquire the name method, the
parameters, check them, execute the logic , and produce
results (to check the type)

In case of problems, necessary exceptions must be passed

The client receive results without identifying the static /
dynamic mode

DYNAMIC BINDING in CORBA (DSI)

CORBA 79

The Interface Repository handles registrations of every
interface and manage storing and discovery (no track of
the specific objects that implements them)

The repository behave as content container

INTERFACE REPOSITORY

CORBA 80

Interface Repository is not a name system, but allo ws to
explore all available interfaces
It allow remote access

direct or through proprietary utilities

Every entity is also labeled with a RepositoryID

Some different standard formats are recognized
IDL IDL:/Go/Services/Interface:1.0
RMI hashed RMI: name … /hashcode
DCE format DCE: UUID
Local format LOCAL: free

Access operations are standardized
Contained lookup_id (in RepositoryID searchid);

InterfaceDef get_interface ();

INTERFACE REPOSITORY in CORBA

CORBA 81

From every defined and
compiled interface

contents for the IR are
generated

based on the types that
can be defined and
acknowledged

INTERFACE REPOSITORY in CORBA

CORBA 82

More complete structure of IR types

INTERFACE REPOSITORY in CORBA

Repository

CostantDef

TypeDef

ModuleDef ExceptionDef InterfaceDef

AttributeDef OperationDef

ParameterDef

ModuleDef

TypeDef

TypeDef

CostantDef

CostantDef

ExceptionDef InterfaceDef

ExceptionDef

ExceptionDef

Contains

Contains

Contains

Contains

CORBA 83

References in CORBA are opaque and allow to reach a
POA and to find any servant without granting a specific
servant implementation
Typically, they can contain the whle information to access to
the servants: address, POA creation name, object ID
(various data)

There are problems of different information, also partly visible
to users

REFERENCES TO OBJECTS in CORBA

Object Reference

IIOP:v1.1// disi.unibo.it:1298/ Qwerty23455666556665/

Unique timestamp

POAID/ OBJID/

Protocol Identifier

Node Identifier Adaptor and Object Identifiers

CORBA 84

Available identifiers at a CORBA client are valid only for the
environment in use and opaque to user

They are completely different from the way the ORB keeps
control of the objects themselves and pass them from an
environment to another: there exist names valid only in
some localities, while others with the possibility to identify
specific objects (servant)

A user name (as in most language environments) before passing
to the receiver, it is converted for the execution environment

In a receiver environment, the reference could be also a
different object with the same interface
In case of state information on the server, problems ☻

If we want precise and focused information?

REFERENCES TO OBJECTS in CORBA

CORBA 85

CORBA acknowledge the need of identifiers that can pass
among different environments keeping servant identity

CORBA 1.2 does not provide unique names
Object Reference (OR) are (not unique) names associated to a
specific service and not to a specific servant

ObjectRefs passing from client to server site are converted
by a name system in a proxy for the receiving environment
ObjectRefs must be passed from an environment to another
and do not refer necessarily to the same object

Normally,
the identifiers inside one ORB are always connected to
the specific object (servant)
So, ORs were not portable enough

REFERENCES TO OBJECTS in CORBA

CORBA 86

Interoperable Object Reference (IOR) are unique names
associated to a servant that can be transferred between
different ORBs (passing also through strings)
In general, before passing from an ORB to another OR � IOR

CORBA 2 support for unique names
Identifiers unique and tied to a specific target

IOR

IOR and UNIQUE NAMES in CORBA

IDL:MyObject:1.0 N_port: ip_address OA1, Obj_2
Obj_1
Obj_2

Obj_3

Object Reference

Client

Object Adapter:
OA1

 N_port_1: IP_Address_1

Op() [OA1, Obj_2]

Reply

Server

CORBA 87

Standard over the representations of different ORBs for uniquely
identify objects

Interoperable Object Reference or IOR as standard
IOR as ProfileID (identifier) and tagged Profile (to identify
completely)

More than one profile for different access rules

Interoperable Object Reference or IOR

Tagged Profile
complete information for
object discovery

This information is used to
decide what to pass to the
client in an operation
request (then a local proxy
for the object itself is
provided)

CORBA 88

We can have two possible forms of IOR with different
support to reach the servant via POA and support of the
Implementation Repository (IMR), that intervenes to
provide by need also the re-generation of registered servants

Indirect link (indirect binding) if IOR refers the repository IMR
and only indirectly to the final object

The indirect binding is the one durable and persistent
with the insertion of an Implementation Repository (registered
the first time), called Repository Identifier

Direct link (direct binding) if IOR refers directly the related
object (via POA)

The direct binding is for transient objects

IOR in CORBA…

CORBA 89

Indirect link (indirect binding)

IOR (indirect binding via POA)

IDL:MyObject:1.0 n’_port: ip’_address OA1, Obj_2
Obj_1
Obj_2

Obj_3

Interoperable Object Reference

Client

Object Adapter:
OA1

 N_port_1: IP_Address_1

Op() [OA1, Obj_2]

Reply

OA_1

OA_2

OA_3

Vbj \pub\handler

N_port_1: IP_Address_1

N_port_2: IP_Address_2

Implementation Repository found at n’_port: ip’_ad dress

Op() [OA_1, Obj_2]

Location-forward (N_port_1: IP_Address_1)

(1)

(4)

(5)

(6)

Vbj /application /server:
(2)

Gives back:

IP_Address_1

(3)

Command for service
activation

Server

Implementation Repository

N_porta_1:

Vbj /application /server:

CORBA 90

CORBA3 also defines the possibility of associating
multiple copies to a service
with form of replication completely transparent to the client

Interoperable Object Group Reference (IOGR) provides copies and
the ORB is responsible to find the available copies for all the
requested functions
(also manage disconnection / reconnection / consistency)

EXSTENSIONS: Groups of objects

CORBA 91

Object Adapter as mediator agents to overcome
heterogeneity problems in different environments

BOA (Basic Object Adapter) as the early basic entity
BOA allowed server activation with only some simple policies
and other more complex policies were totally
implementation-dependent
Shared server a unique job for a set of objects

(unique shared activity)
Unshared server a job for every servant
Persistent server a unique job started at initialization or

explicitly
Per Method server a job for every invocation

OBJECT ADAPTER in CORBA

CORBA 92

POA are interoperable portable agent that allows to pass
from an object reference of a client to real code of the
servant that must serve the same request

A POA can manage many different objects and select
which one to direct the operations to

In different environments , the POA is different (class,
variables, methods, jobs) but must realize basic policies
necessaries to the variety of possible interactions

In a specific language environment , there exist a base
class from which every POA inherits that contains the
mechanisms for request and servants management

The POA does not inherit the policies defined for every
case

PORTABLE OBJECT ADAPTER - POA

CORBA 93

POA as portable agent for interoperability

It inherit from other POAs (by default) without inheriting
policies that must be ad-hoc configured

Policies also different and specialized

PORTABLE OBJECT ADAPTER - POA

CORBA 94

The POA has an its own internal organization (AOM)

POA uses an internal table, Active Object Map , to map
servants (even the same several times)

PORTABLE OBJECT ADAPTER

CORBA 95

Any POA is managed by a POA Manager to implement
suitable management policies (mapping servants and
object references)

The POA Manager provide operations to manage different
policies and also change them. The POA Manager allows to:

• activate a POA (to start the job)

• deactivate a POA (to close the work of a POA)

• block the requests to POAs (the job is stopped and no
operation is started)

• discard requests to POAs (every incoming requests and
the queued are discarded: no operations)

Only on a deactivated POA, policies can be changed

PORTABLE OBJECT ADAPTER MANAGER

CORBA 96

A POA capable of managing its objects and servants:
typically a POA manage with the same policy any
responsibility interface (often more than one)

RESPONSIBILITY of

Object Reference Creation

ObjectID Identification (unique servant identifiers)

Manage related servants

Transient CORBA objects
that do not survive the application that has generated them

Persistent CORBA objects
that survive the application that has generated them and remain
available also for subsequent applications

OBJECT ADAPTER in CORBA

CORBA 97

The POAs have some methods visible to clients to register servants
ObjectID activate_object (in Servant p) ;

returns an object identifier and receive a pointer to a servant

void activate_object_with_ID (in ObjectID oid , in Servant p);

associate a pointer to a servant to an entry inside the Active Object Map

The methods allows an explicit choice for servants inside the AOM

ObjectIDs allow servant choice inside POA

ADAPTER functions

CORBA 98

POA is a portable agent for interoperability

the policies are ruled by properties specified ad-hoc with
standardized attributes :

Thread (ORB_CTRL_MODEL, SINGLE_THREAD_MODEL)

Lifespan (TRANSIENT, PERSISTENT)

Object ID Uniqueness (UNIQUE_ID, MULTIPLE_ID)

ID Assignment (USER_ID, SYSTEM_ID)

Servant Retention (RETAIN, NON_RETAIN)

Requests (USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER)

Implicit Activation (IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION)

OBJECT ADAPTER in CORBA

CORBA 99

POA expect different values of attributes that combined
produce many very differentiated policies (default in red):

Thread (ORB_CTRL_MODEL, SINGLE_THREAD_MODEL)

Lifespan (TRANSIENT, PERSISTENT)

Object ID Uniqueness (UNIQUE_ID, MULTIPLE_ID)

ID Assignment (USER_ID, SYSTEM_ID)

Servant Retention (RETAIN, NON_RETAIN)

Requests (USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER)

Implicit Activation (IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION)

ATTRIBUTES for OA in CORBA

CORBA 100

• Retention policy: expect either the use or not of the AOM
– RETAIN: memorization of every Object Id inside AOM
– NON_RETAIN: NOT can be used AOM � use of Default Servant, or

Servant Manager

• Request Processing policy: indicate the locating modality of
servant objects to elaborate requests
– USE_ACTIVE_OBJECT_MAP_ONLY : the dispatching happen for

the servant objects registered to AOM
– USE_DEFAULT_SERVANT : (if it is set a policy NON_RETAIN, or

the servant object is not inside the AOM) the requests for servant
objects not available inside the POA are delegated to a unique
servant , called Default Servant

– USE_SERVANT_MANAGER : policies of activation/deactivation of
servant objects are in charge of a Servant Manager, specified and
managed directly by final user

Retention and Request Processing Policy

CORBA 101

POA can contains more differentiated policies for servant
objects management

Default POA policies :

Single Servant (for all objects)
Just one servant for every request (even for objects of different type)

Explicit Object Activation
Every specific servant is connected to an ObjectID, with servant
control for service execution

On-Demand activation (only for a single method) stateless
On-Demand activation (for infinite duration)

the servant is activated by request and kept on for every subsequent
request

It is also possible any combination of policies

POA POLICIES

CORBA 102

To add services or functions transparently, interceptors
are introduced without changing neither the server nor
the client

They are used

at different

system levels

• application

• transport

- security

- transactions

- …

INTERCEPTOR in CORBA

CORBA 103

CORBA 3 introduces some significant areas of extension
/completion

Internet
names as URL, firewall proxy for GIOP, …

QoS
new ways of invocations with more QoS control
Asynchronous calls (AMI) & Time-independent (TII)

CORBA Real-time, CORBA reduced, CORBA fault-tolerant

Components
more abstract level to work in transparent way

CORBA 3

CORBA 104

In CORBA invocations are synchronous

The client must wait the operation completion from
infrastructure

Static operations always synchronous (at-most-once)

Dynamic operations also less synchronous

one-way without result (best-effort)

no server response expected

deferred-synchronous deferred results (at-most-once)

the client can not wait for the answer
that the server make available afterwards
and the client can get successively

INVOCATION SEMANTICS

CORBA 105

CORBA invocations are not persistent and much coupled

CORBAMessaging introduces an invocation strategy not
available in standard CORBA

It is intended to decouple:

• servant operations (with normal and synchronous result)
from client invocation modalities

• lifetime of the two environments

with Callback and Polling modality
The client interface is modified and it is possible to move
requests and have different interaction from the synchronous one
…but
the client must define new additional operations

ASYNCHRONOUS INVOCATION - AMI

CORBA 106

Asynchronous polling: the client decides when and if to
ask for a completion verify method of the remote operation
(obtaining the results). The support creates the poll object
Rather than: int sum (in int i, in int j, out int sum)

void sendpoll_sum (in int i, in int j, pollobj)

void pollsum (out int success, out int sum)

For dealing with polling

the client invokes
sendpollsum and
when wants to recover
the result invokes the
pollsum operation,
automatically generated
by CORBA support

POLL ASYNCHRONOUS INVOCATION

CORBA 107

Callback: the client provides a callback method the support calls
at completion via an (automatic) asynchronous operation

The static interface is modified:
int sum (in int i, in int j, out int sum)

void sendcallback_sum (in int i, in int j, callbackobj)

void callback_sum (in int success, in int sum)

We use two methods
only changing the
client implementation
and not the service part

Client calls the
sendcallback_sum

ORB invoke callback_sum
specified by user

ASYNCHRONOUS INVOCATION - AMI

CORBA 108

Possibility to define message QoS
Interface RebindPolicy to reestablish connection if broken
TRANSPARENT, NO_REBIND, NO_RECONNECT

Interface SyncScopePolicy to establish synchronization warranty

SYNC_NONE, SYNC_WITH_TRANSPORT, SYNC_WITH_SERVER,
SYNC_WITH_TARGET

Interfaces RequestPriorityPolicy and ReplyPriorityPolicy for determine
priority between the two sides of invocation, if necessary

Interface QueueOrderPolicy for manage priority in order requests

ORDER_ANY, ORDER_TEMPORAL, ORDER_PRIORITY,
ORDER_DEADLINE

Other possibilities…

MESSAGING

CORBA 109

CORBA ARCHTECTURE

CORBA 110

CORBA requests also other parts

The CORBA Services allow to provide support functions to
obtain more or less essentials services

Collection service for group objects

Query service for query to interrogate objects

Concurrency (control) service
for available lock services

Event service for using asynchronous events

Notification service events advanced management

The presence of these services qualify CORBA as a mature
component integration environment

CORBA SERVICES

CORBA 111

CORBA SERVICES

Service Description

Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declarative manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multiple objects

Event Facilities for asynchronous communication thro ugh events

Notification Advanced facilities for event-based asy nchronous communication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide name of objects

Property Facilities for associating (attribute, value) pairs with objects

Trading Facilities to publish and find the services on object has to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and auditing

Time Provides the current time within specified error margins

CORBA 112

OMG has standardized other components to simplify
programming and support: it is (in practice) necessary the

NAMING SERVICE
Mechanisms and strategies to support persistent names of
CORBA, to classify and find ObjectReference through logical
names, and to realize usable name systems

Name binding is an association between object and name

Name context as a binding set in which every name (of pairs) is
unique

Bindings are specified, by definition, relative to a specific context

CORBA SERVICES

CORBA 113

Names can also
refer to federated
contexts with
federated servers
(and different as
context to manage)
and coordinated
among them

NAMING SERVICE

A name is structured as a sequence of name components to
identify the corresponding ObjectRef

Different names can refer to different objects or to the same
object finding it with a process of resolution of different context
even distributed

CORBA 114

NAMING SERVICE

Context graphs are identified and containment relationships can
create context to maintain references to objects (via
ObjectReferences)

Contexts are dealt with as CORBA objects

CORBA 115

NAMING SERVICE

A name simple or composed is a sequence of name components

Every component is constituted by two parts or attributes

[Identifier , Kind]
Identifier as Object Reference of CORBA Object type

Kind of descriptive type, for example executable, postscript
struct NameComponent {string id; string kind;};

typedef sequence <NameComponent> Name;

Only base mechanisms are provided over whom it is possible to
build different user policies

The idea is that this service provide only mechanis ms and
do not impose policies of any kind

CORBA 116

NAMING CONTEXT

The operations on a naming context derive from the
NamingContext interface that specify the typical operations of a
name system

interface NamingContext {

void bind (in Name n; in Object obj) raises …;

void rebind (in Name n; in Object obj) raises …;

void unbind (in Name n) …;

void bind_new_context (in Name n)…;

object resolve(in Name n)…;

void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

}

CORBA 117

TRADING SERVICE

The TRADING Service has the objective to ease the search of
services that implement a certain interface through specif ied
attributes (feature similar to yellow pages or …)

The Trader is an object that allows to keep the knowledge of
services that can be requested (as logical names)

The trader allows to expose services

export from the provider

The trader allows to import services

import from who want to know them

Obviously we can have

Federated Trader

CORBA 118

TRADING SERVICE

A search on a trader allows to obtain an unknown interface (the
name is obtained) through request of characterizing features
(the result obtains also more names)

CORBA does specify nothing on TRADING Service implementation:
it is possible to realize it with a database or in-memory tabl es

Every trader is characterized by

- an interface that defines the features exposed by the service

- some properties to represent behavioral aspects and non-functionals
not expressed by the service interface

Every property is identified by an attribute PropertyMode

PropertyMode associated to a triple <name, type, mode >

enum PropertyMode {PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY}

CORBA 119

TRADING SERVICE

Interface of a Service associated to properties

Every property is composed by <name, value >

With inheritance between services (and on considered interfaces)

service <ServiceTypeName >

[:<BaseServiceTypeName> [,<BaseServiceTypeName>]*]

{interface <InterfaceTypeName >;

[[mandatory] [readonly] property <IDLType>

<PropertyName>;]*

} ;

The publication occurs by providing the service name , no one or
more properties, and an implemented interface(s) name

A request we can obtain also more names (to be chec ked
againdt the name service for ObjectReferences

CORBA 120

CORBA provides synchronous one-to-one communication
EVENT SERVICE makes it more asynchronous and flexible

Events may have content: value or references to an object
The information can be generic o typed

Considering basic the usual mutual knowledge of interface , we
can consider events supplier and consumer , with different
communication modalities

- direct communication or
- indirect communication mediated by channels

and 2 communication models

- Push modality suppliers send to consumers

- Pull modality consumers send to suppliers (on need)

EVENT & NOTIFICATION SERVICE

CORBA 121

CORBA considers an event management either direct or
through event channels , as mediators enabler

If a consumer is not registered to the channel and executes
registration at a certain time, every previous event is lost
Every registered consumer receives every event that
occurs

The events are not persistent

not reliable

without filtering capabilities
But introduce a communication model change
There are proposals for introducing reliability and filtering
notifications

EVENT & NOTIFICATION SERVICE

CORBA 122

In push modality, consumers and suppliers know each
others directly or indirectly via channels and interfaces are
defined
interface PushConsumer {

void push (in any data) raises(Disconnected);
void disconnect_push_consumer (); };

interface PushSupplier {
void disconnect_push_supplier (); };

Disconnects can also terminate and block the communication

INTERFACCE EVENT: Push modality

CORBA 123

In pull modality, via standard interfaces consumers and
suppliers know each others directly (or via channels)
interface PullSupplier {

void pull () raises(Disconnected);
void try_pull (out boolean event)

raises(Disconnected);
void disconnect_pull_supplier (); };

interface PullConsumer {
void disconnect_pull_consumer (); };

Disconnect operations can stop operations

INTERFACCE EVENT: Pull modality

CORBA 124

Event Channel object for many-to-many communication

EVENT & NOTIFICATION SERVICE

CORBA 125

Event Channel allows and enable
many-to-many communication

The Channel has the ability to coordinate also more possible
supplier before trigger multiple events on different consumers, but

- does not introduce filtering on receivers

- does not provide quality of service of the communication
(not durably maintained, permanently, …, depend on specific
implementation)

The Notification service extends event service with these new
significant features

event description and information , filters and filters
repository

EVENT SERVICE: LIMITS

CORBA 126

Events can be denoted by properties that allow new attributes
(Header and Body on which it is possible to filter)

Reliability (best-effort, persistent), Priority , StartTime , Stoptime ,
Timeout

It is available also an Event type repository for their description

NOTIFICATION SERVICE

