
Semantic Analysis in Prolog

Roberto Basili,

Department of Computer Science, System and Production
University of Roma, Tor Vergata

Via Della Ricerca Scientifica, 00133, Roma, ITALY
e-mail: basili@info.uniroma2.it

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

1 Semantics in NLP and Predicate Calculus
Compositionality in NL

2 Compositionality in Prolog
Lambda-Calculus & NL
β -reduction
β -reduction and Prolog
Compositionality and Verbs

3 Lexicons, Semantics and Compositionality
Semantics of Prepositional Modifiers
Semantics of Prepositional Verb Arguments
Semantics of Lexical Modifiers
Introduction to Semantics of Quantification in NLs

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Outline

The semantic level: Interpretation and compositionality
A simple compositional semantic model for NL in λ -calculus
DCG Formalism and compositionality
Roles, Thematic structures and Quantification

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Predicate Calculus in NLP: Objectives

Define a semantic representation for NL
Determine a procedural semantics for the interpretation
Automate all inferences allowed by sentences under such a
representation

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

How to use FOL: first approximation

Gianni corre → corre(g)
Gianni vede Michele → vede(g,m)

Gianni g

Michele m

corre { x : corre(x) }
vede { <x,y> : vede(x,y) }

It represent a syntax for the semantic level
how to compute it?

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality

The meaning of an expression is some function of the meaning of its
components and of the operators used to combine the latter ones (i.e.
syntactic dependencies)

the meaning of Michele vede Gianni is a function of Michele and
vede Gianni
the meaning of vede Gianni is a function of the meanings of vede
and Gianni
Compositional interpretation proceeds recursively with respect to
the syntactic operators

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

FOL for Compositionality in NL semantics

FOL has a compositional semantics so that the mapping from
linguistic expressions to FOL must be compositional too.
This must be systematic: the meaning of complex expressions
must systematically correspond to the meaning of the simpler
constituent components.
We need:

a mapping for the basic expressions
a semantic interpretation for each syntactic rule

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality in NL

The compositionality principle for NL expressions

Every syntactic rule can be seen as a function from combinations
(i.e. sequences) of morphems (or grammatical categories)
results in an output expression (e.g. a partial tree)
Every syntactic rule R applied to α1,α2, ...,αn results in the
expression ξ as:

ξ = R(α1, ...,αn)

It is reasonable to assume that every atomic element α (e.g.
nouns) corresponds to a real-world entity, property or relation as
well, sem(α) (es. a proper noun maps to an individual)
Every R corresponds to a semantic counterpart R′ such that:
if ξ = R(α1, ...,αn) then

sem(ξ) = R′(sem(α1), ...,sem(αn))

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality in NL

The compositionality principle for NL expressions

Every syntactic rule can be seen as a function from combinations
(i.e. sequences) of morphems (or grammatical categories)
results in an output expression (e.g. a partial tree)
Every syntactic rule R applied to α1,α2, ...,αn results in the
expression ξ as:

ξ = R(α1, ...,αn)

It is reasonable to assume that every atomic element α (e.g.
nouns) corresponds to a real-world entity, property or relation as
well, sem(α) (es. a proper noun maps to an individual)
Every R corresponds to a semantic counterpart R′ such that:
if ξ = R(α1, ...,αn) then

sem(ξ) = R′(sem(α1), ...,sem(αn))

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality in Prolog

Kim k
Sam s
Kim left left(k)

Sam saw Kim saw(sam,kim)

pn(k) --> [kim].

pn(s) --> [sam].

np(Sem) --> pn(Sem).

vp(Sem) --> iv(Sem).

iv(leave(X)) --> [left].

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality in Prolog

How to interpret the non terminal S, in S -> NP VP?

s(SSem) --> np(NPSem), vp(VPSem).

How to deal with transitive verbs?

vp --> tv, np.

tv(see(X,Y)) -->

[saw].

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality in Prolog

vp --> tv, np.

tv(see(X,Y)) --> [saw].

How to unify k with Y (rather than with X)?

Sol1. vp(V(_,NP)) -->

v(V(_,NP)),

np(NP).

Sol2. vp(Sem) -->

v(Sem),

np(NP),

{Sem=V(_,NP)}.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality in Prolog - Problems

Sol1. vp(V(_,NP)) -->

v(V(_,NP)),

np(NP).

Sol2. vp(Sem) -->

v(Sem),

np(NP),

{Sem=V(_,NP)}.

Problems:
A variable V stands for a predicate (bad use of Prolog);
It is not flexible, e.ghow to deal with . give(X,Y,Z)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Lambda-Calculus & NL

A formal language for NL semantics: λ -Calculus

Giuseppe corre should produce:
corre(Giuseppe)

Every student writes a program :
∀x student(x) ⇒ (∃p)(program(p)&write(p,x))

Main consequences:
VP map to predicative symbols
Proper nouns map to atomic (ground) symbols
The interpretations of VPs (i.e. logical forms called VP’) are
functions from entities to propositions
Quantification generates more complex structures

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Lambda-Calculus & NL

A formal language for NL semantics: λ -Calculus

Giuseppe corre should produce:
corre(Giuseppe)

Every student writes a program :
∀x student(x) ⇒ (∃p)(program(p)&write(p,x))

Main consequences:
VP map to predicative symbols

Proper nouns map to atomic (ground) symbols
The interpretations of VPs (i.e. logical forms called VP’) are
functions from entities to propositions
Quantification generates more complex structures

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Lambda-Calculus & NL

A formal language for NL semantics: λ -Calculus

Giuseppe corre should produce:
corre(Giuseppe)

Every student writes a program :
∀x student(x) ⇒ (∃p)(program(p)&write(p,x))

Main consequences:
VP map to predicative symbols
Proper nouns map to atomic (ground) symbols

The interpretations of VPs (i.e. logical forms called VP’) are
functions from entities to propositions
Quantification generates more complex structures

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Lambda-Calculus & NL

A formal language for NL semantics: λ -Calculus

Giuseppe corre should produce:
corre(Giuseppe)

Every student writes a program :
∀x student(x) ⇒ (∃p)(program(p)&write(p,x))

Main consequences:
VP map to predicative symbols
Proper nouns map to atomic (ground) symbols
The interpretations of VPs (i.e. logical forms called VP’) are
functions from entities to propositions
Quantification generates more complex structures

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Lambda-Calculus & NL

Functions in λ -Calcolo

We define functions through slight extensions of equations:
f (x) = x + 1
A formalism with a better abstraction for the example function f
is:

λx .x + 1

(λx .x + 1)(3) ((λx .(x + 1))(3)) is equivalent to 3 + 1

Main consequences:
No different names are used for different functions
Only operations Ω are necessary to compute f

β -reduction: (λx .Ω)(a) generates [Ω]{x = a} while,

(λx .λy .Ω)(a)(b) = λy .Ω{x = a}(b) = [Ω]{x = a,y = b}

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Lambda-Calculus & NL

λ -Calculus: Sintax

When φ is a formula and v a variable then λv .φ is a predicate. In
general, when ψ is an n-ary predicate and v is a variable, then λv .ψ
is an n + 1-ary predicate.

λx .corre(x)

λx .vede(x ,g)

λx .vede(m,x)

λy .λx .vede(x ,y)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Lambda-Calculus & NL

λ -Calculus: Semantics

When φ is a formula and v is a variable then λv .φ is the
characteristic function of the set of real-world objects that satisfy φ

(i.e. they make it true).
λx .corre(x)

λx .vede(x ,g)

λx .vede(m,x)

λy .λx .vede(x ,y)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction

β -reduction and Compositional Semantics

Equivalent expressions:
(λx .corre(x)) (g) corre(g)
(λx .vede(x ,g))(m) vede(m,g)
(λx .vede(m,x))(g) vede(m,g)

The computation of the compositional semantics is mapped into the
recursive application of functions (according to the underlying
syntactic structure).

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction

β -reduction

The beta-reduction (λx .Ω)a operates by substituting contemporarily
all the (free) occurrences of the variable x in Ω with the expression a.

Operator Λ-Expression Result
β -reduction: (λx .Ω)a [Ω]{x = a}

(λx .λy .Ω)(a)(b) λy .Ω{x = a}(b) = [Ω]{x = a,y = b}

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction

β -reduction and Compositional Semantics

:

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction

β -reduction and Compositional Semantics

Giuseppe corre: corre(giuseppe)

S → NP VP
Semantic Rule1 (intransitive verbs):

IF the Logic Form (FL) of NP is NP’ and the FL of VP is VP’ :
THEN the FL of S’ is given by VP’(NP’)

Consequences:
- a good candidate as a VP’ for the verb corre is: λx .corre(x)
- a standard mapping of proper nouns (e.g.) Giuseppe into
domain constants (e.g. giuseppe) is adopted.
S′ = VP ′(NP ′) = (λx .corre(x))(giuseppe) = corre(giuseppe)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction

β -reduction and Compositional Semantics (2)

Giuseppe usa Prolog: usa(giuseppe,prolog)
VP → V NP

Semantic Rule2 (transitive verbs):

IF the FL of NP is NP’ and the FL of V is V’ :
THEN the FL of VP’ is given by V’(NP’)

Consequences (in modelling V’):
usa: λx .λy .usa(y ,x)

S′ = VP ′(NP ′
0) =

= V ′(NP ′
1)(NP ′

0) = (λx .λy .usa(y ,x))(prolog)(giuseppe) =
= usa(giuseppe,prolog)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog

First, syntactic rules S → NPVP are modeled in a standard
way:
They have a standard DCG Form as:
s(SP) --> np(NP), vp(VP).

The DCG format corresponds to the following list manipulation
operation in the following standard syntax:
s(SP, InputList, OutputList) :-

np(NP, InputList, TmpList),

vp(VP, TmpList, OutputList).

A sentence is recognized as a legal SP iff
?-s(SP, SentenceList, []) is true.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog

First, syntactic rules S → NPVP are modeled in a standard
way:
They have a standard DCG Form as:
s(SP) --> np(NP), vp(VP).

The DCG format corresponds to the following list manipulation
operation in the following standard syntax:
s(SP, InputList, OutputList) :-

np(NP, InputList, TmpList),

vp(VP, TmpList, OutputList).

A sentence is recognized as a legal SP iff
?-s(SP, SentenceList, []) is true.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog

Given a syntactic rule in a standard DCG Form as:
s(SP) --> np(NP), vp(VP).

In semantic terms, SP must be derived compositionally from NP

and VP.
HOW: VP is applied to NP !!!!

s(S) --> np(NP), vp(VP), {betareduce(VP,NP,S)}.

betareduce(Arg^Expr, Arg, Expr).

...

vp(X^corre(X)) --> [corre]. // lexical rule for "corre"

np(giuseppe) --> [giuseppe]. //lexical rule for "Giuseppe"

...

?-s(S,[giuseppe,corre],[]).

S = corre(giuseppe)

Yes

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog

Given a syntactic rule in a standard DCG Form as:
s(SP) --> np(NP), vp(VP).

In semantic terms, SP must be derived compositionally from NP

and VP.
HOW: VP is applied to NP !!!!

s(S) --> np(NP), vp(VP), {betareduce(VP,NP,S)}.

betareduce(Arg^Expr, Arg, Expr).

...

vp(X^corre(X)) --> [corre]. // lexical rule for "corre"

np(giuseppe) --> [giuseppe]. //lexical rule for "Giuseppe"

...

?-s(S,[giuseppe,corre],[]).

S = corre(giuseppe)

Yes

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog

S → NP VP
DCG Form: s(SP) --> np(NP), vp(VP).

SP must be derived compositionally from NP and VP.
HOW: VP is applied to NP !!!!

s(S) --> np(NP), vp(VP), {betareduce(VP,NP,S)}.

betareduce(Arg^Expr, Arg, Expr).

...

vp(X^corre(X)) --> [corre]. // lexical rule for "corre" (runs)

np(giuseppe) --> [giuseppe]. //lexical rule for "Giuseppe"

...

?-s(S,[giuseppe,corre],[]).

S = corre(giuseppe)

Yes

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog

S → NP VP
DCG Form: s(SP) --> np(NP), vp(VP).

SP must be derived compositionally from NP and VP.
HOW: VP is applied to NP !!!!

s(S) --> np(NP), vp(VP), {betareduce(VP,NP,S)}.

betareduce(Arg^Expr, Arg, Expr).

...

vp(X^corre(X)) --> [corre]. // lexical rule for "corre" (runs)

np(giuseppe) --> [giuseppe]. //lexical rule for "Giuseppe"

...

?-s(S,[giuseppe,corre],[]).

S = corre(giuseppe)

Yes

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog

S → NP VP
DCG Form: s(SP) --> np(NP), vp(VP).

SP must be derived compositionally from NP and VP.
HOW: VP is applied to NP !!!!

s(S) --> np(NP), vp(VP), {betareduce(VP,NP,S)}.

betareduce(Arg^Expr, Arg, Expr).

...

vp(X^corre(X)) --> [corre]. // lexical rule for "corre" (runs)

np(giuseppe) --> [giuseppe]. //lexical rule for "Giuseppe"

...

?-s(S,[giuseppe,corre],[]).

S = corre(giuseppe)

Yes

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog

Given ?-s(S,[giuseppe,corre],[]).

CALL(s(S,[giuseppe,corre],[]))

CALL(np(NP,[giuseppe,corre],L1))

EXIT(np(giuseppe,[giuseppe,corre],[corre]). %consuma NP

CALL(vp(VP,[corre],[])),

EXIT(vp(X^corre(X),[corre],[]). //consuma VP

CALL(betareduce(X^corre(X), giuseppe, corre(X)).

%unifica Arg con giuseppe

EXIT(betareduce(giuseppe^corre(giuseppe), giuseppe,

corre(giuseppe)).

EXIT(s(corre(giuseppe), [giuseppe,corre],[]))

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog (2)

s(SP) --> np(NP), vp(VP).

vp(VP) --> tv(NP), np(NP).

Transitive verbs have a different lexical form.

vp(VP) --> iv(VP).

vp(VP) --> tv(V), np(NP), {betareduce(V,NP,VP)}.

s(S) --> np(NP), vp(VP), {betareduce(VP,NP,S)}.

betareduce(Arg^Expr, Arg, Expr).

...

tv(X^Y^usa(Y,X)) --> [usa].

np(giuseppe) --> [giuseppe].

np(prolog) --> [prolog].

...

vp(Y^usa(Y,prolog)) --> tv(X^Y^usa(Y,X)), np(prolog),

{betareduce(X^Y^usa(Y,X), prolog, Y^usa(Y,prolog))}

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

β -reduction and Prolog

Compositional semantics in Prolog (2)

s(SP) --> np(NP), vp(VP).

vp(VP) --> tv(NP), np(NP).

Transitive verbs have a different lexical form.
vp(VP) --> iv(VP).

vp(VP) --> tv(V), np(NP), {betareduce(V,NP,VP)}.

s(S) --> np(NP), vp(VP), {betareduce(VP,NP,S)}.

betareduce(Arg^Expr, Arg, Expr).

...

tv(X^Y^usa(Y,X)) --> [usa].

np(giuseppe) --> [giuseppe].

np(prolog) --> [prolog].

...

vp(Y^usa(Y,prolog)) --> tv(X^Y^usa(Y,X)), np(prolog),

{betareduce(X^Y^usa(Y,X), prolog, Y^usa(Y,prolog))}

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality and Verbs

Interpretation of verbs (tr/intr)

Every verbal phrase for transitive and intransitive verbs obeys to:
A DCG grammar vp(VP) --> tv(NP), np(NP).

Some mechanisms for implementing compositionality
s(S) --> np(NP), vp(VP), {betareduce(VP,NP,S)}.

betareduce(Arg^Expr, Arg, Expr).

or more syntetically

s(S) --> np(Arg), vp(Arg^S).

A Lexicon expressing the different simple lexical entries
tv(X^Y^usa(Y,X)) --> [usa].

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality and Verbs

Observations

Compositional semantics is strongly lexicalized (verbs and
nouns)
The number of arguments varies across verbs and ...
... across verb senses (i.e. operate a patient vs. operate in a
market
The lexicon also include preference rules for ambiguous
phenomena (per es. PP dependencies that are wildly
ambiguous)
Knowledge of the domain is crucial for imlpementing and
optimizing these mechanisms

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality and Verbs

Outline (1.1)

Semantic analysis has the objective of generating a
truth-conditional representation of the meaning of NL sentences

Compositional semantics is mapped into a recursive process
applied to the syntactic material produced during parsing
Functional programming maps the semantic analysis task to a
recursive process combining lexical and grammatical functions
We presented simple models for the semantic interpretation of
major lexical classes: coomon nouns, proper nouns, transitive
and intransitive verbs

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality and Verbs

Outline (1.1)

Semantic analysis has the objective of generating a
truth-conditional representation of the meaning of NL sentences
Compositional semantics is mapped into a recursive process
applied to the syntactic material produced during parsing

Functional programming maps the semantic analysis task to a
recursive process combining lexical and grammatical functions
We presented simple models for the semantic interpretation of
major lexical classes: coomon nouns, proper nouns, transitive
and intransitive verbs

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality and Verbs

Outline (1.1)

Semantic analysis has the objective of generating a
truth-conditional representation of the meaning of NL sentences
Compositional semantics is mapped into a recursive process
applied to the syntactic material produced during parsing
Functional programming maps the semantic analysis task to a
recursive process combining lexical and grammatical functions

We presented simple models for the semantic interpretation of
major lexical classes: coomon nouns, proper nouns, transitive
and intransitive verbs

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality and Verbs

Outline (1.1)

Semantic analysis has the objective of generating a
truth-conditional representation of the meaning of NL sentences
Compositional semantics is mapped into a recursive process
applied to the syntactic material produced during parsing
Functional programming maps the semantic analysis task to a
recursive process combining lexical and grammatical functions
We presented simple models for the semantic interpretation of
major lexical classes: coomon nouns, proper nouns, transitive
and intransitive verbs

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality and Verbs

Outline (1.2)

We implemented in the DCG Prolog formalism a model for the
semantic analysis process based on

Unification (in the beta-reduction operator)
A depth-first strategy (used by the Prolog interpreter)
A declarative model of the lexicon

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Compositionality and Verbs

References

Chapter 4. ”Further Topics in NL Analysis”, in Fernando C.N.
Pereira and Stuart M. Shieber. ”Prolog and Natural-Language
Analysis”, volume 10 of CSLI Lecture Notes. Chicago University
Press, Stanford, 1987.
(see also http://www.mtome.com/Publications/PNLA/prolog-digital.pdf).

Intelligenza Artificiale, S. J. Russel, P. Norvig, Prentice Hall Int.,
Chapter 22.3-22.8, 23, 1998.
NLP In Prolog, G. Gazdar, C. Mellish, Chapter 7, 8, 1998.
An Introduction to Unification-based Approaches to Grammar, S.
Shieber, Chapter 1, 2, 7, 8, CSLI Lecture Notes, n. 4, 1986.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Contents (2nd Part)

Some of the linguistic phenomena have not been discussed yet
Verb Aguments expressed by propositional phrases
Thematic Roles
Quantification

The above phenomena are crucially dependent on the lexicon
and on the domain model, i.e. an ontology

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Modifiers

Prepositional phrases (syntagms)

Prepositional phrases have very different roles in the semantic
description. They can be

Verb Arguments introduced by prepositions
Mario da’ a Gianni una penna

Accidental (i.e. non-core) Modifiers
Mario da’ la penna a Gianni in affitto — con affetto
Mario da’ la penna a Gianni in cucina

Empty Arguments
John relies on Fido → rely on(j,f)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Modifiers

Treatment of Empty prepositional modifiers

Eaxmple: John relies on Fido → rely on(j,f)

pp(Form,Sem) -->

p(Form),

np(Sem).

p(to) --> [to].

p(from) --> [from].

p(of) --> [of].

p(on) --> [on].

% rely on Fido, i.e. prepositional objects

vp(2/Pform, Sem) -->

v(2/Pform,Y^Sem),

pp(Pform,Y).

v(2/on, Y^X^rely_on(X,Y)) --> [relies].

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Modifiers

Treatment of Empty prepositional Modifiers

Manage empty prepositions, i.e.

p(on) --> [on]

...

pp(Form) --> p(Form), np(Sem).

vp(2/Pform, Sem) -->

v(2/Pform,Y^Sem),

pp(Pform,Y).

in coherence with other constructions, e.g.

s(S) --> np(Arg), vp(Arg^S).

Idea:
pp(Form, Sem) --> p(Form,X^Sem), np(Sem).

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Verb Arguments

Treatment of the verb prepositional arguments

Gianni da’ il libro a Michele → dare(g,l,m)

Gianni parla del libro a Michele → parlare(g,l,m)

Gianni compra il libro da Michele → comprare(g,l,m)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Verb Arguments

Treatment of the verb prepositional arguments

Some (English) verbs are called ”ditransitive”,
as they exhibit two direct objects playing the role of arguments.
They correspond to triadic predicates, with specific
syntax-to-semantic mappings.

vp(3/Pform, Sem) -->

v(3/Pform,Z^Y^Sem),

np(Y),

pp(Pform,Z).

v(3/a, Z^Y^X^dare(X,Y,Z)) -->

[diede].

v(3/da, Z^Y^X^comprare(X,Y,Z)) -->

[comprava].

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Verb Arguments

Treatment of the verb prepositional arguments

Assignment
Try to write a grammar fragment able to recognize other ditransitive
forms such as:
Gianni parla del libro a Michele → parlare(g,l,m)

by exploiting suitable definitions for vp() and pp()

Try to generalize the solutions to account for the movement of
modifiers, as in:

Gianni parla del libro a Michele → parlare(g,l,m)

Gianni parla a Michele del libro → parlare(g,l,m)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Verb Arguments

Treatment of ditransitive verbs

John gave the book to Mary → give(j,b,m)

John gave Mary the book → give(j,b,m)

Notice how the logic form FL should be the invariant with respect the
two grammatical structures. It corresponds to specific roles:

give(Giver ,Gift ,Recipient)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Verb Arguments

Treatment of ditransitive verbs

We need two rules for the same verb that express the two structures:
NP VP NP1 to NP2 NP VP NP2 NP1

v(3/to, Z^Y^X^give(X,Y,Z)) -->

[gave].

v(4, Z^Y^X^give(X,Y,Z)) -->

[gave].

Here we have equivalent semantics for two different syntactic forms.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Verb Arguments

Treatment of ditransitive verbs

NP VP NP2 NP1

NP VP NP1 to NP2

vp(3/Pform,Sem) --> % give NP2 to NP1:

v(3/Pform,Z^Y^Sem),

np(Y),

pp(Pform,Z).

vp(4,Sem) --> % give NP1 NP2:

v(4,Z^Y^Sem),

np(Z),

np(Y).

Observation: The assumption about roles is a core property of the
predicate and it is static (i.e. sentence and syntax independent). It
basically corresponds to a verb sense.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Verb Arguments

Alternative Semantic Representations

The design of the representation formalism depends on a linguistic
theory and it is not unique.

For example we could rely on explicit naming of roles and produce a
list, e.g.

John gave the book to Mary → [give:target, agent:j, theme:b,

goal:m]

or even make the arguments’ roles explicit within a predicative
structure, e.g.

John saw Mary →
some(E,[seeing(E),agent(E,j),theme(E,m),before(E,now)])

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Prepositional Verb Arguments

Alternative Semantic Representations

John gave the book to Mary → [give, agent:j, theme:b, goal:m]

v(1, X^[die, agent: X]) -->

[died].

v(2, Y^X^[love,agent:X,theme:Y]) -->

[loved].

v(3/to, Z^Y^X^[give,agent:X, theme:Y, goal:Z]) -->

[gave].

v(3/from, Z^Y^X^[buy, agent:X, theme:Y, source:Z]) -->

[bought].

v(5, Z^Y^X^[give, agent:X, theme:Z, goal:Y]) -->

[gave].

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Lexical Modifiers

Lexical Phenomena

A variety of semantic phenomena depends on the individual words,
as these constraints the underlying/intended interpretation of
syntactic structures

Semantics of Argumtnal Prepositional Modifiers
l’uomo bevve birra tutta la notte
la macchina beveva troppo gasolio
Arity and Roles in the Logic Form:
beve(uomo,birra)...

bere(macchina,gasolio) vs. consumare(macchina,gasolio)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Lexical Modifiers

Lexical Phenomena (2)

A variety of semantic phenomena depends on the individual words,
as these constraints the underlying/intended interpretation of
syntactic structures

Semantics of Argumtnal Prepositional Modifiers
lo zio di Mario
il libro di Mario
Arity and Roles in the Logic Form:
parente(zio,′Mario′)

possessore(libro,′Mario′)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Lexical Modifiers

The Role of Lexicon in NL interpretation

The above cases suggest that we need to express the different
interpretation at the lexical level, i.e. through specifici lexical
constraints

Sense distinctions (bereingerire vs. bereconsumare)
Constraints on the use of modifiers, alse called (selectional
restrictions)
trattare di storia, dare a qualcuno,
il libro di Mario, ... di storia, ... di sogni , ... di marmo
residente a Roma, ... a Gennaio, ... a motore, ... ad acqua
Relational Models of modifier interpretation (Syntax-semantics
interface)
parente(zio,′Mario′)

possessore(libro,′Mario′)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Lexical Modifiers

An example: nominal postmodifiers

il libro di Mario, ... di storia, ... di sogni , ... d’acqua
residente a Roma, ... a Gennaio, ... a motore, ... ad acqua

%--

np(Sem & Mod) -->

npk(Sem),

pp(np/Sem, Mod).

....

%caso nominale - sequenze NP --> NPK PP

pp(np/PPHead_Sem, PPSem) -->

p(np,Arg^PPHead_Sem^Expr),

np(Arg),

{pp_interpretation(Arg^PPHead_Sem^Expr, PPSem)}.

...

%Caso postmodificatori nominali - esempio del "di"

p(np,X^Y^di(Y,X,PPSem)) -->

[di].

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Semantics of Lexical Modifiers

An example: nominal postmodifiers

%--

...

pp_interpretation(Arg^Head^Expr, SemForm) :-

call(Expr),

Expr =.. [Prep, Head, Arg, SemForm].

....

%regole PostModificatori Nominail (predicati diadici)

di(Head,ModNP,possessor(Head,ModNP)) :-

tc_isa(Head,oggetto),

tc_isa(ModNP,persona).

di(Head,ModNP,parente(Head,ModNP)) :-

tc_isa(Head,parente),

tc_isa(ModNP,persona).

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Managing Quantification

Given a sentence such as: ”Ogni ingegnere studia” expressed by
a syntax like:
s(SP) --> np(NP), vp(VP).

it is obvious that the noun phrase ”Ogni ingegnere” expresses a
quantification.

A logic form that is coherent with intuition is thus :
∀x ingegnere(x) ⇒ studia(x)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus

Quantification in noun phrases can be expressed in the lexicon
through the following λ -abstraction corresponding to the phrase
”Ogni ingegnere”:
λq.(∀x) ingegnere(x) ⇒ q(x)

However in the above DCG rule
s(SP) --> np(NP), vp(VP) it is the noun phrase semantics NP ′

(originated by NP) that applies to verb phrase semantics VP ′ (VP),
that is NP ′(VP ′) is the proper modeling, and not vice versa as we
assumed so far.

In fact, with VP ′ = λy .studia(y) then NP ′(VP ′)) corresponds to:
(λq.(∀x)ingegnere(x) ⇒ q(x))(λy .studia(y)) =
((∀x)ingegnere(x) ⇒ (λy .studia(y))(x)) =
(∀x)ingegnere(x) ⇒ studia(x)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus

Quantification in noun phrases can be expressed in the lexicon
through the following λ -abstraction corresponding to the phrase
”Ogni ingegnere”:
λq.(∀x) ingegnere(x) ⇒ q(x)

However in the above DCG rule
s(SP) --> np(NP), vp(VP) it is the noun phrase semantics NP ′

(originated by NP) that applies to verb phrase semantics VP ′ (VP),
that is NP ′(VP ′) is the proper modeling, and not vice versa as we
assumed so far.
In fact, with VP ′ = λy .studia(y) then NP ′(VP ′)) corresponds to:
(λq.(∀x)ingegnere(x) ⇒ q(x))(λy .studia(y)) =
((∀x)ingegnere(x) ⇒ (λy .studia(y))(x)) =
(∀x)ingegnere(x) ⇒ studia(x)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (2)

The noun phrase ”Ogni ingegnere” is grammatically described by
np(NP) --> det(DT), n(N), ... %where DT is the

determiner

We need a compositional semantic account for the NP derivable
through β -reduction from the suitable lexical forms for ”Ogni” (DT)
and ”ingegnere” (N)

”Ogni ingegnere” can thus be fully described by the following
DCG rule:
np(NPSem) --> det(DTSem), n(NSem),

betareduce(DTSem,NSem,NPSem)

whereas we can find the following definitions in the lexicon for DT
and N, respectively:
DT: λp.λq.(∀x)p(x) ⇒ q(x)
N: λy .ingegnere(y)

It follows that nouns such as ”ingegnere” corresponds to
properties that are unary predicates, in astrict analogy with
(intransitive) verbs.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (2)

The noun phrase ”Ogni ingegnere” is grammatically described by
np(NP) --> det(DT), n(N), ... %where DT is the

determiner

We need a compositional semantic account for the NP derivable
through β -reduction from the suitable lexical forms for ”Ogni” (DT)
and ”ingegnere” (N)
”Ogni ingegnere” can thus be fully described by the following
DCG rule:
np(NPSem) --> det(DTSem), n(NSem),

betareduce(DTSem,NSem,NPSem)

whereas we can find the following definitions in the lexicon for DT
and N, respectively:

DT: λp.λq.(∀x)p(x) ⇒ q(x)
N: λy .ingegnere(y)

It follows that nouns such as ”ingegnere” corresponds to
properties that are unary predicates, in astrict analogy with
(intransitive) verbs.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (2)

The noun phrase ”Ogni ingegnere” is grammatically described by
np(NP) --> det(DT), n(N), ... %where DT is the

determiner

We need a compositional semantic account for the NP derivable
through β -reduction from the suitable lexical forms for ”Ogni” (DT)
and ”ingegnere” (N)
”Ogni ingegnere” can thus be fully described by the following
DCG rule:
np(NPSem) --> det(DTSem), n(NSem),

betareduce(DTSem,NSem,NPSem)

whereas we can find the following definitions in the lexicon for DT
and N, respectively:
DT: λp.λq.(∀x)p(x) ⇒ q(x)
N: λy .ingegnere(y)

It follows that nouns such as ”ingegnere” corresponds to
properties that are unary predicates, in astrict analogy with
(intransitive) verbs.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (2)

The noun phrase ”Ogni ingegnere” is grammatically described by
np(NP) --> det(DT), n(N), ... %where DT is the

determiner

We need a compositional semantic account for the NP derivable
through β -reduction from the suitable lexical forms for ”Ogni” (DT)
and ”ingegnere” (N)
”Ogni ingegnere” can thus be fully described by the following
DCG rule:
np(NPSem) --> det(DTSem), n(NSem),

betareduce(DTSem,NSem,NPSem)

whereas we can find the following definitions in the lexicon for DT
and N, respectively:
DT: λp.λq.(∀x)p(x) ⇒ q(x)
N: λy .ingegnere(y)

It follows that nouns such as ”ingegnere” corresponds to
properties that are unary predicates, in astrict analogy with
(intransitive) verbs.

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (3)

The sentence ”Ogni ingegnere studia”, described by the
grammar as
s(S) --> np(NP), vp(VP), betareduce(NP,VP,S)

np(NP) --> det(DT), n(N), betareduce(DT,N,NP)

triggers the following chain of β -reductions:

NP=DT(N):

(λp.λq.(∀x)p(x) ⇒ q(x))(λy .ingegnere(y)) =
= (λp.λq.(∀x)(λy .ingegnere(y))(x) ⇒ q(x))(λy .ingegnere(y)) =
= λq.(∀x)ingegnere(x) ⇒ q(x)

and similarly, S=NP(VP):
(λq.(∀x)ingegnere(x) ⇒ q(x))(λy .studia(y)) =

= ((∀x)ingegnere(x) ⇒ (λy .studia(y))(x)) =
= (∀x)ingegnere(x) ⇒ studia(x)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (3)

The sentence ”Ogni ingegnere studia”, described by the
grammar as
s(S) --> np(NP), vp(VP), betareduce(NP,VP,S)

np(NP) --> det(DT), n(N), betareduce(DT,N,NP)

triggers the following chain of β -reductions:
NP=DT(N):

(λp.λq.(∀x)p(x) ⇒ q(x))(λy .ingegnere(y)) =

= (λp.λq.(∀x)(λy .ingegnere(y))(x) ⇒ q(x))(λy .ingegnere(y)) =
= λq.(∀x)ingegnere(x) ⇒ q(x)

and similarly, S=NP(VP):
(λq.(∀x)ingegnere(x) ⇒ q(x))(λy .studia(y)) =

= ((∀x)ingegnere(x) ⇒ (λy .studia(y))(x)) =
= (∀x)ingegnere(x) ⇒ studia(x)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (3)

The sentence ”Ogni ingegnere studia”, described by the
grammar as
s(S) --> np(NP), vp(VP), betareduce(NP,VP,S)

np(NP) --> det(DT), n(N), betareduce(DT,N,NP)

triggers the following chain of β -reductions:
NP=DT(N):

(λp.λq.(∀x)p(x) ⇒ q(x))(λy .ingegnere(y)) =
= (λp.λq.(∀x)(λy .ingegnere(y))(x) ⇒ q(x))(λy .ingegnere(y)) =

= λq.(∀x)ingegnere(x) ⇒ q(x)

and similarly, S=NP(VP):
(λq.(∀x)ingegnere(x) ⇒ q(x))(λy .studia(y)) =

= ((∀x)ingegnere(x) ⇒ (λy .studia(y))(x)) =
= (∀x)ingegnere(x) ⇒ studia(x)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (3)

The sentence ”Ogni ingegnere studia”, described by the
grammar as
s(S) --> np(NP), vp(VP), betareduce(NP,VP,S)

np(NP) --> det(DT), n(N), betareduce(DT,N,NP)

triggers the following chain of β -reductions:
NP=DT(N):

(λp.λq.(∀x)p(x) ⇒ q(x))(λy .ingegnere(y)) =
= (λp.λq.(∀x)(λy .ingegnere(y))(x) ⇒ q(x))(λy .ingegnere(y)) =
= λq.(∀x)ingegnere(x) ⇒ q(x)

and similarly, S=NP(VP):
(λq.(∀x)ingegnere(x) ⇒ q(x))(λy .studia(y)) =

= ((∀x)ingegnere(x) ⇒ (λy .studia(y))(x)) =
= (∀x)ingegnere(x) ⇒ studia(x)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Quantifiers and λ -calculus (3)

The sentence ”Ogni ingegnere studia”, described by the
grammar as
s(S) --> np(NP), vp(VP), betareduce(NP,VP,S)

np(NP) --> det(DT), n(N), betareduce(DT,N,NP)

triggers the following chain of β -reductions:
NP=DT(N):

(λp.λq.(∀x)p(x) ⇒ q(x))(λy .ingegnere(y)) =
= (λp.λq.(∀x)(λy .ingegnere(y))(x) ⇒ q(x))(λy .ingegnere(y)) =
= λq.(∀x)ingegnere(x) ⇒ q(x)

and similarly, S=NP(VP):
(λq.(∀x)ingegnere(x) ⇒ q(x))(λy .studia(y)) =

= ((∀x)ingegnere(x) ⇒ (λy .studia(y))(x)) =
= (∀x)ingegnere(x) ⇒ studia(x)

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Management of Quantifiers in Prolog

In order to manipulate quantifiers in Prolog we need to model the
following expressions:
∀x P(x) and ∃x P(x)

This is carried out by introducing two special purpose predicates
all/2 and exist/2, and by exploiting constraints imposed by
unification
A possible defintion in Prolog could be
∀x P(x): all(X, p(X))

∃x P(x): exist(X, p(X))

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Management of Quantifiers in Prolog (2)

It must be noticed that P in
∀x P(x) ed ∃x P(x)
can be complex, as in we observed in the semantic description of
the determiner ”ogni”.
Also here, Prolog structures can offer a useful syntactic support
as follows:
∀x P(x) ⇒ Q(x): all(X, p(X) => q(X))

∃x P(x) ⇒ Q(x): exist(X, p(X) => q(X)

given a suitable defintion of => as a binary infix operator through
the folowing Prolog declaration:
:-op(500, xfy, =>).

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Management of Quantifiers in Prolog (3)

By using the two predicates above and the β -reduction we can
define the lexical structures able to characterize the
quantification. The following lessical forms:

ingegnere: λy .ingegnere(y)
studia: λy .studia(y)
ogni: λp.λq.(∀x)p(x) ⇒ q(x)

can be thus defined in Prolog as:
n(X^ingegnere(X)) --> [ingegnere].

iv(X^studia(X)) --> [studia].

det((X^P)(X^Q)^all(X,(P => Q))) --> [ogni].

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Management of Quantifiers in Prolog (4)

Finally, non-lexical DCG rules change in :
np(NP) --> det(DT), n(N), { betareduce(DT,N,NP) }.

s(S) --> np(NP), vp(VP), { betareduce(NP,VP,S)}.

vp(VP) --> iv(VP).

o, more syntatically, by exploiting to the unification contraints:
np(NP) --> det(N^NP), n(N).

s(S) --> np(VP^S), vp(VP).

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Management of Quantifiers in Prolog - Assignments

Scrivere un modello lessicale per l’aggettivo tutti.
Scrivere un modello lessicale per gli aggettivi dimostrativi questo,
quello, questi. Scrivere un modello lessicale per alcuni determiner
quali un, uno, il.
Scrivere un modello semantico per frasi nominali quali:

il libro giallo, il libro di Mario, il libro di Storia
I libri di Mario
L’abito a scacchi

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Outline (2.1)

In the Prolog DCG formalism an implementation of the semantic
analysis process based on the interpreter resolution strategy has
been defined
Several linguistic phenomena have been discussed:

Empty Prepositional Modifiers
Argumental Prepositional Modifiers wihtin n-ary predicates
Semantic equivalence of distinct syntactic argument structures (i.e.
ditransitive verbs)
Lexical dependencies within the semantic interpretation process
(*) Quantifiers

Semantics in NLP and Predicate Calculus Compositionality in Prolog Lexicons, Semantics and Compositionality

Introduction to Semantics of Quantification in NLs

Suggested Bibliography

Chapter 4. ”Further Topics in NL Analysis”, in Fernando C.N.
Pereira and Stuart M. Shieber. ”Prolog and Natural-Language
Analysis”, volume 10 of CSLI Lecture Notes. Chicago University
Press, Stanford, 1987.
Chapter 18: “Computational Semantics, in Jurafsky, Daniel, and
James H. Martin. “Speech and Language Processing: An
Introduction to Natural Language Processing, Speech
Recognition, and Computational Linguistics. 2nd edition.
Prentice-Hall. 2009.
Intelligenza Artificiale, S. J. Russel, P. Norvig, Prentice Hall Int.,
Chapter 22.3-22.8, 23, 1998.

	Semantics in NLP and Predicate Calculus
	Compositionality in NL

	Compositionality in Prolog
	Lambda-Calculus & NL
	-reduction
	-reduction and Prolog
	Compositionality and Verbs

	Lexicons, Semantics and Compositionality
	Semantics of Prepositional Modifiers
	Semantics of Prepositional Verb Arguments
	Semantics of Lexical Modifiers
	Introduction to Semantics of Quantification in NLs

