
An introduction to evolutionary computation

Andrea Roli
andrea.roli@unibo.it

Dept. of Computer Science and Engineering (DISI)
Campus of Cesena

Alma Mater Studiorum Università di Bologna

Outline

1 Basic principles

2 Genetic algorithms
Simple genetic algorithm
Extensions of the SGA

3 Genetic programming

4 Notable examples

5 References

Inspiring principle

Evolutionary Computation is inspired by natural evolution

Three observations:

• Adaptation: organisms are suited to their habitats

• Inheritance: offspring resemble their parents

• Natural selection: new, adapted types of organisms emerge
and those that fail to change adequately are subject to
extinction

Key concepts

• The fittest individuals have a high chance of having a
numerous offspring.

• The children are similar, but not equal, to the parents.

• The traits characterizing the fittest individuals spread across
the population, generation by generation.

EC techniques are not meant to simulate the biological
evolutionary processes, but rather aimed at exploiting these key
concepts for problem solving.

Evolutionary Computation

Evolutionary Computation encompasses:

• Genetic algorithms

• Genetic programming

• Evolution strategies

• Estimation of distribution algorithms

• . . .

Main applications

• System design

• Neural network training

• Signal processing

• Optimization (discrete and continuous)

• Robotics

• Time series analysis and forecasting

• Artificial Life

• Games

Genetic Algorithms

The Metaphor

BIOLOGICAL EVOLUTION ARTIFICIAL SYSTEMS

Individual ↔ A possible solution
Fitness ↔ Quality

Environment ↔ Problem

The Evolutionary Cycle

POPULATION

PARENTS
SELECTION

RECOMBINATION

MUTATION

OFFSPRING
REPLACEMENT/INSERTION

Main genetic operators

Mutation: introduce variability in the genotypes.

Recombination: combines the genetic material of the parents.

Selection: acts in the choice of parents whose genetic material is
then reproduced with variations.

Replacement/insertion: defines the new population from the
new and the old one.

• EC algorithms define a basic computational procedure which uses
the genetic operators.

• The definition of the genetic operators specifies the actual algorithm
and depends upon the problem at hand.

Genetic Algorithms

Developed by John Holland (early ’70) with the aim of:

• Understand adaptive processes of natural systems

• Design robust (software) artificial systems

• Directly derived from the natural metaphor

• Very simple model

• Programming oriented

A bit of terminology

• A population is the set of individuals (possible solutions)

• Individuals are also called genotypes

• Chromosomes are made of units called genes

• The domain of values of a gene is composed of alleles (e.g.,
binary variable ↔ gene with two alleles)

Simple Genetic Algorithm

Solutions are coded as bit strings

0 0 0 1 01 1 1 1 1

CHROMOSOME

GENE

Integer

Plan

Real

Rules

.....

GENOTYPE PHENOTYPE

Encoding examples

Optimization of a function of integer variable x ∈ [0, 100]. Possible
encodings:

• binary coding → string of 7 bit;

• 4 bits per digit → string of 12 bit.

Optimization of a function of real variable y ∈ [0, 1[. Possible
encoding:

• binary coding → string

SGA genetic operators (1)

Mutation: each gene has probability pM of being modified
(’flipped’)

0 0 0 1 01 1 0 1 1

0 0 0 1 01 1 1 1 1

SGA genetic operators (2)

Recombination or Crossover: cross-combination of two
chromosomes (loosely resembling biological crossover)

1 1 0 01 0 0 0 1 0 1 1 0 01 0

0 1 1 1

0 1 1 1

0 0 1 00 0 0 11 10 0 0 11 1

SGA genetic operators (3)

→ Proportional selection: the probability for an individual to be
chosen is proportional to its fitness.

Usually represented as a roulette wheel.

50%

10%

10%

25%

5%

I1 50
I2 25
I3 10
I4 10
I5 5

Genetic operators (4)

Generational replacement: The new generation replaces entirely
the old one.

• Advantage: very simple, computationally not expensive, easier
theoretical analysis.

• Disadvantage: good solutions might not be maintained in the
new population.

SGA: High-level algorithm

Initialize Population
Evaluate Population
while Termination conditions not met do
while New population not completed do

Select two parents for mating
Copy their chromosomes {Note: the parents are not deleted
from the population}
Apply crossover to produce two new individuals
Apply mutation to each new individual

end while
Population ← New population
Evaluate Population

end while

Termination conditions

• Execution time limit reached.

• Satisfactory solution(s) have been obtained.

• Stagnation (limit case: the population converged to the same
individual)

Example by hand
1/6

• Problem: find the chromosome with minimal distance from
11 . . . 1

• The fitness is given by the number of bits with value 1 (one
among many possible ways for defining it)

Example by hand
2/6

We tackle the problem with a SGA with the following setting:

• length of chromosome n = 8

• populations size popsize = 4

• One-point crossover (always applied)

• Mutation: each bit has a probability pm of being flipped. We
set pm = 1/n such that we have on average one flip per
chromosome (there are of course many other ways to define it)

• Selection: proportional

• New generation obtained with generational replacement
(according to the SGA scheme, the new population is the
offspring)

Example by hand
3/6

Initial random population:

00010110

00011100

11001011

00001001

Evaluation (with fitness and corresponding probabilities):

00010110 : 3 : 3/13

00011100 : 3 : 3/13

11001011 : 5 : 5/13

00001001 : 2 : 2/13

Example by hand
4/6

Generate two new chromosomes:

1) Select two chromosomes with a proportional rule:

00010110 : 3 : 3/13

11001011 : 5 : 5/13

2)Apply crossover (random crossover point):

000101.10 000101.11

->

110010.11 110010.10

3)Apply mutation

00010111 -> 01010111

11001010 -> 01000010

Example by hand
5/6

Generate the other two chomosomes:

1) Select two chromosomes with a proportional rule:

11001011 : 5 : 5/13

11001011 : 5 : 5/13

2)Apply crossover (random crossover point):

110.01011 110.01011

->

110.01011 110.01011

3)Apply mutation

11001011 -> 11001010

11001011 -> 11001111

Example by hand
6/6

New population and its evaluation:

01010111 : 5 : 5/17

01000010 : 2 : 2/17

11001010 : 4 : 4/17

11001111 : 6 : 6/17

...and we go on with generations until a termination condition is
verified.

Observations

• Genetic operators are blind with respect to the goal

• Their role is to recombine and variate the genetic material so
as to explore genetic combinations

• Favourable genetic variations are likely to be preserved by
selection

• Nevertheless, because of generational replacement, it is
possible that good individuals are not kept in the new
population. Therefore, a kind of elitism is always used

Why does it work?

Intuition:

• Crossover combines good parts from good solutions (but
sometimes it might achieve the opposite effect).

• Mutation introduces diversity.

• Selection drives the population toward high fitness.

Fitness landscape

Representation of the space of all possible genotypes, along with
their fitness.

Fitness landscape

The metaphor of landscape should be taken cum grano salis.

• One operator, one landscape.

• In some cases fitness landscapes are dynamic.

• Landscape ‘intuition’ might be misleading, because it might
implicitly suggest a metric in the search space that actually
does not exist.

The search process

Intuition:

• the GA performs an iterative sampling over the search space

• sampling is based on a probabilistic model

• the parameters of the model are tuned as a function of the
population fitness, so as to intensify the sampling around
promising regions

Process similar to importance sampling and model based search.

Schemata and building blocks

Holland provides a formal explanation of why the SGA ‘works’ in
terms of:

• Schemata

• Building blocks

Schemata

• A schema is a kind of mask: 001 ∗ 1 ∗ ∗0
• The symbol ∗ represents a wildcard: both 0 and 1 fits

• So, 1 ∗ 0 represents 100 and 110

Building blocks

• A building block is a pattern of contiguous bits

• HP: good solutions are composed of good building blocks

• The crossover puts together short building blocks and destroys
large ones

Implicit parallelism

• Every individual corresponds to a set of schemata

• The number of the best schemata increases exponentially

• The solution space is searched through schemata (hence
implicit parallelism)

Impact of building blocks

A SGA works well if:

1 Short good building blocks (correlate genes are adjacent)

2 Loose interaction among genes (low epistasis)

SGA: pros and cons

Pros:

• Extremely simple.

• General purpose.

• Tractable theoretical models.

Cons:

• Coding is crucial.

• Too simple genetic operators.

A general GA

• Solution coding (e.g., bit strings, programs, arrays of real
variables, etc.)

• Define a way for evaluating solutions (e.g., objective function
value, result of a program, behavior of a system, etc.)

• Define genetic operators.

Examples of crossover

Recombination:

• Multi-point crossover (recombination of more than 2 “pieces”
of chromosomes)

• Multi-parent crossover (the genetic material of a new
individual is taken from more than 2 parents)

• Uniform crossover (children created by mixing parent’s gene:
each parent k is associated a probability gk which is then used
to pick the value of gene i in the child)

Toward less simple GA

Selection:

• Different probability distribution (e.g., probability distribution
based on the ranking of individuals)

• Tournament Selection (iteratively pick two or more individuals
and put in the mating pool the fittest)

New population:

• Steady state scheme: the new population is composed of the
best individuals from the current population and the offspring

• Elitism: like replacement, but we keep the λ best individuals
from the current population (in case of fixed size populations,
the worst λ individuals of the offspring are removed)

Ex: real valued variables

- Solution: x ∈ [a, b], a, b ∈ R
- Mutation: random perturbation x → x ± δ, accepted if

x ± δ ∈ [a, b]

- Crossover: linear combination z = λ1x + λ2y , with λ1, λ2

such that a ≤ z ≤ b.

Example: permutations

- Solution: x = (x1, x2, . . . , xn) is a permutation of (1, 2, . . . , n).

- Mutation: random exchange of two elements in the n-ple.

- Crossover: like 2-point crossover, but avoiding value
repetition.

n-Queens

Place n queens on a n × n chessboard in such a way that the
queens cannot attack each other.

n-Queens

Genotype: a permutation of the numbers 1 through n

7 13 2 4 6 5 8

n-Queens

Mutation: swap two numbers

21 11 3 5 4 8 7 2 3 5 8 74 1

n-Queens

Crossover: combine two parents

7

1

8 7

5

6

8 7 6 5 4 3 2

3 5 2 6 41

8 7 6 2 4 1 3

3 5 4 2 81

n-Queens

Fitness: penalty of a queen is the number of queens it can check.

The fitness of the configuration is the sum of the single penalties.

GA design guidelines

• Always use mutation and make this operator tunable so as to
introduce controlled randomness.

• Use recombination operators only if they are able to combine
good solution parts. If not, do not use them.

• Prefer tournament selection first, the try other mechanism.

• Carefully design the fitness function so as to attain a
fitness-distance correlation (i.e., nearby solutions have close
fitness values).

Genetic Programming

• Can be seen as a ‘variant’ of GA: individuals are programs.

• Used to build programs that solve the problem at hand (⇒
specialized programs).

• Extended to automatic design in general (e.g., controllers and
electronic circuits).

• Fitness is given by evaluating the performance of the program
(based upon some defined criterion).

Genetic Programming

In most of the cases, individuals are represented as trees, which
encode programs.

>

1

+

2 IF

3 4

T 6

Operators

Mutation: Random selection of a subtree which is substituted by
a well formed random generated subtree.

>

1

+

2 IF

3 4

6T

>

6*

1

+

2 IF

3 4

2Y

Operators

Crossover: Swap two randomly picked subtrees.

4

+

4

+

5

5>

+

2 IF

3 4

T 6

>

IF

3 4

T 6

IF

<

1

+

2

2

IF

<

1

2

The realm of GP

• Black art problems.
E.g.,automated synthesis of analog electrical circuits, controllers,
antennas, and other areas of design.

• Programming the unprogrammable, involving the automatic
creation of computer programs for unconventional computing
devices.
E.g.,cellular automata, parallel systems, multi-agent systems, etc.

Coevolution

Species evolve in the same environment

→ dynamic environment

Two kinds:

• Competitive

• Cooperative

Competitive Coevolution

. Species evolve trying to face each other

• E.g., prey/predator, herbivore/plants.

Applications: ALU design for Cray computer, (pseudo-)random
number generator.

Cooperative Coevolution

. Species evolve complementary capabilities to survive in their
environment

• E.g., host/parasite.

Applications: ‘niche’ genetic algorithms for multi-criteria
optimization.

Examples

Evolutionary robotics

• Robots are controlled by means of neural networks.

• The neural network is designed by means of an EC technique.

• The fitness is computed by simulating the robot.

• The best resulting controller is tested in a real setting.

Evolutionary robotics

(taken from D. Floreano and L. Keller, Evolution of Adaptive Behaviour

in Robots by Means of Darwinian Selection, PLOS Biology, Jan. 2010,

Vol. 8, Issue 1)

NASA antenna design

• Space Technology 5 Project.

• Antennas are defined through a LOGO-like programming
language.

• Antenna construction programs are evolved by means of an
EC technique.

EC for repairing and testing

• EC can be applied to generate sets of tests for system testing
and verification. E.g.: hard test instances for optimisation
algorithms or tests for circuits.

• EC can also be used to repair software, as in GenProg
(http://dijkstra.cs.virginia.edu/genprog/)

Suggested bibliography (1/2)

• M.Mitchell. Genetic Algorithms. MIT Press, 1999.

• Z.Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs, Springer, 1992.

• D.E.Golberg. Genetic Algorithms in Search, Optimization and
Machine Learning . Addison-Wesley, 1989.

• W.B.Langdon, R.Poli. Foundations of Genetic Programming .
Springer, 2001.

Suggested bibliography (2/2)

• R. Poli, W.B. Langdon, N.F. McPhee, J. Koza. A Field Guide
to Genetic Programming, http://www.gp-field-guide.org.uk/
(free download –Creative Commons).

• S. Nolfi and D. Floreano, Evolutionary robotics. The MIT
Press, 2000.

• A.E. Eiben & J.E. Smith, Introduction to evolutionary
computing. Springer, 2nd. edition, 2015.

	Basic principles
	Genetic algorithms
	Simple genetic algorithm
	Extensions of the SGA

	Genetic programming
	Notable examples
	References

