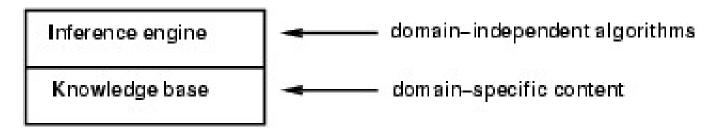
Basi di Conoscenza



Knowledge base (KB) = insiemi di sentenze scritte in un linguaggio formale.

Le risposte devono "seguire" dalla KB.

 Inference Engine: strutture dati ed algoritmi per manipolare la KB ed arrivare ad una risposta.

Consideremo come linguaggio formale la logica dei predicati del primo ordine

LA LOGICA DEI PREDICATI DEL PRIMO ORDINE

- Materiale dal libro: L. Console, E. Lamma, P. Mello, M.Milano: Programmazione Logica e Prolog, Seconda Edizione UTET editore.
- La logica è quella scienza che fornisce all'uomo gli strumenti indispensabili per controllare con sicurezza la rigorosità dei ragionamenti.
- La logica fornisce gli strumenti formali per:
 - analizzare le inferenze in termini di operazioni su espressioni simboliche;
 - dedurre conseguenze da certe premesse;
 - studiare la verità o falsità di certe proposizioni data la verità o falsità di altre proposizioni;
 - stabilire la consistenza e la validità di una data teoria.

LOGICA E INFORMATICA

- La logica è utilizzata:
 - In Intelligenza Artificiale come linguaggio formale per la rappresentazione di conoscenza
 - semantica non ambigua
 - sistemi formali di inferenza
 - per sistemi di dimostrazione automatica di teoremi e studio di meccanismi efficienti per la dimostrazione
 - Per la progettazione di reti logiche;
 - Nei database relazionali, come potente linguaggio per l'interrogazione intelligente;
 - Come linguaggio di specifica di programmi che per eseguire prove formali di correttezza;
 - Come un vero e proprio linguaggio di programmazione (programmazione logica e PROLOG).

LOGICA CLASSICA

- Si suddivide in due classi principali:
 - logica proposizionale
 - logica dei predicati.
- Permettono di esprimere proposizioni (cioè frasi) e relazioni tra proposizioni.
- La principale differenza tra le due classi è in termini di espressività: nella logica dei predicati è possibile esprimere variabili e quantificazioni, mentre questo non è possibile nella logica proposizionale.
- Il linguaggio della logica dei predicati del primo ordine è definito da:
 - una sintassi: caratteristiche strutturali del linguaggio formale (mediante una grammatica) senza attribuire alcun significato ai simboli;
 - una semantica, che interpreta le frasi sintatticamente corrette del linguaggio. Si dà una interpretazione alle formule stabilendo se una frase è vera o falsa.

- Alfabeto, che consiste di cinque insiemi:
 - l'insieme dei simboli di costante, C;
 - l'insieme dei simboli di funzione, F;
 - l'insieme dei simboli di predicato (o relazione), P;
 - l'insieme dei simboli di variabile, V;
 - i connettivi logici:

```
~ (negazione),
∧ (congiunzione),
∨ (disgiunzione),
← (implicazione),
↔ (equivalenza),
le parentesi "(" ")"
e i quantificatori esistenziale (∃) e universale (∀).
```

- Costanti: singole entità del dominio del discorso.
 - Es. "maria", "giovanna", "3" ⇒ iniziale minuscola
- Variabili: entità non note del dominio,
 - Es. X, Y ⇒ iniziale maiuscola
- <u>Funzioni n-arie</u>: individua univocamente un oggetto del dominio del discorso mediante una relazione tra altri "n" oggetti del dominio.
 - Es. madre(maria)
- Importante: le funzioni, in logica, non presuppongono alcun concetto di valutazione
- Predicati n-ari: generica relazione (che può essere vera o falsa) fra "n" oggetti del dominio del discorso.
 - Es. parente(giovanna,maria)

- Date queste definizioni principali possiamo definire:
- <u>Termine</u> (definito ricorsivamente):
 - una variabile è un termine;
 - una costante è un termine;
 - se f è un simbolo di funzione n-aria e t₁,...t_n sono termini, allora f(t₁,...,t_n) è un termine.
 - Es. maria, f(X)
- Atomo o formula atomica:
 - l'applicazione di un simbolo di predicato n-ario p a n termini t₁,...,t_n: p(t₁,...,t_n).
 - Es. parente(giovanna, maria)

Espressione o formula: sequenza di simboli appartenenti all'alfabeto.

```
    parente(giovanna, maria) (E1)
    ∃X (uomo(X) ∧ felice(X)) (E2)
    ∀X (uomo(X) → mortale(X)) (E3)
    ∃X (uomo(X) ∧) (E4)
    ∃X (uomo(f(X)) (E5)
```

- <u>Formule ben formate (fbf):</u> frasi sintatticamente corrette del linguaggio. Si ottengono attraverso combinazione di formule atomiche, utilizzando i connettivi e i quantificatori. Sono definite ricorsivamente come segue:
 - ogni atomo è una fbf;

- Formule ben formate (fbf): frasi sintatticamente corrette del linguaggio. Si ottengono attraverso combinazione di formule atomiche, utilizzando i connettivi e i quantificatori. Sono definite ricorsivamente come segue:
 - ogni atomo è una fbf;
 - se A e B sono fbf, allora lo sono anche ~A, A∧B, A∨B, A→B, A↔B
 (eventualmente racchiuse tra parentesi tonde bilanciate);
 - se A è una fbf e X è una variabile, $\forall X A \in \exists X A$ sono fbf.
- Le espressioni (E1), (E2), (E3) sono formule ben formate, mentre non lo sono (E4) e (E5).
- Letterale: fbf atomica o la sua negazione. Ad esempio, la formula (E1) è un letterale.

REGOLE DI PRECEDENZA TRA OPERATORI

```
~∃∀

^
∨
→ ↔
• Esempio

La fbf: a \lor ~b \land \exists X c(X) \rightarrow d(X,Y)
è equivalente a: (a \lor ((~b) \land (\exists X c(X)))) \rightarrow d(X,Y)
```

- fbf in forma normale prenessa disgiuntiva ("disjunctive prenex normal form"): disgiunzione di una o più fbf composte da congiunzioni di letterali; le quantificazioni compaiono tutte in testa a F.
- fbf in forma normale prenessa congiuntiva ("conjunctive prenex normal form"): congiunzione di una o più fbf composte da disgiunzioni di letterali; le quantificazioni compaiono tutte in testa ad F.

REGOLE DI PRECEDENZA TRA OPERATORI

Esempio

La fbf: $\exists X \ \forall Y \ \exists Z \ (a(X) \land b(Y,Z)) \lor (c(X) \land \neg a(Z) \land d) \lor f$ è in forma normale disgiuntiva.

La fbf: $\exists X \ \forall Y \ \exists Z \ (a(X) \lor b(Y,Z)) \land (c(X) \lor \sim a(Z) \lor d) \land f$ è in forma normale congiuntiva.

- Qualunque fbf può essere trasformata in forma normale prenessa (congiuntiva o disgiuntiva) attraverso opportune <u>trasformazioni</u> sintattiche.
- Campo di azione (scope) di un quantificatore: fbf che lo segue immediatamente. Nel caso di ambiguità si utilizzano le parentesi tonde.
- Esempio
 - Nella fbf: $\forall X (p(X,Y) \land q(X)) \lor q(X)$
 - la quantificazione sulla variabile x ha come campo d'azione la formula p (x, y) ∧q (x)

REGOLE DI PRECEDENZA TRA OPERATORI

- Variabili libere: variabili che non compaiono all'interno del campo di azione di un quantificatore.
- Esempio nella fbf: F = ∀X (p(X,Y) ∧ q(X)) la variabile Y risulta libera in F.
- Formule chiuse: fbf che non contengono alcuna variabile libera. Ad esempio, le formule (E1), (E2) ed (E3) sono fbf chiuse. Nel seguito considereremo solo formule fbf chiuse.
- Formule ground: formule che non contengono variabili. Ad esempio la formula (E1) è una formula "ground".
- Varianti:una formula F2, ottenuta rinominando le variabili di una formula F1, è detta variante di F1.
- Esempio La formula: $\forall x \exists Y p(X,Y)$ è una variante della formula $\forall W \exists Z p(W,Z)$.

SEMANTICA

- Occorre associare un significato ai simboli.
- Ogni sistema formale è la modellizzazione di una certa realtà (ad esempio la realtà matematica).
- Un'interpretazione è la costruzione di un rapporto fra i simboli del sistema formale e tale realtà (chiamata anche dominio del discorso).
- Ogni formula atomica o composta della logica dei predicati del primo ordine può assumere il valore vero o falso in base alla frase che rappresenta nel dominio del discorso.

Esempio:

- \forall X \forall Y \forall Z (op(X, Y, Z) \rightarrow op(Y, X, Z))
- se X, Y, Z variano sull'insieme dei numeri reali tale formula è vera se il simbolo di predicato "op" ha il significato di un operatore commutativo (es: somma o moltiplicazione), falsa se l'operatore non è commutativo (es. sottrazione o divisione).

INTERPRETAZIONE

- Dato un linguaggio del primo ordine L un'interpretazione per L definisce un dominio non vuoto D e assegna:
 - a ogni simbolo di costante in C, una costante in D;
 - a ogni simbolo di funzione n-ario F, una funzione:
 - F: $D^n \rightarrow D$;
 - a ogni simbolo di predicato n-ario in P una relazione in Dⁿ, cioè un sottoinsieme di Dⁿ.
- Esempio: Linguaggio del primo ordine, L, nel quale si ha una costante "0", un simbolo di funzione unaria "s" e un simbolo di predicato binario "p".

INTERPRETAZIONE

- Interpretazione I1 D: numeri naturali.
 - "0" rappresenta il numero zero.
 - "s" rappresenta il successore di un numero naturale
 - "p" rappresenta la relazione binaria "≤"
- Interpretazione I2 D: numeri interi negativi.
 - "0" rappresenta il numero zero.
 - "s" rappresenta il predecessore di un numero naturale
 - "p" rappresenta la relazione binaria "≤"

VALORE DI VERITÀ DI UNA fbf

- Data un'interpretazione il valore di verità di una fbf si definisce secondo le seguenti regole.
- Formula atomica "ground" ha valore vero sotto un'interpretazione quando il corrispondente predicato è soddisfatto (cioè quando la corrispondente relazione è vera nel dominio). La formula atomica ha valore falso quando il corrispondente predicato non è soddisfatto.
- Interpretazione I1.

```
p(0,s(0)) vero p(s(0), 0) falso
```

Interpretazione I2.

```
p(0,s(0)) falso
p(s(0), 0) vero
```

VALORE DI VERITÀ DI UNA fbf (2)

• <u>Formula composta</u> il valore di verità di una formula composta rispetto a un'interpretazione si ottiene da quello delle sue componenti utilizzando le tavole di verità dei connettivi logici.

A	В	~A	A ∧ B	A V B	$A \Rightarrow B$	A⇔ B
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Nota: l'implicazione $A \Rightarrow B$ è diversa rispetto al "se allora" utilizzato nel linguaggio naturale.

A: antecedente B: conseguente

VALORE DI VERITÀ DI UNA fbf (3)

Data la formula F:

```
volano(asini) ⇒ ha_scritto(manzoni,promessi_sposi)
```

assumendo l'interpretazione più intuitiva, F ha valore vero, poiché l'antecedente ha valore falso in tale interpretazione.

La formula F:

$$p(s(0),0) \Rightarrow p(0,s(0))$$

ha valore vero nell'interpretazione I1 poiché l'antecedente ha valore falso, mentre ha valore falso in I2 poiché a un antecedente vero corrisponde un conseguente falso.

 Formula quantificata esistenzialmente: una formula del tipo ∃X F è vera in un'interpretazione I se esiste almeno un elemento d del dominio D tale che la formula F', ottenuta assegnando d alla variabile X, è vera in I. In caso contrario F ha valore falso.

VALORE DI VERITÀ DI UNA fbf (2)

Esempio

La formula $\exists X p(X,s(0))$ ha valore vero nell'interpretazione I1 in quanto esiste un numero naturale, zero, minore di uno, tale che la formula F'=p(0,s(0)) ha valore vero in I1.

4) <u>Formula quantificata universalmente</u>: una formula del tipo ∀X F è vera in un'interpretazione I se per ogni elemento d del dominio D, la formula F', ottenuta da F sostituendo d alla variabile X, è vera in I. Altrimenti F ha valore falso.

Esempio

La fbf ∀Y p(0,Y) ha valore vero rispetto alle interpretazioni I1 (dove viene interpretata come "0 è minore o uguale a ogni intero positivo Y"), mentre ha valore falso rispetto a I2 poiché esiste almeno un elemento del dominio che la falsifica (esempio non è vero che "0 è minore o uguale a −1").

MODELLI

- Data una interpretazione I e una fbf chiusa F, I è un modello per F se e solo se F è vera in I.
 - Esempio: Per la fbf ∀Y p(0,Y) l'interpretazione I1 è un modello, mentre I2 non lo è.
- Una fbf è soddisfacibile se e solo se è vera almeno in una interpretazione, ovvero se esiste almeno un modello per essa.
- Una fbf che ha valore vero per tutte le possibili interpretazioni, cioè per cui ogni possibile interpretazione è un modello, è detta logicamente valida.
 - Esempio: La fbf $\forall X p(X) \lor \sim (\forall Y p(Y))$ è logicamente valida. Infatti, le formule $\forall X p(X) e \ \forall Y p(Y)$ sono semplici varianti della stessa formula F e quindi hanno i medesimi valori di verità per qualunque interpretazione. In generale, F $\lor \sim$ F ha sempre valore vero, in modo indipendente dall'interpretazione.
- F logicamente valida ⇔ ~F è non soddisfacibile.
- F è soddisfacibile ⇔ ~F non è logicamente valida.

INSIEMI DI FORMULE (1)

 Un insieme di formule chiuse del primo ordine S è <u>soddisfacibile</u> se esiste una interpretazione I che soddisfa <u>tutte le formule</u> di S (cioè che è un modello per ciascuna formula di S). Tale interpretazione è detta modello di S.

Esempio

- Si consideri il seguente insieme di formule S:
- S={ \forall Y p(Y,Y), p(s(0),0) \Rightarrow p(0,s(0))}.
- L'interpretazione I1 è modello di S, mentre I2 non lo è. In I2 è infatti soddisfatta la prima formula dell'insieme, ma non la seconda.
- Un insieme di formule S che non può essere soddisfatto da alcuna interpretazione, è detto <u>insoddisfacibile</u> (o inconsistente). Ad esempio l'insieme di formule {A,~A} è insoddisfacibile.

21

INSIEMI DI FORMULE (2)

 Un insieme di formule chiuse del primo ordine S è soddisfacibile se esiste una interpretazione I che soddisfa <u>tutte le formule</u> di S (cioè che è un modello per ciascuna formula di S). Tale interpretazione è detta modello di S.

- Esempi di insiemi di formule insoddisfacibili sono:
 - S1={ \sim (\exists X \forall Y p(X,Y)), \exists X \forall Y p(X,Y)}
 - S2={ $p(s(0),0) \Rightarrow p(0,s(0)), p(s(0),0), \sim p(0,s(0))$ }
 - In S1, infatti, compaiono una formula e la sua negazione. In S2, per ogni interpretazione in cui p(s(0),0) e $\sim p(0,s(0))$ sono vere, la formula $p(s(0),0) \Rightarrow p(0,s(0))$ non è vera, per la tabella di verità della negazione e dell'implicazione.

CONSEGUENZA LOGICA (1)

 Una formula F <u>segue logicamente</u> (o è conseguenza logica) da un insieme di formule S (e si scrive S |= F), se e solo se ogni interpretazione I che è un modello per S, è un modello per F.

Esempio

- Si consideri l'insieme di fbf S:
- {p(0,0), \forall X p(X,X), \forall X \forall Y (p(X,Y) \Rightarrow p(X,s(Y)))}
- Da S segue logicamente la formula F=p(0,s(0)) poiché ogni interpretazione I che soddisfa S soddisfa anche F.
- Dall'insieme S, invece, non segue logicamente la formula F1: p(s(0),0) in quanto esiste un'interpretazione (I1) che soddisfa S, ma non F1.

CONSEGUENZA LOGICA (2)

 Una formula F <u>segue logicamente</u> (o è conseguenza logica) da un insieme di formule S (e si scrive S |= F), se e solo se ogni interpretazione I che è un modello per S, è un modello per F.

Proprietà

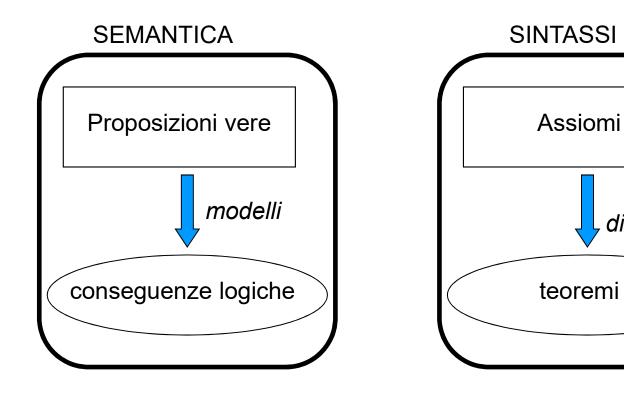
- Se una fbf F segue logicamente da S (S |= F), allora l'insieme S
 ∪ {~F} è insoddisfacibile.
- Viceversa, se S ∪ {~F} è insoddisfacibile (e S era soddisfacibile),
 allora F segue logicamente da S.
- Difficile lavorare a livello semantico (interpretazione, modelli). Quindi si lavora a livello sintattico.

SISTEMI DI REFUTAZIONE

- I sistemi di refutazione si basano su questa proprietà: per dimostrare S |= F supposto S soddisfacibile è sufficiente dimostrare che S∪{~F} è insoddisfacibile.
- Problema interessante:

Determinare se una formula F segue logicamente da S (ovvero che $S \cup \{ \sim F \}$ è insoddisfacibile) utilizzando solo <u>semplici trasformazioni sintattiche</u> (regole di inferenza), possibilmente ripetitive e quindi automatizzabili, e non introducendo concetti quali significato o interpretazione o modello.

Logica: apparato semantico e sintattico



Regole

di inferenza

TEORIE DEL PRIMO ORDINE (1)

- Calcolo proposizionale: verifica di formula/e vera/e tramite le tavole di verità
- Calcolo dei predicati del primo ordine: tavole di verità troppo complesse. Dominio di interpretazione estremamente grande, se non infinito. Si ricorre al metodo assiomatico (noto come proof theory).
- La logica dei predicati prosizionale e del primo ordine può essere formulata come sistema assiomatico-deduttivo.

Teoria assiomatica

- formule ben formate ritenute vere: assiomi
- criteri di manipolazione sintattica: regole di inferenza derivano fbf da fbf
- Scopo: produrre nuove formule sintatticamente corrette (teoremi).

TEORIE DEL PRIMO ORDINE (1)

Semplificazioni:

(A
$$\land$$
B) equivale a (\sim (A \rightarrow (\sim B)))
(A \checkmark B) equivale a ((\sim A) \rightarrow B)
(A = B) equivale a ((A \rightarrow B) \land (B \rightarrow A))

Inoltre, per i quantificatori:

∃X A abbrevia ~(∀X ~A) ∀X A abbrevia ~(∃X ~A)

REGOLE DI INFERENZA

Modus Ponens (MP):

che deriva da due formule del tipo A e $A \rightarrow B$ la nuova formula B.

• Specializzazione (Spec):

$$\frac{\forall X A}{A(t)}$$

 Da una formula quantificata universalmente è possibile derivare una formula identica all'originale in cui la variabile X è sostituita da un elemento del dominio del discorso (costante e funzione).

DIMOSTRAZIONE DI TEOREMI (1)

- Dimostrazione: sequenza finita di fbf f₁, f₂, ..., f_n, tale che ciascuna f_i o
 è un assioma oppure è ricavabile dalle fbf precedenti mediante una
 regola di inferenza.
- Teorema: L'ultima fbf di ogni dimostrazione.
- Prova del teorema: sequenza di regole di inferenza applicate.
- Una fbf F è derivabile in una teoria T (T |- F) se esiste una sequenza di fbf f₁, f₂, ..., f_n, tale che f_n = F e, per ogni i, o f_i è un assioma di T, oppure è ricavabile dalle fbf precedenti mediante una regola di inferenza di T.

DIMOSTRAZIONE DI TEOREMI (2)

Esempio

 Teoria T: assiomi propri (relazione di minore uguale sui numeri naturali):

$$p(0,0)$$
 (A1)
 $\forall X \ \forall Y \ (p(X,Y) \Rightarrow p(X,s(Y)))$ (A2)
 $\forall X \ p(X,X)$ (A3)

- Teorema p(0,s(0)) (cioè T |- p(0,s(0)))
- Trasformazione da Spec e A2:

$$p(0,0) \Rightarrow p(0,s(0)))$$

applicando MP $p(0,s(0))$

DECIDIBILITÀ

- Teoria decidibile teoria per la quale esiste un metodo meccanico per stabilire se una qualunque fbf è un teorema o non lo è.
- Il calcolo dei predicati del primo ordine non è decidibile, ma semidecidibile: se una formula è un teorema, esiste un metodo meccanico che la deriva in un numero finito di passi. Se invece la formula non è un teorema, non è garantita, in generale, la terminazione del metodo meccanico (Turing 1936, Church 1936).
- Una teoria del primo ordine è un insieme di fbf chiuse (assiomi) e si può quindi parlare di modello di una teoria.
- Un modello per una teoria del primo ordine T è un'interpretazione che soddisfa tutti gli assiomi di T (assiomi logici e assiomi propri).
- Se T ha almeno un modello viene detta consistente (o soddisfacibile).

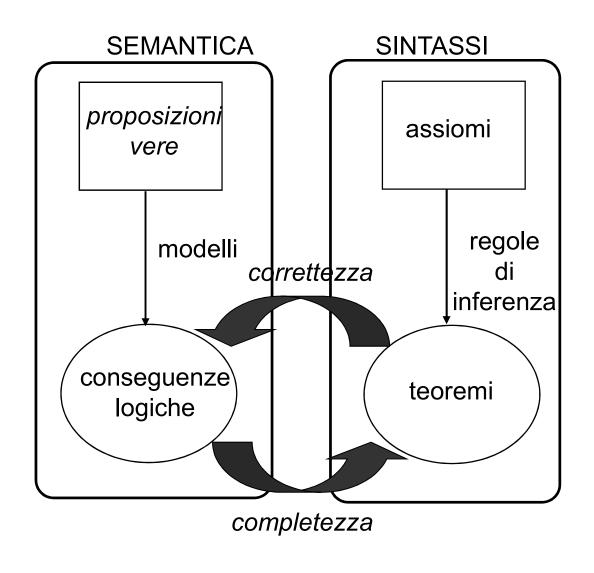
CORRETTEZZA E COMPLETEZZA (1)

- Una teoria assiomatica è corretta se i teoremi dimostrati seguono logicamente dagli assiomi della teoria.
- Una teoria assiomatica è completa se tutte le fbf che seguono logicamente dalla teoria possono essere dimostrati come teoremi della teoria.

 Se T è corretta e completa è garantita l'equivalenza tra l'aspetto sintattico e semantico

$$T \mid -F \Leftrightarrow T \mid = F$$
.

CORRETTEZZA E COMPLETEZZA (2)



ESEMPIO

 Si consideri una teoria del primo ordine T, data dai seguenti assiomi propri che rappresentano la relazione di minore sui numeri naturali:

$$p(0,s(0)) \qquad (A1)$$

$$\forall X \forall Y (p(X,Y) \rightarrow p(X,s(Y))) \qquad (A2)$$

$$\forall X p(X,s(X)) \qquad (A3)$$

- Le regole di inferenza di T siano Modus Ponens, Specializzazione e la seguente regola:
- Abduzione (ABD):

$$\frac{B,A \to B}{A}$$

ESEMPIO

- In T si deriva come teorema la formula p(0,0) applicando le seguenti trasformazioni:
 - da Spec. e A2:

$$- ∀X∀Y(p(X,Y) → p(X,s(Y))) => ∀Y (p(0,Y) → p(0,s(Y)))$$
(T1)

• da Spec. e T1:

$$- p(0,0) \rightarrow p(0,s(0))$$
 (T2)

applicando ABD a T2 e A6:

$$- p(0,0)$$
 (T5)

ESEMPIO

A causa dell'applicazione dell'abduzione, questa teoria non è corretta: un'interpretazione che ha come dominio l'insieme dei numeri naturali e associa al simbolo di funzione "s" la funzione successore e al simbolo di predicato "p" la relazione < (minore) è un modello per gli assiomi, ma non per la formula p(0,0).

Esempio

- sta-male(mario).
- \forall X (ha-epatite(X) \rightarrow sta-male(X)).

si conclude:

ha-epatite(mario).

ERRORE!!

ABDUZIONE: ESEMPI

```
\forall X (person(X) \rightarrow mortal(X)).
```

- mortal(tweety).
- Allora deriviamo: person(tweety).
- Vincoli:
 - → X not(person(X) and bird(X)).
 - Se aggiungiamo: bird(tweety)
 - violiamo i vincoli.
- Esempio

Ragionamento abduttivo usato per diagnosi di guasti

ABDUZIONE: ESEMPI

- Teoria:
 - ruota_traballante:- raggi_rotti.
 - ruota_traballante:- gomma_sgonfia.
 - gomma_sgonfia:- valvola_difettosa.
 - gomma_sgonfia:- forata_camera_aria.
 - gomma_mantiene_aria.
- Vincoli:
 - :- gomma_sgonfia, gomma_mantiene_aria
- Goal
 - ?- ruota_traballante.
- Risposta: yes if raggi_rotti
- Mentre:
 - yes if valvola_difettosa
 - yes if forata_camera_aria
 - non sono accettabili in quanto violano i vincoli.

MONOTONICITÀ

 Un'altra proprietà fondamentale delle teorie del primo ordine è la monotonicità. Una teoria T è monotona se l'aggiunta di nuovi assiomi non invalida i teoremi trovati precedentemente.

Proprietà

- Sia Th(T) l'insieme dei teoremi derivabili da T. Allora T è monotona se Th(T)
 ⊆ Th(T∪H) per qualunque insieme aggiuntivo di assiomi H.
- Esistono regole di inferenza non monotone. Ad esempio la regola nota come Assunzione di Mondo Chiuso ("Closed World Assumption"):

Assunzione di Mondo Chiuso (CWA):

$$T \mid \neq A$$

$$\sim A$$

se una formula atomica "ground" A non è conseguenza logica di una teoria T,
 ~A si può considerare un teorema di T. Se alla teoria T si aggiunge l'assioma
 A, non si può più derivare ~A, da cui segue la non monotonicità del sistema di
 inferenza.

Sommario

- Gli agenti logici applicano inferenze a una base di conoscenza per derivare nuove informazioni.
- Concetti base della logica:
 - sintassi: struttura formale delle sentenze
 - semantica: verita` di sentenze rispetto ad interpretazioni/modelli
 - conseguenza logica (entailment): sentenza necessariamente vera data un'altra sentenza
 - inferenza: derivare (sintatticamente) sentenze da altre sentenze
 - correttezza (soundness): la derivazione produce solo sentenze che sono conseguenza logica.
 - Completezza (completeness): la derivazione puo' prdurre tutte le conseguenze logiche.