System initialization
and basic hardening

Marco Prandini
DISI
Universita di Bologna

Introduction

m A few reminders about well-known concepts

— Security is a process

* We will examine several technical aspects, but don't forget that the
appropriate countermeasures must be integrated in a wider perspective

* Systems are complex and the (too much) easy task of bringing a new Linux
server up should not lead to forget that security issues can arise from many
logical and physical components

— Default deny

* One of the few widely acknowledged points in the security community is that
selectively allowing what you need is better than selectively blocking what
you fear

* This principle can easily be reworded to a more comprehensive philosophy
that can be applied to most of the system components, not only to a list of
network services or access control rules.

— Security = privacy, integrity, authenticity, availability
* The right combination of properties must be enforced
— for each system component, not only data (e.g. consider physical security)
— for each copy of the data, not only within the system (e.g. consider backups)

Basic Hardening

m Secure the physical system

® Know where processes come from
® Handle account security

m Manage filesystem authorizations
m Audit system behavior

Unpacking the box

B Your server is, before anything, a piece of hardware located in
some place and connected to a slew of peripherals
— Most of the defence efforts are placed in fguarding the system against
attacks coming through software and/or from the network
— The corresponding countermeasures can be easily rendered useless by
an attacker having physical access to the server
— The main threats an attacker poses are:
* Stealing the disks or the whole box
* Connecting data-gathering tools to the communication interfaces
* Booting the system with a different operating system
— The severity of these threats is strongly dependent from the specific
environment
m Some of these issues are slightly different in the increasingly
common scenario of a virtual machine, but many
countermeasures still apply (maybe with minor adaptations)

Putting the pieces together

m Most of us acts as if any peripheral of the system was trusted

— How may of you have a clear view of the back of your PC, where the
keyboard and mouse are connected?

— What about the inside, with its wealth of cables connecting the
mainboard with disks and optical units?

VideoGhost

Source: https://www.keelog.com/

5

m If you don't trust the place where the server is housed enough
for your security requirements, consider:

— Selecting a case which can be locked close and tied to the
rack/furniture/building

— Installing tamper-detection devices

— Adopting data protection measures to make the stolen hardware
supports useless

wll Phisatg,lgng hardware peripherals you don’t use (but what if you later need
em?

Plan the installation

® What do you need?

— Nowadays, most distributions come with a quite friendly install
procedure

— It's very easy to be led to install many packages whose existence (let
alone function) is unknown to the owner... but not to the attackers!
— Default deny starts with installing only the strictly needed software

* If the installer at some point asks for a set of packages to install, it's better to
deselect everything. Package managers will help you get what you need later
on. (Hint: make an exception for the graphical interface, if you want it)

* Choose a distribution that suits your needs (server, workstation, router...}

® Lay your disks out with availability and integrity in mind

— Separate partitions that are easily filled up by stressing the system
(/var, /tmp) or by users (/home) from those essential for the operating
system (/)

— An unpractical, yet additional layer of integrity defence would be
mounting the /usr partition read-only

Reboot

® To reach its steady state, the system traverses the boot
procedure, which can be split in the following phases:

(1) BIOS —dSeIects the boot device(s) and the order in which they are to be
querie

* Most BIOSes provide password protection either for booting the machine or
for modifying their own configuration

(2) Boot Loader — Selects the operating system image and allows passing
the OS additional informations

* Some keywords can be specified in this step to let the OS start in
maintenance mode

- Same kind of password protection as described for the BIOS

(3) Operating system — Usually does nothing more than loading the
correct set of device drivers (not to be underestimated!) and invoking
the special init process

» Tells init the initial runlevel (if overriding the default is needed)

(4) init—handles runlevels and System-V-style system initialization, i.e.
starts the needed services in the right order

* Usually configures the real and virtual terminals

Boot protection

m Password pros and cons:
— If a password is needed for booting the system, unattended operation
can bqlptr)cl)blematic: a simple power outage can make the system
unavailable

* For systems where privacy and integrity considerations override availability
issues, this is a minor problem, since probably there will also be specific
services refusing to start if a password is not manually entered (for example
to decrypt private keys they use)

— Password protection against system configuration alterations is always
advisable
® NEVER rely on a single protection layer
— BIOS passwords can often be overridden by manufacturer's defaults
— Any password can be guessed

— Risky defaults on some distributions (e.g.: if a means of requesting
maintenance boot to the boot loader is found, init provides a root shell)

This is a very useful feature to legitimately gain control of a corrupted system
which will not boot, the other being booting from an external media (— BIOS)
Bottom line: lock-down = increased integrity, lower availability!

Secure / Trusted Boot

m Issue: how to be sure that every piece of software a computer
executes is authentic/unmodified/benevolent?
— Anti-malware check applications
— Who checks anti-malware?? The OS (making AM useless...)
— Who checks the OS? The boot loader

— Who checks the boot loader? Special HW, which cannot be changed
from within the OS, and thus is immune from infections

— root of (a chain of) trust

® Two ways
— Trusted boot makes use of the TPM (Trusted Platform Module)
* Special hardware chip with crypto functionalities
— Secure boot makes use of UEFI (Unified Extensible Firmware Interface)
* Software implementation + firmware keys
* Needs a standard BIOS for the most basic steps of POST
* May use the TPM to speed-up/enhance the integrity checks

Trusted boot

m Starts from the TPM

— Core Root of Trust for
Measurement (CRTM)

— Registers (PCR) 4
m -Gathe-rs ev-iden-ce of | crrv [B1os 'jBom]nadeW 08 |
integrity (violations) ! ! *
® Delays checks until
there IS Measuring
— Crypto keys availability Passing control

— enough memory to
perform the needed Storing
computations

UEFI and the secure boot

m EFI (from Intel) was born as a more-flexible-than-BIOS
interface between the OS and the firmware

m UEFI forum standardized and updated it
— http://iwww.uefi.org/

m UEFIl is a “mini OS”
— BIOS boot via MBR:
* 400 bytes of ASM in boot sector
* 4 primary partitions or 3 primary parts + 11 logical units
— EFIl with GPT
* its own filesystem (100-250MB) for boot loaders
* nearly unlimited partitions of up to 9ZB
m UEFI verifies each piece of software before yielding control
— It needs a key database to be always available
— As soon as a verification fails, the boot process stops

UEFI and the secure boot of Linux

1) The official Platform Key verifies a
small pre-boot-loader

— The key used to sign shim must be
provided by the HW vendor

— It is a Microsoft key!
2) Shim can use / pass along MOKs
(Machine Owner Keys)
— To verify the bootloader
— To verify custom-built kernel modules
m Additional kernel components must
be signed to be loade
— User generates MOKs
— User submits MOKs to shim

— At next boot, shim finds the keys durin%
the setup phase, and asks if they must be
written in firmware — explicit consensus
always required!

https://www.suse.com/communities/blog/uefi-secure-boot-details/

Interesting UEFI links

https://iwww.linux.com/publications/making-uefi-secure-boot-work-open-platforms
http://www.rodsbooks.com/linux-uefi/
http://www.linux-magazine.com/Online/Features/Coping-with-the-UEFI-Boot-Process
https://help.ubuntu.com/community/UEFI

http://askubuntu.com/questions/760671/could-not-load-vboxdrv-after-upgrade-to-ubuntu-16
-04-and-i-want-to-keep-secur
https://knowledge.windriver.com/en-us/000_Products/000/010/040/060/020/000_Wind_River_
Linux_Security_Profile_Developer's_Guide,_8.0/070/000/010

https://www.suse.com/communities/blog/uefi-secure-boot-details/
https://lwn.net/Articles/519618/

Bootloader (runtime) configuration

m LILO, the Linux Loader

— used almost since the beginning of Linux

B GRUB, the Grand Unified Bootloader

— GRUB is more powerful and flexible than LILO, providing an interactive
shell that allows executing many commands and tailor-building the boot
procedure: of course this feature is open many possible abuses.

®m Both support parameter passing to the kernel, most notably
(for security purposes)
— single
— init=...

Boot Loader passwords

mLILO

password=YourPasswordHere
Sets a password that will be asked for when booting the system, unless
restricted

is specified. In the latter case, the password will be asked for only when
manually overriding LILO settings during boot.
B Global vs. Single-entry protection

— password and restricted in the global section: ask for the password
to allow any parameter addition — be careful with unsafe entries (floppy)

— password and restricted in an image section: ask for the password
to allow any parameter addition, only for the selected image

— password in the global section and restricted in an image section:
ask for the password to allow any parameter addition for the selected
image, and ask the for the password for booting the other images

Boot Loader passwords

= GRUB

password [--md5] passwd [new-config-file]

If specified in the global section, sets a password that will be needed for
entering the interactive operation of the bootloader. Will optionally cause the
loading of a different configuration file.

If put in a specific menu item, sets a password that will be needed for booting
that configuration.

lock

Put in a specific menu item, right after title, marks that configuration
password-protected.

Effective only if preceded by a password definition in the global section
md5crypt

Type this command at the grub prompt to compute the password hash to use
with --md5

Trusted terminals

®m The login program usually handles user authentication on
local and remote (serial) text consoles.

m If direct root access is undesirable on some of these, edit the
file /etc/securetty and remove them
— Example of default settings:
e # /etc/securetty: list of terminals on which root is allowed to login.
o # See securetty(5) and login(l).
¢ console
e # for people with serial port consoles
o ttysO
e # for devfs
tts/0
Standard consoles
ttyl
tty2

Process management

B So you think you installed almost nothing, and then...

milk:~f ps aux

USER PID %CPU 3%ME! vsz RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 468 ? Ss Mayl5 0:02 init [2]
[... kernel processes ...

root
daemon
root
root
bind
root
root

udevd --daemon
/sbin/portmap
/sbin/syslogd
/sbin/klogd -x
/usr/sbin/named
/usr/sbin/lwres
/usr/sbin/acpid
/usr/bin/dbus-d
/usr/sbin/hald
hald-runner
hald-addon-acpi
hald-addon-keyb
hald-addon-stor
/usr/sbin/dhcdb
/usr/sbin/Netwo
avahi-daemon: r
avahi-daemon: ¢
/usr/sbin/Netwo

S<s Mayl5
Ss Mayl5
Ss Mayl5
Ss Mayl5
Ssl Maylb
Ssl Maylb5
Ss Mayl5
Ss Mayl5
Ss Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5
Mayl5

/usr/sbin/inetd
/usr/sbin/sshd
/usr/sbin/ntpd
/sbin/mdadm --m
/usr/sbin/atd

/usr/sbin/cron
/sbin/getty 384
/sbin/getty 384
/sbin/getty 384
/sbin/getty 384
/sbin/getty 384

0 1 1 D D D D 1 D D D D+ 4 D+ D +D + D 4 D

OCO0O00000O000O000O0O0O000O00O0O0O0O0O0O0OO0O
[=l=falalalafalalalolalalalalolalafolalolalalalelaYela)la)e]
[=l=falalalafalalalolalalalalolalafolalolalalalelaYela)la)e]
OCOO0O00OO0O0OO0O00OO0OO0OORHFOOOOOHOOOROOOO
[=l=falalalafalalalolalalal Yalal YalalalalalalelaYela)la)e]

Process management

] lvaen if these “things” are actually needed, its important to
now

— where they come from
— how to get rid of them, possibly avoiding unwanted “resurrections”

— useless processes not only consume resources, but also offer attack
paths!

E Remember the basics

— man is your best friend, and the Internet closely follows.

— ps, top, kill, ... can quickly and effectively assist you in solving instant
problems, but do not prevent them to reappear

® There are three main sources of processes (besides you)
— Init-started procedures
— Periodic and aperiodic schedulers
— Daemons handling dynamic, event-based subsystems

Scheduled execution

m Periodic execution of programs is the task of cron

— every user can have its cron table (crontab), look in /var/spool/cron to
spot them

— system tasks are often placed into /etc/crontab
« commonly /etc/crontab comes preconfigured so as to

— include any configuration file placed into /etc/cron.d/

—run any program placed in the directories /etc/cron.hourly, /etc/cron.daily,
/etc/cron.weekly, /etc/cron.monthly, with the obvious periodicity

— edit /etc/crontab freely, use

crontab -e [-u username]

for the user tables

® Delayed, one-shot execution of programs is the task of at

— relevant commands for queuing up tasks, examining the queue of tasks
waiting for their hour and cancelling tasks: at, atq, atrm

Event managers / IPC systems

® Dbus is an Inter-Process Communication architecture.

— It starts some Dbus enabled subsystems, so they can exploit the
advantages of the architecture.

— Look around in /etc/dbus-1/to see its configuration
— Find in /etc/dbus-1/event.d the startup scripts of managed subsystems.
® Udev replaced devfs as an event manager for the creation on-
the-fly of device nodes when a new devices is hot-plugged.

Lolg?(k in /etc/udev/rules.d to see files containing event-to-action mappings,
ike

udev rules file for SynCE

BUS!="usb’”, ACTION!="add”, KERNEL!'!=/"ttyUSB*",
GOTO=""synce_rules end”

Establish the connection
RUN+="/usr/bin/synce-serial-start”
LABEL="synce rules end”

Initialization and background activities

m jnit is the first process run by Linux in traditional distros

— Handles different runlevels, that is working states defined by the set of
running services

— Orchestrates the proper sequence of events to reach a runlevel
— Monitors some events that happen during the system’s uptime
— Gracefully shuts down the system

B Three main variants
— (historical) SystemV-style initialization
— Upstart (Canonical, 2006-2014)

— Systemd (loosely RedHat, 2010-active) \ Useful to know because
the current situation is

an awful mix of legacy
daemons and “modern”
orchestrators

sysvinit

® /sbin/init daemon from the original SystemV Unix
— configured by means of the file /etc/inittab
— inittab specifies the default runlevel
e id:2:initdefault:
— but if the special keyword single is passed as a parameter to the kernel

during loading, this setting is overridden and init proceeds to single user
mode (runlevel 1)

e ~~:S:wait:/sbin/sulogin
— init also spawns the virtual terminals and serial line console handlers
e 1:2345:respawn:/sbin/getty 38400 ttyl
e 2:23:respawn:/sbin/getty 38400 tty2
e TO:23:respawn:/sbin/getty -L ttyS0 9600 wvt1l00
e T3:23:respawn:/sbin/mgetty -x0 -s 57600 ttyS3

sysvinit - started processes

m jnit is ultimately responsible for everything running on the
system, but two activities can be directly traced to it

— lines like
10:0:wait:/ete/init.d/rec 0

start the System-V-style startup process
* one line at a time is executed: when entering the corresponding runlevel 'N’
e rc executes
— every program with a name starting with 'S' in /etc/rcN.d/ with the parameter start
— every program with a name starting with 'K' in /etc/rcN.d/ with the parameter stop

* to avoid useless duplication of the scripts which start/stop daemons, they
are all placed under /etc/init.d/, and linked from the 7 /etc/reN.d/
directories

— Use chkconfig or update-rc.d to configure runlevels by updating the link sets
— lines like

%:5:respawn: /usr/X11/bin/gdm

run the program specified as 4™ field, and init monitors the process to
restart it if it terminates 25

Upstart (mainly Ubuntu)

® An event-based replacement for init
— Non-blocking, parallel initialization of subsystems
— Consistent handling of all the asynchronous system events
* Hardware addition/removal
* Process started/stopped

— Multi-stage initialization (e.g. hw detection -> firmware loading -> device
activation -> device features scanning)

— Prospective integration of planned events (cron jobs, at jobs)

® Known Users
— Ubuntu 6.10 and later
— Fedora 9 and later
— Debian (as an option)
— Nokia's Maemo platform
— Palm's WebOS
— Google's Chromium OS
— Google's Chrome OS

A few concepts about upstart

B Philosophy (from the website):
— Tasks and Services are started and stopped by events
— Events are generated as tasks and services are started and stopped
— Events may be received from any other process on the system
— Services may be respawned if they die unexpectedly

— Supervision and respawning of daemons which separate from their
parent process

— Communication with the init daemon over D-Bus

m Working
— The /etc/init directory contains a file for each job definition
— The init demon remains the system's director

* any modification to conffiles is noticed via inotify and immediately applied

— The initctl command interact with the jobs by sending appropriate
signals (see event.h in the sources) to init (via sub-commands):

e start / stop / status
e list / emit / reload-configuration

Systemd (mainly RedHat - now widespread)

B What problems does systemd solve?
— Service dependencies
— Starting services on-demand
— Early syslog
— Output of daemons is preserved
— Tracks cgroups (for fine-grained HW resources control)
— Tracks and manages mount points
— System snapshots and restores
— Manages hostname, locale, and other system-wide settings
— Predictable service environment
— Offline system updates
— Faster boot process
— Shell-free boot

“Systemd 101" - Steven Pritchard
https://docs.google.com/presentation/d/10YwWZdBa3ffl7kVaz2p21
L9VgET2CRmVoWJpVBWG6Ujgg/edit#slide=id.g34f773849_010

Systemd

® What does systemd aim to replace?
init (etc.)
udev
pm-utils
inetd
acpid
crond/atd
ConsoleKit
automount
watchdog
syslog

Systemd - terms

m Different kinds of [control] units named with the convention
name. type
m Types:
— Service: control and monitoring of deamons
— Socket: set-up of IPC channels of any kind (file, net socket, Unix socket)
— Target: set of units that replaces a runlevel
— Device: created by the kernel via hw interaction
— (filesystem-related)
* Mounts
* Automounts
* Swap
— Snapshots: save state, for testing
— Timers: timer-based tasks (— cron, at)
— Paths: path monitoring via inotify
— Slices: resource management via cgroup
— Scopes: group processes for clearer organization

Systemd - unit definition locations

B “library” of reference unit definitions
— /1ib/systemd/system

m Location of mantainer files
— Mainly links to the reference files
— /usr/lib/systemd/system

m Location of user customizations

— They take priority over system defaults
— /etc/systemd/system

Systemd - basic operations

B Runtime control of services
- systemctl {start|stop|status|restart|reload}
servicename

* ...intuitive

 richer output for status
—current status and past steps
—process tree
—relevant log entries

* “.H [hosthame]” connects to remote host via ssh

B Persistent configuration of services boot
— systemctl {enable|disable|mask|unmask} servicename
- disable leave the possibility of manual start intact
- mask makes the unit definition void, blocking also manual control

Systemd configuration display Systemd startup

m Just a few examples ® Runlevel are replaced by targets

— systemctl list-units m /etc/inittab no longer used
+ shows all managed units (all the aforementioned kinds!) — default is queried/set with
— systemctl -t type systemctl get-default
° €.g.. systemctl -t timers systemctl set-default [target]

* shows all loaded units of the given type ° e.g.: systemctl set-default graphical.target
— systemctl list-unit-files [-t type] - Equivalences

e e.g.: systemctl list-unit-files -t services L
. . — Look inside /1ib/systemd/system

» shows all installed units
— systemctl --state state Runlevel Systemd Target Description

. e.g.: systemct]l --state failed poweroff.target, runlevelQ.target System halt

- shows all units in the given state rescue.target, runlevell.target Single user mode
multi-user.target, runlevel3.target Multi-user, non graphical
graphical.target, runlevel5.target Multi-user, graphical
reboot.target, runlevel6.target System reboot

Systemd startup ool fupreteraet Systemd startup

v

(various mounts and (various swap (various cryptsetup
fsck services...) devices...) devices...) (various low-level (various low-level
| services: udevd, API VFS mounts:
v v v tmpfiles, random mqueue, configfs,

[What does a target do') From the systemd. target man page: localffT.target swap.Target cryptsetLllp.target seed, schtl,) debugTs,)

“Target units [...] exist merely to group units via dependencies (useful as boot targets), and to K ! \||/ ' /
establish standardized names for synchronization points used in dependencies between units.” v

. . sysinit.target
B Dependencies = proper automation

— Sysvinit = sequential = slow, no error handling | }
— Systemd = parallel, units start if they have all they need : T

(various (various (various rescue. service

|
|
|
|'
- Requires directive: other units to start when this unit is started/stopped; failing ti‘“erT"" paths..-) || sockete-)
|
|
|
|

AN

| \
| |

v v

their start, this unit is stopped; configurable timing (after, before, same time) v l

timers.target paths. target

- Wants directive: softer version of start (failed deps do not block this unit) I I
- conflicts directive: negative requirement — mutually exclusive units K ! N
- onFailure directive: units to start when this unit fails M

basic.target
» RequiredBy/WantedBy: create Require/Want in other units when this is installed

v
v rescue.target
sockets. target

/

/| emergency.service
. . . | |
m Standardized names = special, fixed names! i | | v

v v v emergency.target
— Some units are pre-defined, with fixed nhames and a fundamental function dirpiay- (various system (various system

manager . service services services)

— Mainly targets, and a few slices (see systemd.special (7) and bootup (7)) | ;igﬁiiii o !
— e.g. boot sequence sync. points — boot sequence aims at default.target

|
| | multi-user.target
| |
\ | /
\|/
v
graphical.target

Service managers cheat sheet

SysVinit (Debian) Upstart Systemd
(RedHat)

Start service [etc/init.d/name start service name start systemctl start name
Stop service [etc/init.d/name stop service name stop systemctl stop name
Status check letc/init.d/name status service name status systemctl status name

Enable service update-rc.d name enable rm systemctl enable name

start at boot chkconfig name on [etc/inittname.override

Inhibit service update-rc.d name disable echo manual > systemctl disable name

start at boot chkconfig name off [etc/init/name.override

Listinstalled Is /etc/init.d service --status-all && systemctl list-unit-files -t
services chkconfig --list initclt list services

systemctl list-unit-files -t
services --state=enabled

List services Is /etc/reX.d/S*
starting at boot chkconfig --list | grep X:on

Give up and upgrade to systemd.

Common assumption:
installed services start at boot

@the default runlevel number in X place

37

User management

E Linux users can be created using different command-line (e.g.
useradd) or graphical tools

® Each user belongs to at least one group 1tyt)|cally created
together with the user and contalnlng only that user)

m Each user can belong to a variable number of other groups

m User accounts can be in a locked state, that prevents them to
log in, but allows processes running in their names (useful for
daemons started by root that after startup “demote”
themselves)

B The passwd command is used

— to change the user password (root only can add a username as a
parameter to change anyone's password)

— to lock (-1) and unlock (-u) accounts (root only, obviously)

Manage users, groups, ownership

® adduser and addgroup ... quite self-explanatory

m See effects on
— letc/passwd
— letc/shadow
— letc/group
— letc/gshadow

B chown <new_owner:new_group> <file>
changes the file's owner and/or group

User authentication - basics

m Typically, user credentials for local authentication are kept in
— /etc/passwd, world-readable, one line per user, like:

prandini:x:500:500:Marco Prandini:/fat/home:/bin/bash

— /etc/shadow, accessible only to root, with lines corresponding to passwd
prandini : 1/PBy29MdS$kjClF8dvHxKhnvMTIWelnX/ :12156:0:99999:7: : :
— Note: Do not remove the "X’ placeholder in the password field, or the

system will not lookup the shadow file and will not prompt the user for a
password at the login prompt.

Password strength

m Still many users choose easy-to-guess passwords

®m User education is important, but not always effective

— see this essay by Bruce Schneier on how to choose a good password for
some ideas
http://www.wired.com/politics/security/commentary/securitymatters/
2007/01/724587? currentPage=all

® Two countermeasures:
— proactive (don't allow weak passwords... but post-it as a side effect)
* see next slides for examples of PAM configuration
— reactive (check for weak passwords and talk to the user)

* use tools for password-cracking: John the Ripper
http://www.openwall.com/john/

Password strength - http://xkcd.com/936/

Oooo0oooooo0oooo
UNCOMMON
(NoN-GBBERSH) DR
oreE worp . NKNOWN

(m]

oog

PUNCTUATION

oooo

~28 BITS OfF ENTROPY

gonoonoo
0oo0opogod o

ooao ooo
ooon o
28
27= 3 DAYS AT
1000 GUESSES /sec
(PLAUSIBLE. ATTAER ON A WEAK REMOTE.

. YES, CRACKING A STOEN
HAGH 18 FRSTER, BUT IT§ NOT WHAT THE
AVERAGE USER SHOULD WoRY ABSUT.)

DIFFiCOLTY To GUESS:

EASY

WAS IT TROMBONE? NG
TROUBADOR. AND ONE OF
THE Os WRS A ZERQ?

\
AND THERE WAS

il

DIFFICOLTY TO REMEMBER:

correct horse battery
— .—.’___i L__T__.

000000 gooooo nooooo
a DoooD ooooo

COMMON WORDS

stople
—

aopoaoo
ooooo

™ o mom

~ Ut BITS OF ENTROPY
oooooopoooa
Ooooooooooan
oooooopanaa
pooooooooao
2™= 550 YEARS AT
1060 GUESSES/sec

DIFFICULTY TO GUESS:

HARD

DIFFICOLTY T REMEMBER:

YOUVE ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS Th GUESS.

Password ageing Enforcing password strength

B The shadow file format holds temporal information that can be m pam_cracklib.so is the component that checks password
examined and changed with chage: eatures when a new one is chosen.

B In /etc/pam.d/system-auth or /etc/pam.d/common-password
find the line starting with password requisite and append
any combination you like of the following parameters after
pam_cracklib.so:

<name>: <pw>:<date>:PASS MIN DAYS:PASS MAX DAYS:PASS WARN AGE: INACTIVE :EXPIRE:

B Meaning of the fields and file where default values (assigned at user creation)
are stored:

/etce/login.defs PASS MAX DAYS Maximm nunber of days a

password is valid.

Minimm mmber of days before a user can
change the password since the last
change.

Nurber of days when the password

change reminder starts.

Number of days after password expiration
that account is disabled.

Account expiration date in the format
YYYY-MM-DD.

/etce/login.defs PASS MIN DAYS

/ete/login.defs PASS WARN AGE
/etc/defaul t/useradd INACTIVE

/etc/defaul t/useradd EXPIRE

— minlen
— Icredit
— ucredit
— dcredit
— ocredit

(Minimum length of password)
(Length credit for lower case letters)
(Length credit for upper case letters)
(Length credit for digits)

(Length credit for other characters)

m Example of the credit mechanism:
— minlen=8 dcredit=1
¢ any 8-char password is accepted
* any (8-n) char password is accepted if n chars are digits

Limiting password reuse

® The same PAM files allow specifying limits for password reuse.
For example, by placing the underlined parameters in the
configuration lines:

password required pam cracklib.so ... difok=3
password sufficient pam unix.so ... remember=26

1) anew password must have at least 3 different characters
from the old one

2) the last 26 passwords are remembered and cannot be reused

45

User lockout on failed login attempts

m BE CAREFUL since this countermeasure is often more
effective for an attacker (that easily prevents legitimate users
from accessing the system) than useful

m This said, in the same PAM files it is possible to configure the
use of the tally module

auth required pam tally.so onerr=fail no magic root

account required pam tally.so deny=5 no magic root reset

— the first line enables counting the failed login attempts

— the second line locks the account when the number of failed attempts
reaches the threshold specified with deny

— a successful login resets the counter

m the faillog command allows inspecting an account's condition
and to reset the access locked after too many failed attempts

46

The superuser

m A best practice for safety and security is avoiding the use of
the root account for common work
— use a non-privileged account 99% of the time
— disable direct root access on the GUI and consoles if necessary
— gain roof rights to perform administrative tasks

® Two ways to gain root rights

— su (switch user) is easy but not suitable for shared administration
* requires to know the root password
* gives unrestricted control of the system

— sudo (do as super-user)
* requires the password of the invoking user (to prevent coffee break attacks)
« configurable (limits which programs can be run by each user)
* see the man page sudoers for the syntax of the configuration file

* use visudo for editing /etc/sudoers (checks syntax and installs the file
preventing errors that could lock users out)

47

